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Preface

The advent of sub-quarter-micron IC technologies has forced dramatic changes in the
design and manufacturing methodologies for integrated circuits and systems. The par-
adigm shift for interconnect -- which was once considered just parasitic but can now
be a dominant factor for integrated circuit performance -- provided the greatest impe-
tus for change of existing methodologies. Over the past decade there have been a
number of advances in modeling and analysis of interconnect that have facilitated the
continual advances in design automation for systems of increasing size and frequency.
This book provides a comprehensive coverage of modeling and simulation of RC and
RCL interconnect, including the interactions with gate- and transistor-level models,
such as those used in SPICE. The practical aspects of the algorithms and models are
explained with sufficient detail for the interested practitioner, but also include some
theoretical depth for those who wish to look beyond these state-of-the-art methods.

This book is primarily a compilation of research that was carried out at the University
of Texas at Austin, Carnegie Mellon University, and Monterey Design Systems. We
would like to acknowledge the contributions from several colleagues and friends to
various chapters throughout this book. We especially want to thank Emrah Acar, Ravi
Arunachalam, Florin Dartu, Rohini Gupta, Byron Krauter, Tao Lin, Frank Liu, Noel
Menezes, Satya Pullela, Jessica Qian, Curtis Ratzlaff, and Bogdan Tutuianu for con-
tributions of excerpts from their published papers. We wish to especially thank Xin
Li, Rusen Oktem, and Guy Maor for their outstanding technical review of the chap-
ters and formulas. We would also like to thank Patricia Hermenault for her grammati-
cal editing, and Elizabeth Miller for the design of the book cover. Special thanks also
to Carl Harris at Kluwer Academic Publishers for soliciting the proposal for this book
and then enthusiastically encouraging us to complete it.

This book would never have been completed without support from many sources.
Mustafa Celik would like to acknowledge the support of Tak Young and Monterey
Design Systems for giving him the time to work on this project. And most impor-
tantly, we are deeply indebted to the support that we received from our families: Mus-
tafa’s wife Asli and son Kerem, and Larry’s wife Leah and daughter Hannah, who
support us in everything that we do.

Mustafa Celik
Larry Pileggi

Altan Odabasioglu



CHAPTER 1 Introduction

As integrated circuit feature sizes continue to scale well below 0.25 microns, active-
device counts are reaching hundreds of millions. The amount of interconnect among
the devices tends to grow superlinearly with the transistor counts, and the chip area is
often limited by the physical interconnect area. Due to these interconnect area limita-
tions , the interconnect dimensions are scaled with the devices whenever possible [1.1]
[1.2]. In addition, to provide more wiring resources, IC’s now accommodate numer-
ous metallization layers, with more to come in the future [1.3].

These advances in technology that result in scaled, multi-level interconnects may
address the wireability problem, but in the process create problems with signal integ-
rity and interconnect delay. We introduce some of these interconnect problems in the
remainder of this chapter, then the seven chapters which follow describe in detail var-
ious solutions for these problems.

1.1 Interconnect Trends

At maximum wiring density, each IC wire is electrostatically coupled to nearest
neighbors on the same layer, as well as wires above and below it, as sketched in
Figure 1.1. If all of the dimensions (including conductor thicknesses) in Figure 1.1
are scaled by S, the capacitance per unit length (cross-section) among the wires
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remains unchanged. In contrast, the resistance per unit length for each wire is
increased by . Therefore, the RC per unit length is increased by the same factor.

If all of the lengths of interconnect are scaled -- which would be the case for a com-
plete die shrink -- then the total RC for the interconnects would remain unchanged.
But as device sizes are reduced, there has been a tendency to place more functionality
on the chip, and therefore the average interconnect lengths do not scale. Moreover, as
the devices are scaled, there may be an improvement in their operating speed or out-
put impedance that will make the R of the interconnect relatively larger in comparison
to the “R” of the driver. So, while the operating speed of the gates is improving, the
delays of the interconnect between the gates remain fixed. This can translate into an
increase in the interconnect delay, relative to the driver delay, even when the lengths
are scaled.

But this analysis assumes that the conductor thicknesses are scaled, and this is not
always desirable if interconnect resistance is required to be smaller. If the conductor
thicknesses are held constant, then R per unit length of interconnect increases by only
1/S. However, due to fringing and coupling capacitance effects, the capacitance per
unit length increases when conductor thicknesses are not scaled, and the RC per unit
length increase is greater than 1/S.

1.1.1 Local Wires and Global Wires

When technology trends are investigated, usually an important distinction is made
between two types of wires. Local wires connect gates or cells within blocks, and
with scaling these wires get shorter. Global wires connect blocks together and usually

2 IC Interconnect Analysis
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span a significant portion of a chip. They do not shrink when devices get smaller, and
even tend to increase with increasing chip sizes.

Resistance does not matter much for local wiring since the total resistance is domi-
nated by the device resistance. Global wires, on the other hand, are most impacted by
RC effects. This is due to the combined effect of decreasing driver resistance to drive
the large load and large wire resistances due to the long length. The actual lengths,
hence the metal resistance impact, also depend on how global wires are buffered.

Local wires do not have significant RC interconnect delays, but their total capacitance
can be dominated by the interconnect capacitance since wire capacitance does not
decrease with scaling, whereas device capacitance does. Furthermore, when C domi-
nates, coupling can be a big factor, and in effect, it can scale the capacitances several
times their nominal value. This affects both local and global nets.

1.1.2 Coupling Capacitance Effects

When the conductor spacings become comparable to the conductor thicknesses, the
coupling capacitance between wires is significant (refer to Figure 1.2). One has to be
concerned with the coupling between signal wires, as it impacts performance and sig-
nal integrity. Moreover, assuming that the wiring layers in Figure 1.2 represent upper
and lower level metal layers, it should be noted that the majority of the total capaci-
tance will be between signal wires for multi-level technologies, and very little capaci-
tance will be to the substrate (ground).

Introduction 3
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For delay analysis purposes we would like to create simple RC models with the
capacitance connected from the line to ground. Representing all of the coupling to
other wires is intractable for many applications. But if the coupling is to be modeled
as a grounded C, the value should be adjusted to consider the worst case conditions of
switching from the other line(s).

Consider two coupled lines, as shown in Figure 1.3. If one line is switching high,
while the other is switching low, the waveform on line 1 may become non-monotone,
and the “delay” is increased. If, for delay calculation purposes, we want to analyze the
delay of line 1, independent of line 2, then we can consider modeling the coupling
capacitance by an effective capacitance to ground.

For example, referring to Figure 1.4, assume that the rate of change of signal 1 is
and that of signal 2 is β  (where ) during the time period of switching for
line 1, While line 2 is switching, the current through the coupling capacitor is
C(1 + β) , for a time duration of VDD/β. The effective capacitance for line 1 (if
the coupling capacitor is modeled as a C to ground) is C( 1 + β) for this period of
time. For the remaining portions of the switching period on line 1, the capacitance is
approximately C (it is actually slightly less than C since line 2 is not a perfect
ground) for the duration of

In summary, we have a brief period of time during which the effective capacitance is
quite large, and then the remaining time the effective capacitance is approximately C.
One can average these two capacitors, over the corresponding time periods, which
results in an average effective capacitance of 2C (as expected since the total change
in voltage is 2VDD). But the actual effect on delay is obtained only by a complete
simulation of the coupled lines. The impact on delay can be significantly greater than
that modeled by an effective capacitor of 2C.

4 IC Interconnect Analysis
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If the lines are switching in the same direction, one can derive a similar formula for
the decrease in effective capacitance. Since most of the coupling is between signal
lines, the pessimistic/optimistic impact of coupling on delay is extremely important.

1.1.3 Inductance Effects

At extremely fast switching frequencies there is the potential for inductance to play a
role in the calculation of interconnect delay. This largely depends on the design style;
particularly the length of the unbuffered wires and the power/ground line configura-
tions for returning current.

As chip sizes grow, it is increasingly difficult to run long, resistive, metal lines across
the chip and operate at or near gigahertz frequencies. For this reason there have been
proposals for using thicker, wider, hence lower resistance metal for the top layer of
interconnect to reduce the RC delay. However, if the R per unit length is reduced sig-
nificantly, the inductance can become a factor. In general, on-chip inductance is most
likely to be evident in large clock distribution trunks and wide signal busses. For bus-
ses, the aggregate effect of many parallel wires behaves similarly to one large wire.

Perhaps more importantly, as the boundary between chip and package becomes more
important (with flip-chip technologies, etc.), the inductance of the package and chip-
to-package interface could become extremely critical for determining the overall IC
system performance prior to manufacturing. For this reason, effective inductance
modeling and analysis is required for any high performance IC design.

Introduction                                                                                                                     5
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1.2 Interconnect Models

This book does not describe the algorithms used to generate resistance, capacitance,
and inductance values from interconnect geometry information, but below we include
a brief introduction to this subject and describe the circuit models that they produce.

1.2.1 RC Trees

Most interconnect model topologies follow a tree like structure as shown in
Figure 1.5(a). For such a structure, the simplest electrical model that includes the
topology information and metal resistivity is in the form of an RC tree (see
Figure 1.5(b)). An RC tree is an RC circuit with capacitors from all nodes to ground,
no capacitors between nonground nodes, and no resistors connected to ground. To
have such a simple model, drivers are sometimes modeled in the form of a Thevenin
equivalent voltage source, and the receivers are replaced by linear capacitors.

6 IC Interconnect Analysis
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The resistance calculation for interconnect is straightforward. For a uniform structure
with a rectangle cross-section the resistance is given by

where is the process dependent sheet resistance having units of
, and l, t, and w are the resistivity, length, thickness, and width of the

wire, respectively. Thus to obtain the resistance of a wire on a layer we simply multi-
ply the sheet resistance by the ratio of the length to width of the wire.

For the nonuniform or nonrectangle structures such as vias and corners, the resistance
calculations are more complicated than (1.1). One approach can be to break the con-
ductor into simple regions so that (1.1) can be used for each region. A more straight-
forward and accurate method is to formulate the problem in terms of the 2-D or 3-D
Laplace equations and solve them via finite-difference methods.

For capacitance extraction many different techniques can be employed. Depending on
the desired accuracy, these methods can vary from using very simple 2-D analytical
models to employing 3-D electrostatic field solvers.

For example, the empirical formula [1.4]

and its derivatives were very useful to estimate the per-unit-length wire capacitance,
when the wires in a chip could be modeled as a single conductor over a ground plane.

But with multiple routing layers and increasing routing density, the capacitance inter-
actions between conductors can become very complex, and the closed-form expres-
sions such as (1.2) can no longer be used. In deep submicron IC design
methodologies, the generally applied approach is to precharacterize the capacitance
values for the commonly encountered 2-D and/or 3-D structures. The exact capaci-
tance values for these structures are calculated a priori using a 2-D or 3-D field-solver
based method, and then either a curve fitting or a table look up approach is used for
characterization. During the extraction process, the patterns of the real structures are
matched with the ones in the library and the per-unit-length capacitance numbers are
obtained with interpolation and extrapolation [1.5] [1.6].

Introduction 7
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The simplest curve-fitting based model approximates the per-unit-length capacitance
as

The process dependent constants and representing the edge and area capaci-
tances, respectively, are calculated per layer. The form in (1.3) is widely used in wire
sizing and for other optimization purposes.

For bends in the metal paths, vias, and other structures that require 3-D modeling, the
capacitance values obtained from the extraction simply become capacitances from
that node to ground.

For 2-D structures, the per-unit-length R and C values are used to model the total RC
of the straight segment — often referred to as a uniform RC segment (URC). URCs
are best described in the Laplace domain, making them somewhat incompatible with
traditional transient-analysis algorithms. But due to the low pass nature of RC cir-
cuits, it can be shown that only a small number of lumped segments are required to
accurately model a URC, and there is never a need for more than five lumped seg-
ments to model any URC for digital circuit applications [1.7]. Moreover, as intercon-
nect paths pass over other metal layers, each metal crossing represents a discontinuity
in the per-unit-length C, so there are few uniform RCs of sizeable length. Also, fewer
than five lumps are adequate in most cases.

One conservative estimate for the number of lumped segments (N) required to model
a URC, based on the maximum signal frequency of interest, is obtained by solving

for N [1.7].

1.2.2 RLC Trees

In RC tree modeling of interconnects, all of the neighboring conductors are modeled
as ground in addition to substrate. This is a reasonable assumption as long as crosstalk
effects are negligible. This model implies that the high frequency components of the
current flowing in the interconnect return through the capacitors. But it does not say
anything about the return path for dc and low frequency components of the current.

8 IC Interconnect Analysis
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This is the main problem in on-chip inductance modeling because the inductance is
defined only for closed loops, and it is very difficult to determine the return paths
without a detailed analysis. Of course, as we demonstrate in the next subsection, an
accurate analysis is possible via a partial inductance approach. However, this is very
impractical if we want only a quick performance estimation of the interconnect.

In contrast, we show that the moment-based analysis of RLC trees is extremely easy.
Thus for a quick estimation of inductive effects such as delay, ringing, and overshoot,
RLC tree modeling of interconnects can be very useful. With some assumptions on
the return paths [1.8], tree modeling is possible via the loop inductance concept. In
reality, the current can return anywhere from the power/ground network of the chip.
Thus, we can, for example, pick the closest power rail or stripe as the return path.
Alternatively, we can assume (grounded) shields around the net that is being ana-
lyzed. Once a return path is identified, then it is straightforward to calculate the loop
inductance from the partial self inductances of the signal and return conductors and
the partial mutual inductance between them. Under the uniform current distribution
assumption, which is the case if we neglect the skin and promixity effects, there exist
closed form expressions for partial self and mutual inductances for certain types of
geometries [1.9].

1.2.3 RLC Circuit Models

For the utmost accuracy of the interconnect parameter values, we can always start
with Maxwell’s equations and obtain a full-wave characterization by using either an
integral equation or finite differencing method. Except for very few applications,
however, this is not a desirable approach for interconnect analysis for two reasons: a-
) the prohibitive runtime, b-) the difficulty in the modeling of the interaction with the
nonlinear drivers and loads.

Circuit modeling of passive electromagnetic systems has been an active research area
since the work of [1.10] which can be considered as the first attempt to relate Max-
well’s equations to circuit models. For a review of electrical modeling of intercon-
nects and packages, see [1.11]. Here, we will give a brief summary of the PEEC
method, a popular approach to obtain circuit models from electromagnetic formula-
tions.

As stated above, integral equation based methods are one of the two commonly
employed techniques for electromagnetic modeling. An interesting property of the
integral equation statement of an electromagnetic problem is that the integral equation
can be interpreted in terms of the capacitive and inductive interactions between the

Introduction 9
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elemental currents and charges in the discretized structure. Thus, by introducing cir-
cuit elements it is possible to construct a complete distributed equivalent circuit
description of the discrete electromagnetic problem. The resulting circuits are called
partial element equivalent circuits (PEEC).

We use the notation PEEC to refer to the rigorous, full-wave PEEC
model where P, and R represent the elements for inductance, potential (capaci-
tance), and resistance, and indicates that retardation is included. However, depend-
ing on the application and the required accuracy, it may be possible to eliminate
circuit elements from the full-wave PEEC model to obtain simpler models.

Typically, the on-chip and package structures are electrically small, i.e., the length
and the overall physical size of such a structure is only a small fraction of the mini-
mum wavelength in the bandwidth of interest. In such cases, the retardation is
expected to have a minor effect. Hence, the full-wave modeling may not be necessary.
Thus we can use the simple models.

The capacitances in the nonretarded PEEC model are represented with the coeffi-
cients of potential. With a matrix inversion, we can convert the coefficients of poten-
tial P to capacitances C and the model will be a model. Many of the
techniques that are presented in this book are directly applicable to these types of cir-
cuits. For the sake of simplicity, they are referred to as RLC circuits.

For on-chip applications, it is often the case that the inductive effects can be
neglected. For such cases, the model is referred to as a (C, R)PEEC model. In this
book we refer to them as RC circuits.

We also note the RL modeling which is especially suitable for packaging structures.
For the case where capacitance elements can be neglected, specialized solvers can be
used for the solution of the resulting reduced circuit [1.12].

A. Capacitance Extraction

The PEEC modeling starts with the coefficients of potential, and after a matrix inver-
sion the capacitances are obtained for RC and RLC modeling.

More precisely, the conductor surfaces are divided into n small panels, and it is
assumed that on each panel, the charge is uniformly distributed. We then solve a
matrix equation of the form

10 IC Interconnect Analysis
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where P is the n × n dense potential coefficient matrix, q is the vector of panel
charges, and v is the vector of known panel potentials.

Direct inversion methods, such as Gaussian elimination, require operations to
solve (1.5). Clearly, this approach becomes computationally intractable for the sizes
of the problems that typically appear in IC interconnect modeling. Instead, iterative
algorithms such as GMRES are usually applied to solve the problem in (1.5). In this
case, the dominant cost is the operations required to compute at each
iteration, where is the charge vector at the kth iteration. Thus, even the iterative
techniques are very costly for typical interconnect problems. In addition, in terms of
memory, both direct and iterative methods require storage.

The main cost in iterative methods is the computation of the product which is
equivalent to computing n potentials from n charges. One approach to accelerate the
matrix-vector products is to use potential approximations based on multipole expan-
sions [1.13]. The basic concept is as follows. Consider potentials due to pan-
els. The cost of the direct evaluation is operations. Now assume that  panels
are close to each other and potential evaluation points are all far away from the
charges. With multipole approximations, the charges are replaced with a single
charge equal to their sum. The number of operations to compute the potentials
given this simplification is then that is, operations to compute the sum of
charges, and operations to calculate the potentials at the evaluation points. In addi-
tion, the matrix P is never explicitly built, hence a significant memory reduction is
obtained.

In summary, with multipole expansions the cost per iteration can be reduced to O(n)
operations. A 3-D capacitance extraction program based on this approach, FASTCAP
[1.14], has become very popular and has initiated an extensive amount of research in
the area of the development of fast integral equation solution techniques.

We also note a stochastic approach for IC capacitance extraction. A floating random
walk based method [1.15] has proven to be very effective for 3-D capacitance extrac-
tion.

Introduction 11
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1.3 Interconnect Analysis Via Moments

Once we have extracted values for the interconnect resistances, capacitances (and
inductances), we can analyze the delay, rise-time, noise, etc., by various analysis and
simulation algorithms. However, due to the nature and size of interconnect circuit
models, one efficient solution approach is in terms of moments. In this subsection we
will briefly outline the definition of moments, and explain how and why they are effi-
ciently calculated in a linear circuit -- whether it is a simple RC tree or a large,
strongly coupled RCL interconnect model.

Consider the simple RC ladder circuit shown in Figure 1.6. We can express the trans-
fer function of this circuit as

where m>n. Expanding (1.6) about s = 0 we can rewrite the transfer function as a
series in powers of s :

where the coefficients, are known as circuit moments. Let h(t) be the impulse
response at the output. From the time-frequency domain relationship

it can be shown that

12 IC Interconnect Analysis
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That is, the circuit moments, are related to the probability moments of the

impulse response h (t) by the term.

In Chapter 5, we show that moments in linear circuits are generated very efficiently.
For example, to find the moments of the circuit given in Figure 1.6, we recursively
solve the dc equivalent circuit shown in Figure 1.7. In the case of the current
sources are set to zero and the input source is left intact.

Note that this procedure for replacing capacitors by current sources to calculate
moments holds for all circuit topologies. A more complete explanation of the recur-
sive procedure for calculating moments of general lumped, linear RLC circuits is
described in terms of state variables in Chapter 4. Efficient calculation of moments
for RLC tree-like topologies [1.16] and general circuits is described in Chapter 5.

1.4 Interconnect Metrics

Moments are extremely useful for analyzing RLC interconnect circuits via moment
matching (Chapter 4) [1.17], but moments themselves are also useful as interconnect
metrics. In particular, the first moment of the impulse response, the Elmore delay, is
by far the most popular delay metric for RC interconnect trees. Similarly, for RLC
trees, the first few moments can be used as metrics for delay and signal integrity con-
trol (Chapter 3).

Introduction 13



Introduction

1.4.1 Elmore Delay — First Moment

The Elmore delay [1.18], or the first moment of the impulse response, is a popular
metric for RC trees since it is perhaps the most accurate delay metric that is a simple
algebraic function of the R’s and C’s. Penfield and Rubenstein introduced this metric
and the ease with which it is calculated for RC tree type problems [1.19]. Two O(N)
traversals of the tree, where N is the number of nodes in the tree, yield the Elmore
delay.

The basis of Elmore’s approximation lies in the observation that the impulse
responses of circuits with monotonic step responses are nonnegative functions. There-
fore, the impulse responses can be viewed as probability density functions. For exam-
ple, the step and impulse responses of a simple RC tree circuit are shown in
Figure 1.8. Since the step response is the integral of the impulse response h(t), the
50% point delay of the monotonic step response is equal to the median point of the

impulse response: Referring to Figure 1.8, Elmore proposed to

approximate the median, by the mean, or the first moment of the h(t) distribution:

where, Clearly, the accuracy of the Elmore delay will be affected by

the spread (variance) and skew (asymmetry) of the impulse distributions.

The skew, or the third central moment, from distribution theory, measures the
asymmetry of a distribution function. The second central moment, represents the
variance or spread. Their relation to circuit moment can be shown to be

14 IC Interconnect Analysis
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In the next chapter, using central moments we prove that the Elmore delay is an abso-
lute upper bound on the 50% delay of an RC tree response, even for finite rise-time
input signals [1.20]. We further show that and are always positive for RC cir-
cuit responses, but their values vary with the shape of the impulse distribution. Only
when two response nodes have similar shapes, hence and can we reliably use
the first moment of the impulse response to approximate the delays with good relative
accuracy.

1.4.2 Higher-Order Moment Metrics

Higher order delay approximations are needed to capture the DSM RC and RCL
interconnect delays with reasonable relative accuracy. Higher order waveshape
effects are also required to properly capture some of the gate behavior in terms of the
effective capacitance loading. Some attempts have been made to formulate explicit
solutions of second order (two time constant) models, which would seem to be the
obvious compromise between an Elmore approximation and a complete reduced-
order model via moment matching.

To apply such a two-pole model, however, requires a moment matching formulation
that characterizes the poles in a provably stable manner. The first stable two-pole
model was proposed in [1.21], but while it was stable, it could still produce complex
pole pairs for RC circuits. In addition, this two-pole model required nonlinear itera-
tions to solve for the delay, making it impractical for use during physical design.

In Chapter 3, we will provide some two-pole models which can be evaluated by
approximate closed-form means or table-lookup. These approaches can be extended
beyond second order, but it becomes increasingly difficult to evaluate the delays with
the same efficiency that is possible with second order.

Another approach is to extend the delay metrics via the distribution interpretation pro-
posed by Elmore. One approach is to fit RC tree/mesh impulse responses to time-
shifted gamma functions via moment matching. Similarly, we can approximate
homogenous parts of step responses with gamma distribution [1.22]. Importantly,
these methods will be shown to be provably stable for RC trees and meshes based on
their central moment properties. Because of the guaranteed stability, the delays for
any percentage point of the waveform can be stored and evaluated via table lookup
using the parameters of gamma that are a function of the first three moments.

Introduction 15
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1.4.3 RLC Metrics

Recently, metrics for RLC interconnects have been proposed based on the first three
central moments [1.23]. Three moments are used to detect underdamping (ringing),
specify proper termination, and estimate delay provided that the line is properly ter-
minated. As lower resistance on-chip interconnects are developed, central moments
have become important for detection and control of inductance effects.

1.4.4 Gate Delay Considerations

The percentage of the delay due to the RC interconnect has increased substantially
relative to the gate delay for DSM technologies. As the metal resistance increases, the
interconnect delay portion increases, and the gate delay component decreases due to
resistance shielding effects. Roughly speaking, if the resistive component of the RC
load is comparable or larger than the gate output impedance, the gate does not “see”
all of the capacitance loading since the metal resistance “shields” some capacitance.
This is most easily explained in terms of the circuit in Figure 1.9.

Referring to the figure, the driving point admittance of any RC load can be modeled
by a reduced order circuit, in this case a pi-model, via moment matching [1.24]. If

then the gate delay is accurately captured in terms of the total capacitance.
However, as the metal resistance increases, and eventually, the gate delay
will decrease, since the metal resistance will tend to shield some of the load capaci-
tance.

Most gate level models are incompatible with RC interconnect loads, but the shield-
ing effect should be captured to some degree of accuracy, at least for sensitivity anal-
ysis purposes. In order to preserve the simplicity and efficiency of these empirical
gate models for complex RC loads, one can map the complex load to an effective
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capacitance [1.25]. In Chapter 8, we show how we can derive approximate Thevenin
equivalent models based on the Ceff concept which are suitable for use with physical
design metrics [1.26].

1.5 Moment Matching and Model Order Reduction

If more moments are required for an accurate approximation, moment matching or
other order reduction schemes can be used to generate reduced-order dominant pole/
zero approximations for the interconnect transfer, admittance, and impedance func-
tions. Later in this book, we cover such methods in detail. In the following we provide
a brief summary.

A. Asymptotic Waveform Evaluation

Asymptotic Waveform Evaluation (AWE) [1.17] uses 2q moments to generate a q
pole transfer function approximation, where q is much less than the order of the cir-
cuit.

If we expand the transfer function in (1.6) into its partial fractions,

we observe that for the case of distinct poles the time domain impulse response is

where the are the poles and the are the corresponding residues.

We can uniquely specify the poles and residues by forcing the first 2q moments of
(1.13) to match the first 2q moments from (1.7) [1.17] [1.27]. Although this is recog-
nized to be a form of Padé approximation, which is prone to producing unstable mod-
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els of stable systems [1.28], we will discuss various algorithms which generate stable
low-order models with excellent reliability.

B. Krylov-subspace techniques

When a large set of dominant poles are required, however, AWE may become ineffec-
tive due to inherent ill-conditioning nature of moment generation. In these cases, we
can use the Krylov-subspace based order reduction methods [1.29] [1.30]. Instead of
moments, these methods use Krylov vectors, which contain the same information as
moments, but are better numerically conditioned. The generation of Krylov vectors is
similar to that of moments. Except for some specific cases, however, the stability still
remains a problem.

C. Passive Macromodeling

All of the efficient moment-based models for interconnect analysis are for linear cir-
cuits. The overall behavior and performance of a signal on the interconnect path is
strongly dependent upon the nonlinear drivers and loads too.

One straightforward way of combining moment-based interconnect models and non-
linear components (e.g. transistors) is to characterize the linear interconnect portion
of the circuit by a reduced order multiport (refer to Figure 1.10). For example, we can
approximate the Y parameters in terms of the dominant poles and zeros. We then com-
bine the reduced order interconnect models and the nonlinear devices in a circuit sim-
ulation environment. An important issue for such a simulation is the passivity. We can
force the reduced order models to be stable, however, for a stable simulation the
reduced order blocks have to be passive as well.

In Chapter 6, we present a guaranteed passive macromodeling algorithm, PRIMA
[1.31]. For a brief overview of PRIMA, consider the modified nodal analysis descrip-
tion of a multi-input multi-output dynamic linear circuit
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where and are the vectors of inputs and outputs, respectively. PRIMA first
computes a projection matrix a block of Krylov vectors, and then applies projec-
tion to find

where the reduced order matrices are obtained as

Once a reduced order model is constructed, there are basically two approaches to
interface them with SPICE-like circuit simulation environments. One option is to
convert (1.15) into a state-space description and synthesize an equivalent circuit. The
other approach is to express the reduced order system in the form of a pole-residue
representation. We can then employ recursive convolution methods to obtain an
equivalent discrete time-domain model for the reduced system during nonlinear cir-
cuit simulation [1.32]. The details of these approaches are described in Chapter 7.
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1.6 Summary

As we have outlined in this chapter, this book covers a variety of interconnect analy-
sis techniques with different efficiency-accuracy trade-offs. These techniques range
from very simple delay metrics that can be used during the synthesis stage of IC
design; to higher order delay and signal integrity metrics suitable for physical design;
and conclude with accurate analysis methods that can be utilized in the final verifica-
tion stages of chip design.

We begin with the Elmore delay -- the simplest of delay metrics -- in Chapter 2.
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CHAPTER 2 The Elmore Delay

The simplest form of performance evaluation for IC interconnect is in terms of the
delay metrics that are available for RC tree circuits. There has been a vast body of
work on delay prediction for such circuits, and in this chapter we analyze in detail the
Elmore delay --- the metric on which most explicit RC tree approximations are based.

The chapter begins with some necessary linear circuit terminology that enables us to
introduce the Elmore delay as the first moment of the RC circuit impulse response.
From there the connections made to higher-order circuit response moments and other
circuit properties facilitate a more complete understanding of the Elmore delay limita-
tions, and provide links to other measures of performance, such as phase delay.

2.1 Delay of a Transfer Function

Most interconnect structures are characterized by inputs that drive them and the
resulting voltage at the outputs of interest. Such structures are often represented by
transfer and immittance functions.



The Elmore Delay

2.1.1 Circuit Transfer and Immittance Functions

Transfer functions are defined for linear circuits with zero initial conditions. Assume
a single-input single-output linear circuit as shown in Figure 2.1. The transfer func-
tion is defined as the ratio of the output to the input:

An important subset of the transfer functions are the immittance functions, which are
defined at the driving points and have two types. If the input is a current source and
the output is the voltage measured across the source, the function is said to be input
impedance. If the input is a voltage source and the output is the current through the
source, the function is said to be input admittance. Often, and are used
for input impedance and admittance functions, respectively. Throughout this book,
however, we use H(s) to denote all types of transfer and immittance functions, unless
otherwise stated.

A transfer function is often expressed as a ratio of two polynomials in s :

where the coefficients are real numbers. By factoring the polynomials in (2.2), an
alternative representation of the transfer function is obtained:
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where K is the multiplicative constant, are the zeros, and are the poles of
the transfer function. The poles and zeros may be complex numbers appearing as con-
jugate pairs. Except for the constant K, a transfer function can be fully defined by a
plot of poles and zeros in the complex plane such as shown in Figure 2.2.

Although pole-zero representation is very useful in the analysis and design of analog
circuits, pole-residue form is preferable for time-domain interconnect analysis. Once
the poles are obtained, the residues, are calculated using partial fraction decom-
position. Assuming distinct poles we can then express the transfer function as

where d is the direct coupling term.

2.1.2 Time-Domain Response and Delay

In linear circuits, the time- and s-domain responses are related to each other by
Laplace transformations. Assume that h(t) is the corresponding time-domain
response for H(s). Then we have

If the transfer function H(s) is the complex frequency domain output when the input
value is unity, h(t) is the time-domain response for an impulse input and is known as
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the impulse response. If a pole-residue representation such as (2.4) is available for the
transfer function, the impulse response is given by the closed form expression

where (t) and u(t) are the unit impulse and unit step functions, respectively. Once
the impulse response poles and residues are known, the responses for step and ramp
inputs can be expressed similarly.

For the case of a unit step input, from (2.1) the output response in the Laplace domain
becomes

Using the pole-residue representation for the transfer function we obtain

With a partial fraction decomposition the above equation becomes

It follows that the step response can be written as

Similarly, for a unit ramp input denoted by r(t), the s-domain output response is
given by
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and the ramp response becomes

This approach of expressing time-domain responses using symbolic inverse Laplace
transformations can be easily extended to any piecewise linear input waveform. Since
any piecewise linear function can be written as a set of time-shifted ramp functions,
the output waveform can be found by applying superposition and using (2.12).

One input waveform type, the saturated ramp as shown in Figure 2.3, is of particular
interest because it is widely used for input waveform modeling in delay calculation in
digital circuits. Such a waveform can be written as

Skipping the details, the expression for the output waveform is obtained as

where y(t) is the ramp response given in (2.12).
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The propagation delay in a step response or a saturated ramp response can be obtained
by solving (2.10) or (2.14), respectively. For example, assuming a monotonic
response, an percent delay for a step input signal is found by calculating in

assuming that the steady-state response is also unity.

There are two major problems associated with this approach of delay calculation, and
one of the goals of this book is to provide useful solutions for the delay problem. The
first problem is obtaining the poles and residues. It is almost impossible to calculate
all of the poles and residues for practical size interconnect circuits. A large portion of
this book is dedicated to describing algorithms that capture only the dominant poles
that are required to accurately approximate the time-domain responses. For this pur-
pose, we will describe efficient order reduction methods such as asymptotic wave-
form evaluation and other Padé approximation based techniques.

But even with a small subset of dominant poles, solving for delay in (2.15) can be
quite time consuming, especially in the inner loops of optimization processes. For this
reason, we will introduce simpler delay metrics that represent the delay in closed
form.

2.1.3 Attenuation and Phase Delay

In the frequency domain, the ac response is obtained by evaluating H(s) on the
axis and is represented as

where and are the amplitude and the phase functions, respectively. The
attenuation is defined as

in decibel units. The phase delay is defined as
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where is the phase function of the ac response. In terms of poles and zeros

Phase delay is the steady-state delay at the output waveform when a sinusoidal wave-
form at the angular frequency is applied to the circuit. For example, consider a sys-
tem whose transfer function is given in (2.16) and assume a sinusoidal waveform as
input, . The output waveform is then given as

which can also be expressed in the form

Clearly, the delay term is

2.2 RC Interconnect Delay

Whether it is a time- or frequency-domain analysis, the most often analyzed on-chip
interconnect circuit model is in the form of an RC tree. RC trees, such as the one
shown in Figure 2.4, have been widely used for modeling the gate and interconnect
circuits like the one shown in Figure 2.5. As explained in the previous chapter, an RC
tree is an RC circuit with capacitors from all nodes to ground, no capacitors between
nonground nodes, and no resistors connected to ground. For modeling simplicity, the
nonlinear driver in Figure 2.5 is linearized as shown in Figure 2.4. Linearization of
gate models, and gate-interconnect interaction in general, are explained in detail in
Chapter 8. In this chapter, we focus on estimating the delays of linearized RC trees,
such as the one shown in Figure 2.4.
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Once a gate and interconnect delay problem is translated into a linear RC tree prob-
lem, the delay can be estimated via a spectrum of approximation methods. The
Elmore delay, or the first moment of the impulse response, is the most ubiquitous
metric due to its simplicity. The main advantage of the Elmore delay is that it is a sim-
ple, closed form expression in terms of the RC tree parameter values. But we show in
this chapter that the Elmore delay must be applied cautiously, especially for deep sub-
micron technologies for which the first moment of the impulse response provides lim-
ited efficacy. For this reason, following this detailed coverage of the Elmore delay
properties and limitations, more advanced delay metrics for RC and RLC trees are
described in the chapter which follows.
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2.3 The Elmore Delay

The Elmore delay, introduced in 1948 for estimating the delay of amplifier circuits
[2.1], was recognized by Penfield and Rubinstein as a useful metric for RC trees due
to its step response properties [2.2]. For example, the step response for the node volt-
age at capacitor of the RC tree in Figure 2.4 is shown in Figure 2.6. Also shown
in Figure 2.6 is the unit impulse response, h(t), at the same node.

Since the step response is the integral of the impulse response, the 50% point delay of
the monotonic step response is the time at which the impulse response area has
been half consumed:

Referring to Figure 2.7, Elmore proposed to approximate the delay of a monotonic
step response, by the mean of the corresponding nonnegative impulse response func-
tion, h(t). Treating the nonnegative impulse response in Figure 2.7 as a probability
density function (p.d.f.), the mean is defined by the first moment of the impulse
response. Elmore’s unit step response delay approximation, is therefore
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when the area underneath h(t) equals unity

This approximation appears valid for the symmetrical function in Figure 2.7, where
the mean is equal to the median, however it is somewhat erroneous for the realistic
impulse response in Figure 2.6, which is skewed asymmetrically. Later we use this
skew to show that the mean, is an upper bound for the delay, in RC trees.

2.3.1 Calculating the Elmore Delay

The Elmore delay is a convenient metric for RC trees because it can be calculated
very easily for this particular circuit topology. Efficient path tracing algorithms for
calculating the Elmore delay and higher order moments for RLC trees are covered
extensively later in this book, so they are not discussed in detail here. In summary,
one can calculate the Elmore delays from two O(N) traversals of the tree, where N
is the number of nodes in the tree. The Elmore value for the output at node i is given
by

where is the resistance of the portion of the (unique) path between the input and
node i that is common with the (unique) path between the input and node k, and
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is the capacitance at node k. For example for the circuit shown in Figure 2.4, the
Elmore delay at node is given by

The Elmore delay values at nodes and for the circuit in Figure 2.4 are
compared with the exact delay in columns 2 and 3 of Table 2.1. In the same table
some other delay metrics are also included, which are explained later in this chapter.

2.3.2 Dominant Pole Metric

In addition to the Elmore’s classical definition of delay in terms of the first moment of
the impulse response, we can also use the Elmore term to generate a dominant pole
approximation. We demonstrate this relationship between the dominant pole and the
first moment of the impulse response as follows.

Let H(s) be a transfer function in an RC tree. Since the dc gain is unity in RC trees,
H(s) can be written in the normalized form

Using (2.5) it can be shown that the first order moment is equivalent to
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It follows that the Elmore delay can be expressed as

To understand the connection between the first moment and the dominant pole, we
factor the numerator and the denominator of (2.28) and show that terms and
are the sum of the reciprocal poles (circuit time constants) and the sum of the recipro-
cal zeros, respectively,

If there are no low frequency zeros, the numerator coefficients, including , are
small and

If one of the time constants (or poles) is dominant, that is,

then

This dominant time constant approximation is then used to fit a single pole approxi-
mation. The corresponding step response becomes

Solving (2.35) for the 50% point delay effectively scales the Elmore delay by a con-
stant factor
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We should point out that this dominant time constant delay prediction can be either
pessimistic or optimistic at two different nodes in the same RC tree. For example, col-
umn (5) of Table 2.1 shows the values of In (2) • at nodes and for the
circuit in Figure 2.4. Notice that, when compared with the actual delay values in col-
umn (1), the response at is optimistically predicted by ln(2) • while that at

is pessimistically predicted. One way to explain this is by the excessive skew in
the h(t) distribution for which is shown with the step response for this node in
Figure 2.8, as compared with the skew for the response at (shown in Figure 2.6).
It can be expected that using ln (2) • Mean to approximate the median will be vastly
different for these two distributions.

It is difficult to know when a single pole dominates the low-frequency behavior of a
circuit. For this reason, Rubinstein and Penfield established bounds for the step
response delay in RC trees.

2.3.3 Penfield and Rubinstein’s Bounds

Penfield and Rubinstein were the first to use the Elmore delay to analyze RC trees
[2.2]. Before higher-order moment matching techniques were available, delay bounds
were the only means of estimating the accuracy of the RC tree delay approximation.

The Penfield and Rubinstein bounds require the definition of two new time constants,
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in addition to the Elmore delay,

where, as defined previously, is the resistance of the portion of the (unique) path
between the input and node i that is common with the (unique) path between the
input and node k, and is the capacitance at node k.

Note that a circuit has one value of but each node has separate and val-
ues. From the definitions of and it can be easily shown that

Using these time constants, the step response lower bound in (2.40) and upper bound
in (2.41) are obtained. For the details of the derivation, readers are referred to [2.2].
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Lower and upper bounds on an percent delay are found from the step response
bounds:

Calculating these bounds requires calculating two additional terms in addition to the
Elmore delay. All of these terms, however, are obtained with O(N) complexity using
a path tracing algorithm. The values of and at the 50% point for our exam-
ple in Figure 2.4 are given in columns (6) and (7) of Table 2.1. Note that at
the loads, and and at the driving point, Also note the values
of as a lower bound on the delay.

2.4 Moments

The first moment of the impulse response defines the Elmore delay, but it is through
higher order moments that we begin to understand the limitations of this metric. To
understand higher order moments, consider a transfer function in the Laplace domain

Expanding (2.44) about s = 0 we can express the transfer function as an infinite
series in powers of s
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where

The time-frequency domain relationship follows from the Laplace transform of h(t)

Expanding about s = 0 in (2.47) yields

It follows from (2.48) that the qth coefficient of the impulse response h(t) is

In probability distribution theory the qth moment of a function h(t) is defined as
[2.3]

Thus the coefficients, are related to the probability moments by the
term. For ease of notation, however, in this book we refer to the series coefficients in
(2.45) and (2.49) as moments. When necessary, we distinguish them by explicitly
stating as circuit moments and probability moments.
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2.4.1 Calculating Moments

Moments are very useful design metrics because of the ease with which they are cal-
culated, particularly for RC or even RLC trees. Efficient calculation methods, includ-
ing a path tracing algorithm for RLC trees, will be explained later in this book. But,
we now demonstrate the concept with the simple RC tree circuit shown in Figure 2.9.

The impulse response of this circuit in the Laplace domain can be analyzed in terms
of the circuit in Figure 2.10, where capacitors have been replaced by their complex
admittances. Let us assume that each of the capacitor voltages (which in this circuit
also are the node voltages) is expressed in terms of an infinite series in powers of s,
as shown in the figure. The superscripts for the in Figure 2.10 denote that all of
the are different from one node to the next.
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Expressing the capacitor voltages in this way and knowing the capacitor admittances,
we can write similar expressions for the capacitor currents, as shown in Figure 2.11.
Moreover, knowing the capacitor currents in terms of the capacitor voltages, we can
replace the complex admittances by current sources, as shown in Figure 2.11. The
terms are the only unknowns in Figure 2.11.

Referring to Figure 2.11, we can solve for the for all of the capacitor voltages by
setting s = 0. Since there are no constant terms in the capacitor currents
(they are open for s = 0), we set the current sources in Figure 2.11 to zero and solve
for the using the dc equivalent circuit in Figure 2.11. For this RC circuit, the

are all equal to 1.0. Note that this procedure for replacing capacitors by zero
valued current sources to calculate the holds for all circuit topologies. As we
explain later, when there are inductors in the circuit, they are replaced by zero valued
voltage sources when calculating the terms for their current responses.

Referring back to Figure 2.11, we now solve for the        coefficients,  It is the s-
terms in the current source expressions which produce the in the voltage
responses. Since we know the the s-terms in the current source expressions are
known. Therefore, we can evaluate the of the voltage responses by setting all of
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the current sources equal to and solving for the node voltages, which are the
The voltage input is a constant, so it does not affect the calculation of any of the

terms other than the All subsequent moments are calculated from the dc equiv-
alent circuit shown in Figure 2.13 following the same recursion.

With the ability to calculate higher order moments, we can now consider delay
approximations that include higher order terms.
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2.5 Extending Elmore’s Distribution Theory Analogy

The accuracy of the Elmore delay depends on the relative positioning of the mean and
the median of the impulse response distribution. There are no error approximations
for the Elmore delay, but we can measure its accuracy relative to the information from
higher order moments. Keeping with Elmore’s analogy of viewing an RC impulse
response as a p.d.f., we can characterize the higher-order waveshape terms by central
moments.

2.5.1 Central Moments

Similar to moments, central moments are distribution theory concepts. Following
Elmore’s distribution function analogy, we can use them to explain the properties of
Elmore delay approximation. As we demonstrate in the next chapter, they are also
useful measures for RLC circuit responses.

Consider the moment definition given in (2.49) again:

The mean of the impulse response is given by [2.3]

When the dc gain of the system is unity, the mean becomes

Central moments of the impulse response are the moments about the mean and are
defined as [2.3]

It is straightforward to show from (2.53) that the first few central moments can be
expressed in terms of circuit moments as follows:
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Unlike the moments of the impulse response, the central moments have geometrical
interpretations:

is the area under the curve. It is generally unity, or else a simple scaling factor
is applied.

is the variance of the distribution which measures the spread or the dispersion
of the curve from the center. A larger variance reflects a larger spread of the curve.

is a measure of the skewness of the distribution; for a unimodal function its
sign determines if the mode (global maximum) is to the left or to the right of the
expected value (mean). Its magnitude is a measure of the distance between the
mode and the mean.

2.5.2 Second and Third Central Moments in RC Trees

The second and third central moments are always positive for RC tree impulse
responses. The positiveness of the second order central moment is obvious from its
definition

The impulse response, h(t), at any node in an RC tree is always positive (see Appen-
dix 2.A.4) and so is the integrand in (2.58). Hence the second central moment, is
always positive.

The proof of the positiveness of the third central moment in RC trees is given in
Appendix 2.A.3.
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2.6 The Elmore Delay as a Bound

Referring back to Figure 2.6, it is apparent that with such an asymmetrical distribu-
tion for the impulse response, the mean would not coincide with the median. In this
section, we show that these asymmetric distributions have a “long tail” on the right
side of the mode, which is roughly the maximum value point, and a “short tail” on the
left side. Such distributions are said to have positive skew. We also prove that the
impulse response for an RC tree is unimodal and then use these two properties to
prove that

Equation (2.59) states that the Elmore delay, or the mean of the impulse response, is
truly an upper bound on the median, or the 50% point delay. We will show that this
holds for any input that has a unimodal derivative and that the mean becomes a better
approximation of the median as the rise-time of the input-signal increases. Further in
the section, we also provide a lower bound on the 50% delay for an RC tree, but first
a few definitions:

Definition 1: The mode, M, of a distribution function is that value of the variate
exhibited by the greatest number of members of the distribution [2.3]. If the distribu-
tion function f is continuous and differentiable, a unique mode exists only if f is uni-
modal and is the solution of

Definition 2: The median, m, of a distribution function f is that value of the variate
which divides the total frequency into two equal halves [2.3], i.e.

Definition 3: The mean, µ, of a distribution function f is defined by
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Definition 4: A density function f (x) is called unimodal. if and only if, there exists at
least one value such that f(x) is nondecreasing for and nonincreas-
ing for [2.4].

Definition 5: The coefficient of skewness for a distribution function is given by
where and and are the second and third central

moments of the distribution function respectively [2.3].

Lemma 1: The impulse response h(t) at any node of an RC tree is a unimodal and
positive function.

The proof is given in Appendix 2.A.4.

Lemma 2: For the impulse response h(t) at any node of an RC tree, the coefficient of
skewness, is always nonnegative.

Proof: In Subsection 2.5.2, it was shown that in RC trees the second and third central
moments are always positive. Thus, from Definition 5, for every node in an RC tree,
the coefficient of skewness, QED

Theorem: For the impulse response h(t) at any node in an RC tree,

Proof: For a unimodal “skewed” distribution function, the mean, median, and mode
inequality states that these three quantities occur either in alphabetical order or
reverse alphabetical order [2.5], i.e. either or

From Lemma 1 and Lemma 2, each node in an RC tree has
a unimodal distribution function for which We now prove by contradiction,
that for an RC tree we have that

For our contradiction argument, let hold for any node, k, in
an RC tree. In a symmetrical distribution, for which the coefficient of skewness, is
exactly zero, the mean, the median and the mode coincide [2.5], [2.6]. Thus a natural
measure of skewness for an asymmetrical distribution is the deviation of the mean
from the median, or the mean from the mode. Thus,
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where Thus at node k, since holds, skew is nega-
tive. But, from Lemma 2, we have that the coefficient of skewness, . Thus, at
node k, either Skew = 0 or we have a contradiction. In the former case,
Mean = Median = Mode, i.e., the distribution is symmetric and the mean and
median coincide. And in the latter case, Since the choice of
the node k is arbitrary, the proof is complete. QED

We should note at this point that the Elmore delay, or the mean, µ, of the impulse
response approaches the 50% delay point at nodes further downstream from the
source in an RC tree [2.7]. Thus, as one moves away from the source, µ is a better
approximation of the net delay, as further discussed in Section 2.7.

A. A Lower Bound on Delay

Consider the following corollary whose proof is given in Appendix 2.A.5.

Corollary 1: A lower bound on the 50% delay for an RC tree is given by

where µ is the mean and

Referring back to the example in Figure 2.4 and the delay bounds in Table 2.1, the
lower bound at equals whereas at and is a tighter lower

bound than However, the Elmore delay upper bound, µ, becomes a tighter
upper bound at the leaf-nodes of an RC tree as is evident at and in Table 2.1.

B. Approximating the Output Signal Transition Time

Another measure of practical importance for RC circuits, other than the 50% delay
point, is the rise-time, which may be defined as the time required for the response
to increase from 10 to 90 percent of its final value. A good measure of the value of

for an output response is

where is the second central moment of the output response. Elmore also proposes
this value, which he terms the radius of gyration, as a rise-time measure for step-
responses [2.1].
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2.7 The Elmore Delay for General Input Signals

In the previous section, it was shown that the Elmore delay is an upper bound on the
50% step response delay. In addition, with one more moment the variance can be cal-
culated to establish a lower bound on the 50% delay. However, when using the
Elmore delay to estimate RC interconnect delays, the signal coming out of the digital
gate is never a step voltage, and is generally modeled by a saturated ramp. For this
reason, we extend this Elmore-based bound to consider non-zero input signal transi-
tion time, or more appropriately, the variance of the input signal’s derivative.

A. The Elmore Delay Upper Bound

Consider a saturated ramp input voltage with a transition time as shown in
Figure 2.14. It is easy to show that its derivative has the following properties:

Now consider the following result for the general case of the input signals with non-
negative and values.

Corollary 2: For an RC circuit with a monotonically increasing, piecewise-smooth
input such that is a nonnegatively skewed unimodal function,

holds for the output response at any node.
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Proof: The output response at any node of an RC tree in response to an input
is given in the Laplace domain by

where H(s) is the transfer function of the circuit at that node. Also, is a piece-
wise-smooth function and hence piecewise differentiable (refer to Figure 2.14. Thus,
assuming that and we obtain

where, is the Laplace transform operator. Further, from Appendix 2.A.2, we have
the property that the second and third central moments add under convolution. Thus,

From Subsection 2.5.2, we know that and From hypothe-
sis, we also have

From (2.70) and (2.71), therefore, and Thus, from
Definition 5, and QED

Corollary 3: Assume a finite sized RC circuit with a monotonically increasing, piece-
wise-smooth input such that is a symmetric function. Then, as the rise-
time of the input signal, the Elmore delay for the output response,

Delay, i.e.

Proof: The output response at any node of an RC tree in response to an input
is given in the Laplace domain by

And from (2.69) and (2.70),
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From hypothesis, we have that is a symmetric function. Therefore,
Also, since

Also from hypothesis, the circuit is finite sized, that is, Thus,

Since Thus, as the rise-time of
the input-signal increases without bound, the 50% delay for an RC tree approaches
the Elmore delay, QED

It is noteworthy here that since i.e. is a symmetric function, its
mean and median coincide. Further

Integrating by parts,

where we have used the fact that and

since both and exponentially as         [2.8]. Thus, (2.77) says

that the area between the input and the output response equals the Elmore Delay,

[2.9].
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B. Ramp Follower Responses

In summary, as depicted in Figure 2.15, when the input signal transition time is much
larger than the largest circuit time constant, the transient response is negligible, and
the output follows the steady-state asymptote. This kind of response corresponds to a
ramp follower response in which the Elmore delay becomes nearly exact. Note that in
a typical IC circuit most of the nets behave like ramp followers. To demonstrate this,
consider the histogram in Figure 2.16 which displays the Elmore delay errors for
1200 (ramp) responses for RC trees taken from a 0.35 micron CMOS microprocessor
design. Some of the errors are quite small, while a significant percentage of the errors
are greater than 50%. On the other hand, the dominant pole metric, which scales the
Elmore delay by 0.7, does not change the relative delay error problem, but simply
shifts the delays as shown by the histogram plot in Figure 2.16. Notice that with this
dominant pole approximation, a large population of delays are underestimated. These
are the responses for which the unsealed Elmore delays were nearly exact.
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C. DelayCurves

The estimation of the 50% delay by the Elmore delay as a function of the rise-time of
the input signal (see Figure 2.14), as stated in Corollary 3, is shown in Figure 2.17 for
our RC tree example circuit (in Figure 2.4). As the rise-time of the input signal
increases, the delay asymptotically approaches the Elmore Delay value, as
expected.

It was observed earlier that as one moves away from the source, (i.e. the mean,
µ) is a better approximation of the net delay. The proof for Lemma 1 uses the addi-
tive property of the central moments under convolution. As proven in Subsection
2.5.2, for any node k, Furthermore, it can also be shown that as
one moves further from the driving point, and form decreas-
ing and hence convergent sequences [2.7]. Thus, as nodes farther away from the
source are considered, the values of and start to converge and hence
the skew, converges. The fact that is a better approximation of the net delay
farther away from the driving point is illustrated here using a 25 node RC tree. For
three nodes A, B and C, where A is near the driving point, B is in the middle of the
tree and C is a leaf-node, the impulse responses are shown in Figure 2.18. The
response at node C is less “asymmetric” than the response at node B, which shows
that the impulse response approaches symmetry away from the driving point and the
Elmore delay becomes a tighter bound on the 50% delay point.
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Table 2.2 shows the relative errors for different input signal
rise-times.

2.8 The Elmore Delay as a Bound for Phase Delay In RC Trees

In addition to its relationship to properties of the RC impulse response, the Elmore
delay can also be shown to be an upper bound on the phase delay of RC tree
responses. To show this relation between the Elmore delay and the phase delay, we
start with the properties of general RC circuit impedance functions and generalize
them for transfer functions in RC circuits.
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The poles and zeros of impedance functions of general RC circuits have the following
properties [2.10]:

1.

2.

3.

All poles and zeros are located on the negative real axis of the s-plane.

Poles and zeros are interlaced.

The lowest critical frequency is a pole which may be at the origin.

The second property is, in general, not true for general transfer functions. In Appen-
dix 2.A.6, we show that the transfer functions in RC tree circuits have the following
properties:

1.

2.

3.

All poles and zeros are located on the negative real axis of the s-plane.

For each zero there is a corresponding pole which is located between that zero and
the origin (poles and zeros need not to be interlaced).

The lowest critical frequency is a pole which may be at the origin.

From these properties it follows that an RC tree transfer function can be written in the
form

where and Using
(2.19) and the pole-zero notation in (2.78), the phase delay can be written as

Using the facts that x > atan x for x > 0 and (x - atan x) > (y - atany) for x > y > 0,
we obtain

Previously we have shown that
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From (2.80) and (2.81), it follows that

It can be also shown that

Not surprisingly, this proof demonstrates that the phase delay approaches the Elmore
delay as the signal frequency decreases. This is analogous to the manner in which the
50% delay for an RC tree asymptotically approaches the Elmore delay as the rise time
of the input signal increases.

As an example, we consider an unbalanced clock tree from [2.11]. The phase delay at
a response node is compared with the Elmore delay in Figure 2.19. Note that the
Elmore delay is a tight upper bound up to a certain frequency point. Importantly, in
the next chapter we show that this frequency point represents the maximum operating
frequency for which the signal attenuation is likely to be acceptable. This demon-
strates that the Elmore metric is an ineffective performance measure without a com-
panion metric for the signal attenuation.
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2.9  Summary

The Elmore delay is an extremely popular timing performance metric which is used at
all levels of electronic circuit design automation. It is provably an upper bound on the
actual 50% delay of an RC tree step response and also holds for input signals with
finite rise time. A lower bound on the actual delay can also be developed as a function
of the Elmore delay and the second moment of the impulse response. Improved
bounds may be theoretically possible with more moments, but the moment matching
techniques that we describe in later chapters, such as AWE, are preferable when
higher order moments are available. The utility of this bound is for understanding the
accuracy and the limitations of the Elmore metric as we use it as a simple closed-form
performance metric.

2.A Appendix

2.A.1 Driving Point Moments Have Alternating Signs

We prove that the signs of the moments of the driving point admittance functions in
RC trees alternate.

Let Y(s) be a driving point admittance function in an RC tree, and consider its repre-
sentation in terms of poles and residues:

where n is the order of the circuit. Now consider a moment expansion for Y(s):

In terms of the poles and residues, the moments are given as
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Using (2.86) and the fact that the poles and residues of admittance functions in RC
trees are all real and negative [2.10], it can be easily shown that

2.A.2 Central Moments Add Under Convolution

Consider two impulse responses, and and their convolution, h(t),

Assume that and are RLC tree impulse responses, i.e.,

Then, the first few moments of h(t) can be written in terms of the moments of
and as follows:

From (2.56) and (2.90), the second central moment of h(t) is expressed as

From (2.57) and (2.90), the third central moment of h(t) is expressed as
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2.A.3 The Positiveness of the Third Order Central Moments in RC Trees

We prove the positiveness of the third central moment by induction. Consider a gen-
eral RC tree as shown in Figure 2.20. The remaining portion of the tree beyond node
1 is represented by the driving point admittance,              at that node. The impulse
response at node 1 is given by

where is the resistance between the source and the node 1. We next consider the
moment expansion of the driving point admittance:

Since there is no dc current path to ground, the zeroth order moment is zero. Inserting
(2.94) in (2.93) and expanding in terms of its moments

Multiplying the denominator with the right hand side expansion and equating the
terms with the same powers of s, we calculate the first few moments in terms of
admittance function moments:
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The third central moment at node 1 is then given by

In Appendix 2.A.1, it is shown that and are always positive and is always
negative for RC tree driving point admittance functions. Therefore, it can be easily
shown that

Next consider Figure 2.21 which shows node k and its “downstream” part of the RC
tree. To complete the induction argument, assume that at node k, for
The transfer function at node k + 1 is given by

where the transfer function from node k to node k+1,

is exactly in the same form with (2.93). Therefore, if is the impulse
response which corresponds to then we have In Appen-
dix 2.A.2, it is shown that the third central moment add under convolution. Thus
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2.A.4 RC Tree Impulse Responses Are Unimodal and Positive Functions

We prove that the impulse response h(t) at any node of an RC tree is a unimodal and
positive function.

The proof is by induction. Consider a general RC circuit as shown in Figure 2.22. The
remaining portion of the tree beyond node one is represented by the driving point
admittance, at that node. Assuming that is a unit impulse input, we will
first prove that the voltage at node 1, is unimodal and positive.

For a general RC circuit, the poles and residues of the driving point admittance,
(in Figure 2.22) are real and negative [2.10]. Since

where is the s-domain representation of the
driving point current, we can write in terms of the poles and residues of

Note that the above exponential form for the input current is valid only for t > 0. At
t = 0, the current also contains an impulse component, which is skipped for the sake
of simplicity since we are only interested when t > 0. From KCL,

Since the voltage at any node is the impulse response at that
node, the impulse response at node 1 is given by
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where we used for t > 0. Since all and are real negative num-
bers, is positive and monotonically decreasing. Therefore, from Definition 4,

is unimodal.

Now consider Figure 2.23 which shows node k and the RC tree “downstream” from
node k. For the induction argument, we assume that is positive and
unimodal, and then prove that the voltage, or the impulse response, at node k + 1,

is positive and unimodal.

If is an impulse input at node k, then is the impulse response at node
k+ 1 for the tree rooted at node k. This has the same form as in (2.102) and is uni-
modal. Thus, the impulse response at node k + 1 w.r.t. node 1 (the driving point),

is given by

where * is the convolution operator. Since the convolution of two unimodal positive
functions is also a unimodal positive function [2.4], is positive and unimo-
dal. Thus, h(t) at any node of an RC tree is a positive unimodal function.

2.A.5 Proof of Corollary 1

We prove that a lower bound on the 50% delay for an RC tree is given by

where µ is the mean and
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Consider an impulse response h(t), shown in Figure 2.24, with mean at t = µ. We
define another function g (t) as

With a simple change in the x coordinate such that we have such that
its mean is at in the new coordinate system. Then, we use the following ine-
quality from [2.3]:

For equations (2.106) and (2.107) show that

Equation (2.108) states that in the new coordinate system, is less than the
median. Thus, in the original coordinate system, for h(t) we have that

When since the RC tree system is causal and relaxed for t < 0, we have
and hence
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2.A .6 Properties of Poles and Zeros in RC Transfer Functions

Consider a general RC tree circuit, such as the one shown in Figure 2.25. We use the
following notation to describe the circuit. Referring to Figure 2.25, let us assume that

is the output voltage of interest and let be the voltage of the ith node
between the source and the load. We denote the capacitance between node i and
ground by and the resistance connected between nodes i-1 and i by From the
Norton equivalent of the circuit, shown in Figure 2.25, the ac response at node 1 is
found as

where and is the input impedance seen from the current source of
the second circuit in Figure 2.25 and satisfies the properties of impedance functions
of RC circuits, which are listed in Section 2.8. Using the substitution theorem we
obtain the equivalent circuit and its Norton equivalent in Figure 2.25. Now, the ac
response at node 2 is given by

Now consider the zeros of Again referring to Figure 2.25, becomes
zero when the other branch that leaves node 1 becomes short circuit, e.g., the zeros of

are the poles of the driving point admittance function of that sub tree. This
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implies that the zeros of the transfer functions in an RC tree circuits are on the nega-
tive real axis. From (2.110), the magnitude response at node 2 is found as

Since the poles and zeros of are interlaced, with the lowest critical frequency
being a pole, its magnitude response, is monotonically decreasing. There-
fore

where c is a constant. Note that and have exactly the same set of poles.
Since the zeros of both of them are on the negative real axis, from (2.112) we con-
clude that some of the zeros of have moved left.

Processing downstream in this way we observe that as we approach the output node
the zeros either move left, some of them to infinity, or remain at their original posi-
tions. As a summary, the transfer function can be written in the form
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CHAPTER 3 Higher-Order RC(L)
Delay Metrics

Although it provides a simple and explicit delay metric for interconnect circuits that
can be modeled by RC trees, the Elmore delay can sometimes exhibit poor accuracy.
As the first moment of the impulse response, it cannot include the effects of resistive
shielding, which is evident for long resistive lines; nor can it accommodate induc-
tance models, which are required for long low-loss lines. In these cases higher order
moments must be used to create an accurate delay approximation.

This chapter begins with an attempt at extending Elmore’s distribution function inter-
pretation by fitting the circuit response moments to specific probability density func-
tions (p.d.f.). This includes fitting to double exponential functions which we show in
later chapters as corresponding to a two-pole approximation in circuit theory. The
chapter concludes with metrics for approximating crosstalk and for controlling the
damping, delay, and attenuation in RLC trees.

3.1 Gamma Distribution Model

Elmore’s original delay approximation is based on the analogy between non-negative
impulse responses and probability density functions (p.d.f.) as described in Chapter 2.
In theory, Elmore’s distribution interpretation can be extended beyond simply esti-
mating the median by the mean if higher order moments can be used to characterize a
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representative distribution function. Once characterized, the delay can be approxi-
mated via table-lookup of the median value for the representative distribution family.

One proposal was to use a gamma distribution function [3.1]. The gamma distribution
[3.2], depicted in Fig. 3.1, is a reasonably good representation of RC tree impulse
responses since it provides good “coverage” of bell shaped curves which are bounded
on the left and exponentially decaying to the right.

The probability density function of gamma distribution, is a function of one
variable t and two parameters and n (positive real numbers)

where is the gamma function

Now consider an impulse response, h ( t ) , and assume that it is approximated with a
gamma probability density function

Then the transfer function is given by
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The s-domain model denoted by (3.4) may be interpreted as a unique pole with a real
number order. Notice that when n = 1, the gamma distribution model naturally
degrades to the dominant pole model. However, the existence of the parameter n
increases the degree of freedom of the model. The first few moments of the transfer
function can be expressed easily in terms of the parameters n and

Since the gamma function has only two variables, it can be uniquely characterized by
fitting it with two moments. For example, using the second and third equations in
(3.5), the parameters and n can be obtained from the first and second order circuit
moments as

Recall from the previous chapter that both (the Elmore delay) and are posi-
tive numbers for RC trees. Therefore the impulse response approximation in (3.3)
with the parameters in (3.7) is always stable.

In the approximation above we have used the first two moments. However, at least
three moments are generally required to capture essential waveform response charac-
teristics. Therefore, to match the third moment and capture the skewness of the distri-
bution, we add a third variable, to include one more degree of freedom. We shift
the gamma function by to approximate the impulse response
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Thus the transfer function becomes

and its moments are given by

with We now have three unknowns, n, and in three equations. It can
be shown that this equation system can also be expressed in terms of and second
and third central moments, and

Note that the second and third order central moments are independent of the shift,
which is not surprising because and are the measures of variance and skew-
ness of the waveform, respectively, and they are not affected by the time shift.

Rearranging (3.11) results in
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We know from the last chapter that both and are positive for RC trees. For a
causal approximation we also need to be positive. Unfortunately, is not always
positive. Therefore, if we get a positive from (3.12), we use (3.8) with (3.12), oth-
erwise we use the simpler approximation in (3.3) with (3.7), which we know is
always stable for RC trees.

We now find an expression for the step response, y (t), which is the integral of the
impulse response

Using (3.8) and after some algebraic manipulation we obtain

where P(n, x) is the incomplete gamma function [3.2]

and is the gamma function defined in (3.2).

Note that P(n, t) is zero at t = 0 and monotonically increases to one. Hence, to cal-
culate the delay at a particular percentage point we only need to find the value of
x such that

where Then with a simple scaling and shifting, the delay is
obtained:

Therefore all we need is a one dimensional lookup table for the incomplete gamma
function percentiles for each predetermined percentage point
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For example, consider the simple RC tree shown in Figure 3.2. For the voltage
response at capacitor the gamma approximation parameters are found as

and The corresponding impulse and
step response approximations are compared with the actual ones in Figure 3.3. For
this voltage response, the 50% gamma approximation delay is found as 101.5 ps,
which is a very good approximation of the actual delay, 102.5 ps. The Elmore delay is
134 ps. In this case, since we were able to use the first three moments, we captured
the waveshape of the impulse response very accurately.
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But this is not always the case. For example, consider a response at a node closer to
the source. At capacitor is negative. From (3.7), we obtain
n = 0.3036 and by using the first two moments. The approximate
and actual impulse responses are shown in Figure 3.4. Clearly, a two-moment approx-
imation is unable to capture the highly unsymmetrical waveshape. In the same figure,
the corresponding step responses are also shown. For this node, the gamma, actual,
and the Elmore delays are 6.5, 8.0, and 44 picoseconds, respectively.

3.2 h-gamma: Gamma Fitting of Homogeneous Response

Instead of approximating the impulse response, we can also fit the gamma distribu-
tion to the normalized homogeneous response. As we show next, this approach,
which was first proposed in [3.3], gives better results.

Consider a step response, Y (s), and its expression in terms of impulse response,
H(s), and impulse response moments:

Higher-Order RC(L) Delay Metrics 73



Higher-Order RC(L) Delay Metrics

Referring to (3.18), we can decompose the step response into the forced part,
and the homogeneous part Therefore, we
can write the step response as

where the inverse Laplace transform of is the normalized homogeneous
response. The components of y(t) are displayed in Figure 3.5.

In RC trees and meshes, the unit step response, y (t), monotonically increases from
zero to one. Furthermore, we know that and Thus, the homogeneous
response satisfies the conditions of a probability density function:

where we have used the fact that
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Therefore, in a similar manner to the gamma distribution modeling of the impulse
response, we can treat as a probability density function and approximate it with
a gamma distribution:

Now consider the moment expansion for and

Matching the terms with s and yields the parameters n and in terms of impulse
response moments:

We can also express n and in terms of the mean, and the variance,
of

Equation (3.25) can easily be verified by considering the relations
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which simply follow from the definitions in Subsection 2.5.1.

Once the parameters n and are obtained from the circuit moments, the approxi-
mate step response is

It is evident from (3.25) and (3.26) that we are using the first three moments of the
impulse response. Moreover, by fitting the complete response with the summation of
the forced response and the gamma distribution approximation, it is apparent from
(3.18) that the first three moments of the impulse response are implicitly matched.

Consider the RC tree circuit shown in Figure 3.2 again. The step response approxima-
tion given in (3.27) and the actual response at are plotted in Figure 3.6. A compar-
ison of the step response approximations in Figure 3.4 and Figure 3.6 clearly shows
the advantage of h-gamma fitting. The h-gamma method, by fitting the first three
moments, easily captures even the “difficult” responses such as the one at

76 IC Interconnect Analysis



h-gamma: Gamma Fitting of Homogeneous Response

A. Delay Calculation

To find the step response delay for any percentage point we have to find the value
of t in (3.27) which satisfies

where we have substituted (3.1) for and assumed By defining the
following two parameters

and using the expression

we can rewrite (3.28) as

Instead of solving for t using the nonlinear expression in (3.28), we use a table
lookup approach to evaluate (3.31). For each predetermined percentage point we
precompile a 2-dimensional table with k and n as its entries, and x as its output.
Thus when n and are obtained by matching the first three moments, we compute k
in (3.29), and use k and n to get x via table lookup. The delay value, t , is then
obtained by scaling x back by i.e.,

The response of a saturated ramp with a rise time can be expressed in terms of inte-
gration of the step response,
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Defining

we can express the ramp response as

Following the approach outlined for the step delay evaluation, we can write r(t) in
(3.34) as Hence, for a given percentage point the delay t can be
obtained by finding the value of x which satisfies

A 3-dimensional table with entries k , l , and n , and with output x, can be precom-
piled for the solution of (3.35). As a summary, the saturated ramp delay computation
steps include the calculation of k , l , and n , then using the 3-dimensional table to get
x , and then scaling it by to get t. The delay relative to the input ramp is then calcu-
lated as

B. Stability Issues

To have a valid (stable) gamma distribution delay model, the parameters n and
should be positive. We now show that the gamma distribution model for the homoge-
neous portion of a step response is stable for any RC mesh/tree.

Any step response in an RC mesh or tree monotonically increases from zero to one,
i.e., y ( 0 ) = 0, Consequently, the normalized homogeneous response,

monotonically decreases from to zero. Therefore it is bounded and
always positive. Since its mean and variance are defined as
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it is obvious that µ and are always positive for the homogeneous response
From (3.25), it follows that the h-gamma parameters always satisfy n > 0, for
RC meshes and trees.

C. Properties of the Tables

One important practical issue with the h-gamma method is the runtime and storage
efficiency properties of the table model. Note that of the three parameters, k and n
are not associated with the input ramp rise time, and can be expressed in terms of the
circuit-response moments. From (3.25) and (3.29), we have

To determine the expected ranges for these values, first consider the case when the
response is dominated by a single pole p , such that
Using this relation it is apparent from (3.37) that k and n should be close to 1.
Empirical results validate this, where it is observed that k is between 0.3~1.8, and n
is between 0.5~1.5 [3.3].

To determine the range of l it should be noted that when
the response will be a ramp follower and the 50% percentage delay point will
approach the Elmore delay upper-bound. When the ramp
is steep enough to be considered as a step input, which means the delay can be
approximated from the lookup table for step response delay with entries k and n.
Thus we only need to make the table with the value of l in the range of 0.1~10.
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D. Example

This example is taken from [3.3]. It considers a circuit from a 0.25 micron technology
commercial microprocessor. The RC tree has 50 fanouts, including nodes close to the
driver as well as nodes far from the driving point. The 50% delay numbers are com-
pared for three different methods: (a) the Elmore delay; (b) the time-shifted gamma
method, presented in Section 3.1, which fits the gamma function to the impulse
response; (c) and the h-gamma method. The input rise time is 0.2 times that of the
Elmore delay.

3.3 Double Exponential Impulse Response Distribution

The dominant pole model that was presented in the previous chapter, is based on the
approximation of the RC tree step response in terms of a single time-constant model,

where the pole is the inverse of the Elmore delay,

The corresponding impulse response is given by

with the s-domain representation of

80                                           IC Interconnect Analysis



Figure 3.2.

The most obvious next step would be a model with two dominant poles. In terms of
our p.d.f. interpretation of impulse response delay modeling this would correspond to
a double exponential distribution function:

where In the Laplace domain, it is represented by a two-pole one-zero trans-
fer function
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Importantly, this single pole model assumes that there are no low-frequency zeros and
that there exists a single pole which dominates the low-frequency behavior of the cir-
cuit. However, with the increasing effect of the wiring resistance, these assumptions
can break down such that more than one pole is required to accurately capture the
delay. This is illustrated in Figure 3.8, in which we compare the single-pole step
response approximation with the actual one at    for the RC tree shown in
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The delay can then be obtained explicitly from the corresponding step or saturated
ramp response using a table-lookup method as we describe later in this section.

One of the first approaches to characterize transfer functions using two poles was pro-
posed in [3.5]. It approximates the original transfer function of an RC tree with a two-
pole one-zero transfer function. Rewrite (3.42) in the form

and consider its Taylor series expansion about s = 0

where The three parameters in (3.43) are determined by matching the
first two moments of the exact impulse response (at node e),

where is the Elmore delay at node i, is the resistance of the portion of the
(unique) path between the input and node i, that is common with the (unique) path

open-circuit time constants in the original circuit

Next, a two-pole approximation is described which is obtained by matching the first
three moments.
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3.3.1 Two-Pole Approximation With Explicit Moment Matching

Consider a transfer function H(s) in an RC tree circuit, and assume that a sufficient
number of its moments are calculated from the circuit:

With a two-pole one-zero approximation as given in (3.42), the transfer function can
be expressed as a ratio of two polynomials

where we have used the fact that H(0) = 1 for RC trees. The Taylor series expansion
of the function H(s) about s = 0 can be expressed in terms of its coefficients as

By matching the coefficients of s through in (3.47) and (3.49) and after some alge-
braic manipulation, we obtain the following linear equation system for the coeffi-
cients in (3.48):

From the last two equations in (3.50), the coefficients of the denominator polynomial
are given by
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Once and are known, the poles, and , which are the roots of the denomi-
nator polynomial in (3.48), are found easily. To find the residues of the poles, we
match the two-pole model to the first two moments of the actual transfer function.
Consider the moment expansion of the two-pole transfer function,

The moment matching equations are

Thus

Now consider again the RC tree example shown in Figure 3.2. Figure 3.9 compares
the two-pole step response approximations at and with the actual ones. As
seen from the figure, the two-pole model is a very good approximation for the “diffi-
cult” response at And as we move away from the source, the two-pole model
becomes a perfect approximation.

This two-pole approximation using moment matching can be extended beyond the fit-
ting of p.d.f.’s, and can be applied for any number of poles using asymptotic wave-
form evaluation (AWE), which is described in detail in Chapter 4. One difficulty that
the aforementioned double exponential model and AWE share is the realizability of
the moment fitting. For example, moments from a higher order system are not guaran-
teed to produce a stable 2-pole model via the fitting process described above. Chapter
4 describes ways of overcoming this limitation for AWE, but here we describe two
provably stable double exponential models that can provide an explicit delay metric.
But first we address the stability problem in 2-pole models.
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3.3.2 Stability of Two-Pole Approximation

For a stable two-pole model, the roots of the denominator polynomial

in (3.48) must have negative real parts.

To investigate the stability properties of two-pole models we will use the Routh sta-
bility criteria: The second order polynomial Q(s) given in (3.55) is stable if and only
if the coefficients and are positive.

Now let us rewrite the coefficients in (3.51) in the form
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It can be shown that if the conditions

are satisfied, then the coefficients and in (3.56) are positive. A little later we
show that this is always the case for admittance and impedance functions in RC cir-
cuits. But RC transfer function moments do not satisfy (3.57) in general. They have
very similar bounds though, as we will see next.

In the previous chapter we showed that the second and third central moments of RC
tree responses are always positive, that is,

Thus, RC transfer function moments satisfy

In order to compare the stability requirements in (3.57) with the actual bounds in
(3.59), we normalize the moments as

This is equivalent to scaling the time by the Elmore delay. In terms of normal-
ized moments, the stability requirements in (3.57) become
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Similarly, the RC moment bounds can be simplified as

The regions defined by (3.61) and (3.62) are depicted in Figure 3.10. The shaded area
is the stable region. The triangular region described by (3.62) is shown by dashed
lines. Thus a moment pair that is outside of the shaded area gives an unstable 2-pole
model. But, empirical results have shown that RC moments usually, but not always,
satisfy the stability conditions given in (3.61) [3.6].

3.3.3 A Stable 2-pole Model Based on First Three Moments

We now present a method which uses the first three moments and provides a provably
stable 2-pole model [3.7]. We first explain how we find the dominant pole. Then we
describe how the second pole can be approximated using the first pole and the first
three moments.

Consider an RC tree circuit with n distinct poles and let H(s) be a response in the cir-
cuit
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The expression of the jth moment in terms of poles and residues is

Assume that the poles are ordered such that and consider the
ratio of two successive moments

It follows that

Therefore, using only the information contained in the first three impulse response
moments, the most accurate approximation of the first pole is

From (3.59) it is easy to show that for RC tree responses and Thus
is always negative.

To explain how we arrive at a guaranteed stable approximation for the second pole,
we begin with the ratio of two successive moments in (3.65). Using polynomial divi-
sion, we can rewrite (3.65) as
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Next we consider the following ratio of terms:

Using (3.68), the ratio in (3.69) becomes

Note that the right hand side of (3.70) approaches as j increases, that is,

However, due to the uncertainty of the monotonicity of the moment ratios, we do not
know the sign of (3.69), but we can still consider convergence to the exact magnitude
of the ratio of the first two poles by taking the absolute values of both sides in (3.71).

Therefore, based on the first three moments, our most accurate approximation for the
second pole is
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With a pair of stable poles that approximates the first two poles of the actual circuit,
we can find the residues in

as explained in Subsection 3.3.1.

3.3.4 Stable 2-Pole Method (S2P)

The stable two pole (S2P) method constructs the approximate transfer function given
in (3.42) in two stages [3.8]:

1.

2.

Find the poles using driving point admittance moments.

Obtain the residues at the desired outputs using the poles found in the first stage
and the transfer function moments at the output of interest. Note that the approxi-
mate driving point poles are common to all outputs. So they are calculated only
once for a given circuit.

We now show that the 2-pole approximation always gives stable poles when it is
applied to driving point immittance function in RC trees.

First consider a driving point admittance function Y(s) and its moment expansion:

Now consider a second order approximation for Y(s) in the form

Note that the approximation in (3.75) is a two-pole two-zero system, and thus it is
slightly different than the one given in (3.42). Y(s) can also be expressed as

Expanding Y(s)
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and by matching the first five terms in (3.74) and (3.77) and after some straightfor-
ward manipulations, we end up with a linear equation system for the coefficients:

To find the poles of Y(s) we only need the coefficients of the denominator polyno-
mial. From the last two equations we obtain

As mentioned in the previous section, the above procedure is equivalent to finding a
second order AWE approximation to the input admittance function. In the next chap-
ter, we show that to find the coefficients of the denominator polynomial, we can use
any four successive moments. Sometimes using higher order moments can give better
approximations to the original poles. Therefore, for generality we rewrite (3.79) as

Recall from the Hurwitz criteria that the denominator polynomial in (3.76) is stable if
and only if the coefficients given in (3.80) are positive. To prove that this is the case
for RC tree admittance functions, we will make use of the following two properties.

Property 1: The moments of Y(s) satisfy

The proof is given in Appendix 2.A.
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Property 2: The ratio of successive moments of the driving point admittance function
in an RC network is monotonically increasing, i.e.,

The proof is given in Appendix 3.A.1.

The coefficients in (3.80) can be rewritten as

Since and are always positive, and using the monotonic con-
vergence property of moments one can show that

Therefore, the second order approximation for driving point admittance function of an
RC circuit is always stable. Furthermore, in Appendix 3.A.2 we prove that

Thus, the poles are also real numbers.

Once the approximate driving point poles are obtained, a transfer function can be
formed for any node in the circuit:

The residues in (3.85) are calculated by matching the first two moments, and
of the response at the output node as explained in Subsection 3.3.1:

Now consider again our RC tree circuit shown in Figure 3.2. The S2P step responses
at and together with the actual ones are given in Figure 3.11. As expected, the
S2P is slightly less accurate then the regular two-pole model (Figure 3.9). The reason
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is S2P uses the driving point moments to calculate the poles, and then the same poles
are used for all of the responses. At a specific response we match only the first two
moments exactly. In the standard two-pole model, on the other hand, for each
response we match the first four moments to find the poles.

We conclude this subsection with a brief summary of the S2P method:

1.

2.

3.

Compute for driving point current.

Compute at the response nodes.

Find two poles at the driving point:

where the coefficients and are obtained using(3.79).

For each response node find the residues using (3.86).4.
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3.3.5 Delay Calculation in Two-Pole Models

All the two-pole models mentioned in this section approximate the impulse response
in the form

The corresponding step response is given by

The saturated ramp response becomes

where is the rise time. The delay for an percentage can be found by solving
using Newton-Raphson or regula-falsi iterations. When started with a good

initial guess, these methods converge very quickly. We can compute an initial guess
using the dominant pole in a one-pole model [3.7].

Alternatively, a table lookup approach can be used to avoid nonlinear iterations. We
can further reduce the number of parameters by normalizing the response with respect
to one of the parameters. This also yields predictable ranges for the remaining param-
eters. The parameters for the table would then be and where

is the pole with smaller amplitude. The delay value obtained from the table is then
divided by for back-normalization. Considering the first moment as an input
parameter instead of the residues makes it easier to predict the ranges. For example, it
is empirically known that after the 50% delay is almost equal to the Elmore
delay, so in the table the range for should be between 0 and 7.

3.4 Closed Form RC Delay Metrics

Another alternative for an efficient delay metric is by curve fitting in terms of the first
three moments [3.6]. In this approach, a simple closed-form expression is developed
by exploiting the properties of RC tree moments:
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where is the Elmore delay and, and are the normalized second and third
moments as defined in (3.60). The universal constants, and are obtained
with least squares approximations using stable two-pole approximations.

We now mention a few other closed-form metrics which use the first two moments.
The first method [3.9] finds a two-pole model by using the first two moments and
adding a time-derivative constraint. The resultant delay expression is

The second method [3.10] finds one pole using two moments and approximates the
delay as

And finally, the third metric [3.11] is obtained by scaling the dominant time constant
delay as

3.5 Noise Metrics

Delay is not the only quality measure that one is interested in when using interconnect
metrics for optimization. Due to dominant coupling capacitance, noise is generally
equally important as delay. Moments can be used to estimate crosstalk induced noise
in RC interconnect circuits. After addressing noise metrics in this section, we con-
tinue with delay and signal integrity issues in RLC interconnect in the following sec-
tions.
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3.5.1 Crosstalk Noise

The crosstalk noise is caused by the capacitive coupling between a net and a set of
aggressor nets. Consider the coupled system shown in Figure 3.12. For simplicity
only one aggressor is considered. Since we assume linear(ized) gate models, it is
straightforward to extend the results that are presented in this section to the case with
multiple aggressors. In Figure 3.12, the aggressor net is excited with a voltage source
and the victim net’s driver is replaced with a resistor that represents the transistors
that are driving the victim line. Let n(t) be the voltage of the output node in the vic-
tim net. We present two methods to estimate the maximum value of n(t).

Let H(s) be the transfer function from the input to the output. Assume that it has an
exact pole-residue representation in the form

Consider the moments of the transfer function,

The first two moments can be expressed in terms of poles and residues as
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Since there is no dc path between the two nets, we have

which also implies

For an input waveform in the s-domain), the noise waveform is given
by

where indicates the inverse Laplace transformation.

3.5.2 First Moment Noise Metric

Now assume that the input is a ramp waveform with a slope of i.e.,
Then using (3.95) and (3.99), the noise waveform is given by

Inserting (3.97) into (3.100) and using we obtain

Since the poles are negative in RC circuit responses, n(t) is bounded, and it can be
easily shown that
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Now assume that n(t) is monotonic which suggests a noise waveform as shown in
Figure 3.13. In this case, it is apparent that the noise is bounded by the steady-state
value:

The first moment metric, expressed above, is very simple, however, there are two
issues associated with it. First, although most noise responses exhibit a waveform
which is similar to the one drawn in Figure 3.13, monotonicity is not guaranteed for
general RC circuits. Therefore cannot be considered as a bound theoretically.
But it can still be a good estimate for the maximum noise in case of a ramp input
[3.12]. The second issue with the first moment noise metric is that it is limited to ramp
inputs. In case of a saturated ramp input, the first moment metric can become signifi-
cantly pessimistic as illustrated in Figure 3.14.
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3.5.3 S2P Noise Metric

In case of a saturated ramp input with a rise time the noise waveform n(t) is the
saturated ramp response given in (2.14):

Inserting (3.97) into (3.104) and since we obtain

The above expression requires the poles and residues of the transfer function H(s). A
simple and efficient approach is to use the S2P method, which is presented in
Section 3.3.4. Its slightly modified version for noise analysis can be outlined as fol-
lows:

1.

2.

Compute two poles, guaranteed to be stable, from the driving point moments at
the input of the aggressor net.

At the victim output node, compute the residues according to (3.86). Since there is
no dc coupling between the victim and the aggressor nets, that is, further
simplification is possible:

The two-pole noise waveform approximation then becomes
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Solving for the time point where the derivative of n(t) is equal to zero, we obtain
at which maximum coupling occurs:

It can be easily shown that the second term in (3.108) is positive. Thus is always
bigger than Evaluating the noise formulation at this time point, we obtain the S2P
noise metric

3.6 RLC Interconnect

To this point we have primarily focused on RC trees and described delay metrics
based on modeling the impulse responses by p.d.f.’s. However, if the interconnect tree
response is underdamped because of inductance, it can no longer be modeled as a
p.d.f., and the aforementioned metrics do not apply [3.13]. A key aspect of RLC delay
estimation is first controlling the damping, then approximating the delay. Interest-
ingly, central moments of the impulse response can be used to detect and ultimately
guide the controlling of the response underdamping.

In this section we derive the connections between central moments and response
damping for a single RLC transmission line. The results are, however, equally appli-
cable to general RLC trees.
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3.6.1 RLC Interconnect Delay and Ringing

Because excessive settling time increases delay in some sense, both under-damping
and over-damping adversely impact delay. This is evidenced by the responses in
Figure 3.15(b) for the series terminated RLC line in Figure 3.15(a). Resistances
and leave the line underdamped which results in a faster but underdamped sig-
nal that takes a longer time to settle, while results in overdamping.

3.6.2 Central Moments and Transmission Line Response

For the simple source-terminated transmission line shown in Figure 3.15(a), the trans-
fer function is

where is the propagation function and
is the characteristic impedance of the line. R, L and C are the per-unit-length resis-
tance, inductance, and capacitance parameters of the transmission line, respectively, d
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is the length of the line, and the series resistance is given by where
is the driver resistance and the additional termination resistance. The dielec-

tric loss, G, is assumed to be negligibly small. From (3.110), the moments of the
transfer function of the transmission line system can be obtained as a function of
or as a function of the series termination resistance, The driver resistance is
assumed to be linear.

A. Lossless Interconnect

For an unloaded lossless transmission line driven by a step input, as shown in
Figure 3.16(a), it is well known that the optimal termination resistance is
[3.14]. With this termination, the ideal signal is the input step delayed by the time-of-
flight along the line, given by Thus, the ideal response, is as
shown in Figure 3.16(b). The following discussion shows that this ideal response is
indeed obtained when the central moments of the impulse response are minimized.

For the lossless line in Figure 3.16(a), the transfer function is given by

where and For this transfer function, the second and third
central moments of the impulse response are symbolically given as:
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Symbolically solving yields two roots:

Solving = 0 for yields three roots:

The positive root provides the solution, Then, the transfer function given in
(3.111) becomes

where is the time-of-flight. Then it is easy to show that this transfer
function provides the desired ideal waveform at the output of the transmission line

From above, it can be inferred that the ideal impulse response for a lossless transmis-
sion line is symmetric and localized (zero dispersion) about its mean,
Conversely, forcing the impulse response to be symmetric and localized about the
mean ensures critical damping.

B. Lossy Transmission Lines

Lossy lines, on the other hand, display the phenomenon of “dispersion” which is due
to the dependence of the phase velocity of a propagating wave on the frequency of the
wave [3.14]. Consequently, for a signal comprised of a band of frequencies, the dif-
ferent frequency components do not maintain the same phase relationships as they
propagate down the line. Due to this inherent property of dispersion of a lossy trans-
mission line, (being a measure of dispersion) cannot vanish for a lossy line. Thus,
our objective for terminating a lossy transmission line is to solve for with
minimum

For a positive function h(t), since the third central moment is known to be a mea-
sure of the asymmetry of the function, represents a positively skewed function
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with a long right tail, as shown in Figure 3.17(b), and corresponds to an overdamped
signal (Figure 3.17(a)). For a transmission line system, when the response is under-
damped, there is some overshoot/undershoot, and so, for the impulse response shown
in Figure 3.17(b), The third central moment from equation (2.57) can be
rewritten as

so that for a symmetric which corresponds to a criti-
cally damped system.

Thus, for a lossy transmission line, the objective is to design the impulse response to
be localized and symmetric about its mean. And since is a measure of asymmetry,
and hence ringing, with minimum is proposed to be the condition for
optimal termination for a lossy transmission line. However, in order to minimize ring-
ing while maximizing the signal slope, trade-offs between ringing versus rise-time
should be considered using the second central moment, [3.13].

Finally, it should be noted that if the RLC line damping is controlled by forcing
the distribution is more symmetric than an RC impulse response, and, there-

fore, the Elmore delay metric is more accurate since the mean is closer to the median.
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3.7 Signal Attenuation and Phase Delay in RLC Trees

Until now we have focused on transient delay calculation in RLC interconnect, but
there are occasions -- e.g. clock signals such as the one shown in Figure 3.18 -- for
which steady-state characterization is more effective. If the fundamental frequency of
the periodic signal in Figure 3.18 is f, then we know that all other signal content is at
2f, 3f, 4f, etc., along with a dc signal component at f = 0. But even for the nearly
ideal input signal shown in Figure 3.18, there is very little signal energy at frequency
2f, and even less at 3f, 4f, and so on. In addition, due to the low-pass nature of the
interconnect, we expect the ratio of the signal energy at 2f to that at f to be even less
at the output nodes (latch points). Furthermore, with frequencies passing 1 GHz,
clock signals appear more like sine waves. For this reason we focus the clock tree (or
mesh) design on balancing the phase delays (see Figure 3.18) and controlling the
attenuation of the output frequency response at the fundamental frequency f.

While it is desirable to measure the clock distribution performance in the frequency
domain, a complete ac analysis is too costly in terms of runtime for most optimization
and synthesis tools. In this section, we derive simple, yet accurate metrics for the
phase delay and signal attenuation of RLC clock trees. The attenuation metric also
provides an estimation of the damping of RLC circuit responses. When the response
is overdamped, we prove that the phase delay is bounded by the first moment of the
impulse response, which is the ubiquitous Elmore delay. Importantly, this bound is
extremely accurate over the range of operating frequency for which the attenuation
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level is acceptable. The attenuation metric is based on the first and second moments
of the impulse response and also provides a tight upper bound near the operating fre-
quencies of interest. For underdamped RLC responses the first moment metric is not a
bound, but the attenuation metric correctly indicates that the design is not a reliable
one anyway. When the circuit is underdamped, or there are significant signal reflec-
tions, the attenuation metric will predict this by specifying a gain greater than unity.

3.7.1 Attenuation Metric for RLC Trees

Consider the moment expansion of a general transfer function,

and let F(s) be the magnitude squared function in the Laplace domain:

The Taylor series expansion of F(s) about s = 0 can be written as

The first few coefficients in (3.120) can be expressed in terms of the moments as fol-
lows:

The amplitude function, which is defined in (2.16), is related to F(s) as

Therefore, the square of the amplitude function of a linear circuit can be expressed in
terms of moments as
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Note that the above expansion is true for general linear circuits. But for RC tree
responses, we can identify the conditions for which it is acceptable to approximate the
amplitude function by a limited number of series expansion terms.

Assume that is the smallest modulus pole for an RC tree transfer function, H(s).
In Subsection 3.3.3, we showed that the ratio of two successive moments approaches
the first pole as the order increases, i.e.,

The above relation implies that the moments are approximately scaled by the inverse
of the smallest modulus pole when the order is increased by one, and in reality it is
true even for very low order moments. Therefore, we can approximate the higher
order moments in terms of the zeroth order moment and the smallest modulus pole as

Since for tree circuits, (3.125) can also be expressed as

where

For example, consider the clock tree circuit mentioned in Section 2.8. For the
response at the output node, the first seven values of are: 1.000, 1.020, 1.013,
1.006, 0.999, 0.994, 0.988. Note that the accuracy of the above approximation is not
important because it is not directly used in the metric derivations. Only the order of

are required.

Substituting (3.126) into (3.123) and assuming that we obtain
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It follows from (3.128) that is a polynomial in having coefficients on
the order of unity. Since for reliable circuit operation the attenuation must be low1

, the
fundamental frequency of the clock signal, should be less than the first cut-off fre-
quency, Therefore, the higher order terms in (3.128) decrease very
quickly, and the amplitude response can be approximated as

Since the second central moment is the above metric becomes

In Appendix 3.A.3, it is shown that for RC trees, the coefficients in (3.120) are posi-
tive, therefore the series terms in (3.123) alternate in sign. And since it is a power
series with approximately unity coefficients, the error is easily bounded by the first
truncated term. Therefore, we conclude that for RC trees, the approximation given in
(3.130) is always a lower bound for the amplitude response and hence an upper bound
for the attenuation. This is demonstrated in Fig. 3.19 for an RC clock tree example.

1. Signal attenuation of more than 10% is generally unacceptable for aggressive designs due to the tight
noise margins. This is particularly the case for scaled supply voltage designs, where the threshold voltages,
hence gate switching points, do not directly scale with the supply voltages.
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The proof in Appendix 3.A.3 that the coefficients in (3.120) are positive relies on the
fact that the RC tree impulse response is always positive. In Section 3.6, it is shown
that the second central moment, is negative only if the RLC circuit is under-
damped. Therefore, for critically and overdamped RLC trees, in which the impulse
responses are always positive, the alpha-term coefficients in (3.128) are positive and
the first two terms can be used as a lower bound for the amplitude response:

Note that it is apparent from (3.131) that a negative corresponds to an under-
damped response.

As an example we consider the response of an RLC clock tree (344 inductors, 658
capacitors, and 1267 resistors) that was extracted from a commercial microprocessor
[3.15]. The amplitude responses for two different values of driver resistance are
shown in Figure 3.20. Included are the amplitude approximation from (3.131) for
each case. In both cases the approximation behaves as expected: clearly an upper
bound for the overdamped case, and clearly indicates underdamping for the oversized
driver case. The corresponding step responses are shown in Figure 3.21. Clearly, the
underdamped response amplitude and phase delay are not of interest since the peri-
odic clock signal in such a case would be unacceptable.
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3.7.2 Phase Delay Metric for RLC Trees

From (3.118) we can write

From which, we can express the phase function as

where

The Taylor series expansion of the phase function in terms of is given by

Similarly the Taylor series expansion of is
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Assuming the first few terms of (3.136) are calculated as

Substituting (3.136) into (3.135) we obtain the power series expansion for

Substituting first (3.137) and then (3.126) into (3.138) yields

Similar to (3.128), the phase function is a polynomial in having coefficients
on the order of unity.

Therefore, using (2.18), the phase delay can be approximated as

From the definition of the third central moment in (2.57) it follows that
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Since the third central moment, is always positive for overdamped RLC tree
responses, equation (3.141) also indicates that the Elmore delay is an upper bound for
the phase delay as we previously proved in Section 2.8.

Considering once again the RLC clock tree example used in Figure 3.20 and
Figure 3.21, the phase delays are compared with the Elmore delays for two different
source resistances in Fig. 3.22. Note that (3.141) could be used to extend the range of
validity for the phase delay metric, however, a comparison of Figure 3.20 and
Figure 3.22 shows that the Elmore delay begins to become inaccurate only when the
attenuation begins to become unsupportable (greater than 10%). For this reason we
would conclude that it is unnecessary to use a more accurate delay metric, since the
Elmore delay provides excellent accuracy for the frequency range of acceptable atten-
uation.

This observation has two important implications. First, the widely used Elmore delay
remains an acceptable metric for RLC clock tree synthesis. Secondly, but perhaps
most importantly, it is critical for the clock tree synthesis algorithm to focus on con-
trolling the signal attenuation, even more than the delay/skew initially.
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3.8 Summary

Inspired by Elmore, a myriad of moment based delay metrics have evolved based on
higher order moments and extensions of the analogy between p.d.f.’s and RC impulse
responses. In addition, other interesting properties of moments were shown to facili-
tate approximations of RLC interconnect damping control, cross-talk estimation, and
steady-state phase delay prediction. While these metrics extend the utility of moments
for performance prediction, like the Elmore delay they all have their limitations and
must be used judiciously.

In the next several chapters we explore more general algorithms for modeling inter-
connect more precisely via moments and related subspaces.

3.A Appendix

3.A.1 Moments of RC Tree Admittance Functions

Let Y(s) be a driving point admittance function in an RC tree and consider its repre-
sentation in terms of poles and residues

Assume a moment expansion for Y(s) in the form

In terms of the poles and residues, the moments are given by

Let us define
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Then we have

Since the residues are negative and repetitive poles are impossible for RC driving
point functions [3.16], we have f > 0. Therefore from (3.145), we have

Since either or is positive and the other one is negative, we obtain

3.A.2 Realness of the S2P Poles

We prove that the roots of Q(s) in (3.55) are real numbers.

In order to have real roots, the coefficients of Q(s) have to satisfy
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where and are defined in (3.80). Since the denominator is positive, it is suffi-
cient to show that the numerator in (3.149) is always positive in order to have real
coefficients. Let us define

It follows from (3.82) that

Substituting (3.150) into (3.149), the numerator of (3.149) can be written as

Substituting z = x + y in (3.152) and defining we get

Using (3.82), it can be shown that Thus

Combining (3.154) and (3.153), we obtain

hence D > 0, which completes our proof.
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3.A.3 Moments of Magnitude Squared Functions

Let H(s) be a transfer function in an RC tree and consider its magnitude squared
function, F(s),

On the axis, F(s) becomes the square of the magnitude response. Let f (t) be the
inverse Laplace transform of F(s). From (3.156) it follows that

where h(t) is the impulse response of the circuit and * is the convolution operator. In
the previous chapter, it was shown that the impulse response of an RC tree is always
positive. Consequently, f (t) is also always positive and it is an even function of t.
Next consider the Taylor series expansion of F(s),

Since f(t) is an even function of t and always positive, the integral in the summa-
tion is zero for odd order terms and a positive number for even order terms. There-
fore, F(s) can be written as

where all the coefficients are positive.
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CHAPTER  4 Asymptotic Waveform
Evaluation

In the previous chapter, we saw that moment matching can be used to fit circuit
responses to probability distribution functions to construct simple and accurate delay
metrics. Alternatively, moment matching can be applied to varying orders of circuit-
response functions by using moments to calculate approximate poles and zeros. This
chapter describes the asymptotic waveform evaluation (AWE) technique which effi-
ciently calculates circuit moments via recursive solution of a dc equivalent circuit,
then employs a moment matching method to compute Padé approximations of circuit
functions. We begin where we left off with the description of moments in Chapter 2,
then outline general moment matching and its accuracy and stability properties.

4.1 State Equations and Circuit-Response Functions

Asymptotic waveform evaluation can best be explained via state-space formulation.
Consider a lumped, linear, time-invariant circuit which has one input and one output.
The standard form of the state equations of such a circuit is
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of which the Laplace transform L{h(t)} is the circuit function H(s) .

Upon applying the Laplace transform to state equations, we have

Neglecting the initial conditions, that is, with x(0) = 0, we obtain

Thus the circuit function H(s) is given by

which can also be expressed in one of the following forms:

We recognize that the poles, of H(s) are the roots of the characteristic polynomial

or the eigenvalues of the matrix A .
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where x is an n-dimensional column vector (the state vector), A is an n × n matrix
(the state matrix), b and c are n-dimensional column vectors, u is the input variable, y
is the output variable, and d is a scalar. Since the direct coupling term, d, can be
computed separately, for simplicity, we will assume d = 0.

The zero-state impulse response of the linear circuit defined in (4.1) is defined as



Moments

Once the circuit function is obtained in one of the forms shown in (4.6), the time- and
frequency-domain responses can be computed efficiently as outlined in Chapter 2.
For typical interconnect circuits, however, the number of poles can easily be of the
order of hundreds or thousands. Obviously, it is impractical to attempt to find all of
the circuit poles, especially since some have insignificant contributions to the circuit
performance. What we seek instead is an efficient means to obtain those few domi-
nant poles that adequately characterize circuit behavior. One of the most effective
procedures for approximating such a set of dominant poles (and zeros) is via moment
matching.

Asymptotic waveform evaluation (AWE), first introduced in 1989 by Pileggi and
Rohrer [4.1], employs a form of moment matching to approximate the behavior of lin-
ear circuits in either the time or the frequency domain. AWE, and moment matching
in general, consist of two main stages:

where the reduced order q is much less than the original order n. AWE achieves this
by first generating the moments of H(s) from the circuit, and then matching the first
2q moments to the low-order q-pole model given in (4.8).

The rest of this chapter analyzes AWE in detail, beginning with a description of
moments in the following section. Efficient ways of generating moments is the sub-
ject of the next chapter.

4.2 Moments

When the input is an impulse function, that is, U(s) = 1, the state vector X(s) in
(4.4) becomes
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1.

2.

Moment generation from the circuit

Moment matching

Specifically, AWE finds an approximation for the circuit function H(s) in the form
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and it can be represented with a Taylor series expansion about s = 0,

The coefficient in (4.10) is called the ith moment vector of the circuit. Similarly,
the output response can be represented with a Taylor series expansion in the form

where is the ith moment of the circuit function. From (4.5), (4.10), and (4.11), it
follows that the ith moment of the circuit function is calculated from the moment vec-
tor as

From (4.11) we can show the relation between the circuit function and its moments in
the frequency domain:

In the time domain, as we saw in Chapter 2, the moments are related to the impulse
response, h(t), as

Having defined the moments and moment vectors, we now turn our attention to
moment computation. The state moment vectors in (4.10) can be shown to be

which provides the following recursion for computing the moments:
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Once the state vector moments are calculated, the moments of any circuit function
can be simply computed using (4.12). To start the recursion in (4.16) we need to com-
pute This requires LU decomposition of the matrix A. The computa-
tion for each additional moment, however, is far less costly requiring only forward
and back substitutions.

The above recursive relation is useful, but we would rather not formulate the state
matrix A if we can avoid it. In general, the A matrix for a lumped, linear circuit takes
the following form [4.2]:

The symmetric C and L submatrices are diagonally dominant descriptions of the
capacitance and inductance portions of the circuit. The H matrix in (4.17) is merely
the hybrid characterization of the dc circuit that results upon zeroing all original inde-
pendent sources and forming ports appropriately for the energy storage elements.

Similarly, the input vector b takes the form [4.2]:

where B is a dc characterization matrix similar to the H matrix independent from the
energy storage element values, and, and are the current and voltage sources,
respectively.

From (4.17) it follows that is

Referring to (4.19), only the dc hybrid matrix H needs actually to be inverted (LU
factored) to calculate the moments. Inverting H for a circuit such as the one in
Figure 4.1 is equivalent to performing the dc analysis in Figure 4.2. All capacitances
are replaced by independent current sources and all inductances by independent volt-
age sources.
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To obtain the zeroth order moments, we solve

Equation (4.20) is equivalent to setting the independent sources, and equal to 1
in Figure 4.2 and solving for the open circuit capacitor voltages and short circuit
inductor currents.
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For higher order moments, we solve

Therefore, from the same dc circuit all subsequent sets of moments can be obtained as
follows:

Note the similarity between the above recursion and the one described for an RC tree
in Chapter 2. We need not formulate the state equations to solve the dc circuit defined
in Figure 4.2 and Figure 4.3. We can use any dc circuit analysis scheme to solve for
the voltages of the capacitor current sources and the currents of the inductor voltage
sources. Efficient moment generation techniques for tree type interconnects and for
general linear circuits are addressed in Chapter 5. We next focus on the process of
moment matching.
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1.

2.

3.

4.

Set independent sources equal to zero.

Set each capacitor current source equal to the product of the capacitance value C
and the corresponding element of the previous moment vector

Set each inductor voltage source equal to the product of the inductance value L
and the corresponding element of the previous moment vector

Solve for the voltages across the capacitor current sources and the currents
through the inductor voltage sources the next set of moments.

These steps are summarized in Figure 4.3.



Asymptotic Waveform Evaluation

4.3 Moment Matching

IC Interconnect Analysis

Consider the circuit function given in (4.6) again

and assume that a sufficient number of its moments are known:

Let be a reduced order approximation for H(s) in the form

Ideally, the order of the reduced model is usually much smaller than the original one,
that is,

Consider the moment expansion of the reduced order model:

The AWE technique finds the coefficients of the qth order reduced order model by
matching its first 2q moments to the first 2q moments of the original circuit function,

To describe how the coefficients of the reduced order model are found from the
moments of the original circuit, we first show the relation between the coefficients of
the reduced model with its moments.

From (4.24) and (4.26), we have
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Multiplying the denominator polynomial with the series expansion on the right hand
side and then equating the terms with the same powers of s, we obtain two sets of lin-
ear equations. The first set is obtained by matching the coefficients of through

Note that in the above equation systems we also have used (4.27), that is, the circuit
function’s moments are replaced with the actual circuit moments. The only unknowns
in the second set of equations are, therefore, the q coefficients of the denominator
polynomial. This set can be rewritten in the matrix form as
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The second set is obtained by matching the coefficients of through



Asymptotic Waveform Evaluation

The matrix on the left hand side is referred to as the moment matrix. Upon solving the
coefficients of the denominator polynomial from (4.31), the coefficients of the numer-
ator polynomial can be calculated by simple substitution in (4.29).

4.3.1 Poles and Residues

Once the reduced-order circuit function in the form of (4.24) is obtained, the poles,
of the reduced-order model can be determined by finding the roots of the denomi-

nator polynomial. Similarly, the zeros are the roots of the numerator polynomial.
Although the pole-zero representation is very useful in the analysis and design of ana-
log circuits, for time-domain interconnect analysis the pole-residue representation is
preferable. After the poles are obtained, the residues, are calculated using partial
fraction decomposition, which allows the reduced-order model to be expressed as

IC Interconnect Analysis

The residues can also be calculated directly from the moments. As shown in the fol-
lowing sections, this capability is important for some applications, especially for sta-
bility enforcement. Consider the moment expansion of the reduced order function
with pole-residue representation:

Matching the first q moments of the reduced order model to those of the original cir-
cuit, we obtain a linear equation system for the residues:

128

or



Practical Considerations

With the approximate impulse response described by the closed form expression
given in (4.32), the response to any kind of input can be determined easily as
explained in Chapter 2. Similarly, the ac response is computed by simply evaluating
(4.32) or (4.24) at the desired frequency points.

4.4 Practical Considerations

We will first present examples to demonstrate the time- and frequency-domain con-
vergence properties of AWE, then use these results to discuss some practical issues
related to the application of AWE for interconnect circuit problems.

The first example is a small RC circuit shown in Figure 4.4. It has only four poles,
which can be found by writing its state equation as in (4.1) and solving for the eigen-
values of A. Table 2.1 shows the exact poles and the poles of the AWE approxima-
tions from the first order to the forth order. It can be observed that the approximate
poles converge to the dominant poles very quickly. When the number of AWE poles
is equal to the system order, approximate and exact poles are exactly the same. This is
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due to the convergence property of the Padé approximation which is explained in
Subsection 4.5.3.

The second example is a large RC clock tree with 765 nodes. The response is mea-
sured at a node close to the source, since that is usually where the behavior of the sig-
nal is “stiff.” The stiff responses are known to be difficult to approximate with
reduced order models. The time-domain waveforms of the first, second, and third
order AWE approximations along with the SPICE simulation result are shown in
Figure 4.5. The second and the third order approximations are indistinguishable from
the SPICE waveform.
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Another example is an RLC clock tree from an industrial IC. It has 1497 nodes, 344
inductors, and 658 capacitors. Different order AWE approximations at the output
node are shown in Figure 4.6 together with the SPICE simulation result. Notice that
the first order approximation is very inaccurate since the first two moments have no
inductance information. The third order approximation and beyond -- up to exact
order or the maximum numerical resolution -- match the SPICE simulation exactly.

As evident from the above examples, in most cases AWE works very well and pro-
vides very good approximations both in the time and frequency domains. The reason
why AWE provides good waveform approximations can be explained as follows:
AWE matches the moments of the original circuit to a reduced order model. Since the
moments are the coefficients of the Taylor series expansion around s = 0, the
reduced order model is expected to be a good approximation at low frequencies, and
exact at s = 0. Importantly, most interconnect structures, like all physical systems,
exhibit a low-pass filter behavior -- they attenuate the high frequency components of
the signal as it propagates along the system. Digital input signals are generally mod-
eled as combinations of step and ramp functions, implying that they have a rapidly
decaying frequency spectra and a pulse propagation that is totally dominated by the
low-frequency behavior. Hence, AWE produces excellent waveform analysis results
and sometimes even better results than a SPICE simulation which incurs some small
amount of numerical integration error.
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AWE can sometimes fail, however, either in terms of unstable poles or simply by way
of inaccurate results. As we will see in the next section, AWE finds Padé approxima-
tions for circuit-response functions. It is partially the Padé approximation and par-
tially the explicit moment matching on a finite precision computer that are
responsible for the limitations of AWE. We will address these limitations in more
detail later. But for now, consider that the accuracy limitation occurs simply because
of the precision loss during numerical computations.

The stability of AWE can be a substantial problem. In the presence of positive poles,
the time-domain response of the approximation becomes unbounded, and therefore
such an approximation is useless. There are two types of instability:

4.5 Padé Approximation

The approximation method used in AWE is actually a specific type of a well-known
rational function approximation -- Padé approximation [4.3]. Padé approximation has
long been a subject of interest in numerical analysis, and has been widely used in
many different engineering and science fields. It has been especially popular in the
area of model order reduction as it applies to control theory.

The definition of Padé approximation is as follows. Assume a rational function

1.

2.

Padé approximation instability: This type of instability is inherent to the Padé
approximation. It is independent of the numerical errors introduced during the
computations.

Moment-matching instability: This type of instability is due to precision loss that
occurs during the moment calculations.

We next establish the theoretical connection between AWE and Padé approximations.
We then describe moment-matching related limitations of AWE and propose methods
to overcome both types of instability problems.

where and are polynomials of order n and m, respectively. Then
is a Padé approximation of type [n/m] to a function F(x), if the first

n + m + 1 terms of its Taylor expansion equal to the Taylor expansion of F(x).
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4.5.1 Calculation of Padé Approximation Coefficients

We now show how the coefficients of Padé approximation are calculated from the
Taylor series coefficients (moments) of the original function. In the previous section,
this is derived for [(q –1) / q ] type AWE approximations. Now we generalize it to
[n/m] type approximations.

Assume that the Taylor series expansion of the function F(x) is known:

whose Taylor series agrees with the Taylor series of F(x) in the first n + m + 1
terms. To find the coefficients, we write

By multiplying the denominator polynomial with the right hand side and matching the
coefficients of through we obtain two sets of equations for the coefficients.

The first one gives the coefficients of the denominator polynomial,

where = 0 for k < 0. Then the numerator coefficients are obtained from
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The goal is to find a Padé approximation of type [n/m] of the function F(x) in the
form
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4.5.2 Padé Approximation Instability

An important drawback associated with AWE is the inherent Padé approximation
instability. It is well known that Padé approximations of stable systems may be unsta-
ble [4.4]. To demonstrate this, we will use a two-pole one-zero system function

where the poles and are negative real numbers. Let us consider a first order
Padé approximation of type [0/1] to H(s) ,

After some manipulation it can be shown that

which reveals an interesting property of Padé approximation: the approximate poles
depend not only on the actual poles, but also on the actual zeros. Even though both of
the actual poles are negative numbers, it is easy to find values of and z, which
would make positive, implying an unstable approximation to a stable system.

In higher order systems, such anomalies are not limited to the first order approxima-
tions, but can occur at any order. There exists a wealth of literature investigating this
problem in the control theory area, and there have been a variety of modifications of
Padé approximations aimed at avoiding unstable poles. For some references, see
[4.4]. Most of these methods, however, are not applicable to interconnect analysis
problems for reasons that are beyond the scope of this book.
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Although instability can occur at any order, fortunately in most cases it disappears by
increasing the order of the approximation. To demonstrate this consider a small RC
circuit. The poles and the corresponding residues from various orders of approxima-
tions are shown in Table 2.2 . It can be observed that the second order approximation
has one unstable pole with a non-negligible residue. This indicates that this instability
is not due to a numerical error but is a product of the Padé approximation. The unsta-
ble pole disappears in the third and forth order approximations,

4.5.3 Convergence

From the definition of Padé approximation, it follows that a qth order standard AWE
model is a Padé approximation of type [(q – 1)/q] to the original circuit function.
Such an approximation, therefore, has q – 1 zeros and q poles. However, the flexi-
bility of having any number of poles and zeros provides some advantages to over-
come some of the limitations of AWE. The entire array of approximations that are
possible with different choices of n and m is known as the Padé table:

The entire Padé table can be searched to find the best Padé approximation in terms of
accuracy, provided that it is a stable one, but this can be time consuming [4.4] [4.5].
Two practical popular techniques to search the Padé table are the diagonal sequence
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and the horizontal sequence. The horizontal sequence is usually applied to improve
stability. This technique is also known as moment shifting and addressed in
Section 4.6.3.

The diagonal sequence searches the Padé table along a subdiagonal, typically the sub-

Theorem 4.1: Let H(s) be a meromorphic function. Let and be two given posi-
tive numbers. Then exists such that any Padé approximation satisfies

for all in any domain except  for a set of areas less than

This theorem has several implications. First it proves that the diagonal Padé sequence
converges uniformly to the actual circuit function in a disc, except for some areas, or
sets of complex numbers. Furthermore, the theorem states that the total area of such
exceptional sets can be made arbitrarily small by increasing the order.

The exceptions in the above theorem correspond to either the poles of the original
function or the poles of the approximation. Since H (s ) becomes unbounded in the
vicinity of an actual pole, the inequality in the theorem cannot hold there. The fact
that the area of an exception set can be made decreasingly small implies that suffi-
ciently high order approximations contain a pole approaching the actual pole. In addi-
tion, due to uniform convergence, all of the approximations above a certain order
must contain that pole. This proves that the approximate poles corresponding to
actual poles appear persistently.

Another type of exception set centers around those approximate poles that do not cor-
respond to any actual poles; namely, defective poles. Since their areas can be made
exceedingly small, the theorem implies that the residues of the corresponding approx-
imate poles should vanish as the order of approximation increases.
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diagonal which has one pole more than zeros ([q – 1)/q]   type approximations), due
to its resemblance to actual circuit functions. The original form of AWE approxima-
tion is of this type. This type of approximation generally approaches the actual circuit
function as the order of approximation increases. This fact is stated in the following
theorem [4.6]. The theorem is given for the main diagonal sequence, but it is equally
applicable to the subdiagonal sequences.
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4.6 Moment-Matching Issues

In addition to the inherent Padé problems, AWE has limitations due to the numerical
computation noise that occurs during moment calculation and moment matching.
AWE suffers from these numerical noise problems because it employs an explicit
moment matching to find Padé approximation. Later in this book we will see other
methods to compute Padé approximations of the circuit responses. These methods
reduce the numerical noise related problems by directly computing the Padé approxi-
mation instead of applying moment matching.

4.6.1 Solving the Moment Matrix

A critical step in AWE is inverting the moment matrix in (4.31). The existence and
quality of a Padé approximation depends on the invertibility and condition of the cor-
responding moment matrix. Its condition number is a measure of the round-off errors
introduced during moment calculation. An ill-conditioned matrix can still be inverted
and it does not always mean that the approximation will be totally bogus, but it most
probably indicates that we are trying to extract more poles than those that are numeri-
cally prominent in the moments.

A. Scaling

The condition of the moment matrix can be improved to some extent by scaling the
moments. Consider a moment expansion
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The rate in which the moments change can be speculated from (4.34). If approxi-
mately represents the order of the magnitude of the dominant poles, we can claim that

The above equation indicates that the range of the numbers in a moment matrix can be
very big depending on the order of the dominant poles, thus making the matrix ill-
conditioned.

Introducing a new frequency variable such that the moments in (4.47)
become
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Obviously, frequency scaling keeps the rate of the change in the moments reasonable.
Such a scaling is achieved by multiplying all capacitance and inductance values by
After the approximation is obtained, we need to scale the frequency back by multiply-
ing poles and residues by

Although the exact locations of the poles are not known before the moment calcula-
tion, their order can be estimated from the circuit. Typically is a good scal-
ing value so that 1 GHz becomes 1 Hz and 1 ns becomes 1 second.

The amount of scaling can also be chosen as the ratio of the first two moments:

However, we must admit that scaling provides only minimal help and other steps
must be taken to solve the problem completely.

4.6.2 Dominant Pole Convergence

One of the important peculiarities of Padé approximation is the dominant pole con-
vergence property. It effects both stability and accuracy of the approximation, but can
also be used to improve the stability via moment shifting.

To explain the dominant pole convergence property, we start with the relation
between the moments and the poles and residues of the original circuit:

Assume that the poles are ordered with increasing magnitudes:
In order to see how the moments are effected from the individual poles, we rewrite
(4.51) in the form
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Now consider the contribution from one of the large poles, e.g., For the sake of
simplicity, we assume which implies Therefore, as the order
increases the portion coming from the pole decreases rapidly as compared to the
contribution from the smaller magnitude poles. This implies that higher order
moments contain little information about the larger poles, and the larger the pole the
less the contribution.

The moment convergence phenomenon can also be explained in terms of circuit
matrix-vector operations. Considering the state space formulation again, in terms of
the state matrix A, the moments are given by
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It is a well known fact from linear algebra that as j increases, the product
will converge to the eigenvector of the largest eigenvalue of the matrix [4.7].
Note that the largest eigenvalue of corresponds to the smallest pole of the circuit
response.

So how does this moment convergence property impact the quality of an AWE
approximation? First, it limits the accuracy of the approximation. Ideally one expects
more and more accurate approximations as the order is increased. However, since the
higher order moments do not contain additional useful information, including more
moments does not increase the quality of the approximation beyond some order. After
that order, which is typically somewhere from 6 to 12, AWE starts generating bogus
poles which have no effect on the accuracy. Furthermore, very often these bogus
poles appear with positive real parts resulting in unstable approximations.

For example, consider a simple 1-bit bus line with 15 RC sections. The frequency
domain plots of different approximation orders are shown in Figure 4.7. After the 6th
order, there is very little change in the Bode plot which means there will not be a
change in the time-domain response by using more poles. All of the approximations
up to order five in this example are stable, however the 6th, 8th, and 9th order approx-
imations contain bogus unstable poles.
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4.6.3 Moment Shifting

But the dominant pole convergence property can always be used to provide stability
for low-order approximations. The basic idea is to use higher order moments to obtain
the poles of the reduced order model. As discussed in the previous subsection, the
information contained in the higher order moments is limited to the dominant poles of
the actual circuit. Therefore, when the approximated poles are obtained from higher
order moments they are more likely to converge to the actual dominant poles. This is
an important property of Padé approximation and a more formal description is as fol-
lows:

Theorem 4.2: Let H(s) be regular in the domain except for a finite number
of poles inside the domain, of total multiplicity N. Then the Padé approximation

sequence with N fixed, converges uniformly to H(s) for except at

the poles of and H(s).
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Therefore, with a horizontal sequence, since the approximate poles converge to the
actual poles, the approximation is less likely to generate unstable poles. The details of
this procedure are as follows.

In Section 4.4, we defined Padé approximations with arbitrary numerator and denom-
inator orders. To find the poles of an [n/m] type approximation we need 2m
moments to be used in the linear equation system given in (4.40) and we use the set

Since the choice of n is arbitrary, any set of 2m
successive moments can be used to find m approximated poles. In conventional
AWE approximation, for instance, the first 2m moments, are
used.

This procedure is referred to as moment shifting in [4.8], where it is shown to be
equivalent to exciting the circuit with signals with less high frequency components,
and thereby eliminating the effects of the high-frequency poles which can cause insta-
bility. One shift, for example, corresponds to step input excitation. One shift often
yields a stable approximation, but if does not, shifting is allowed to continue until a
stable solution is obtained or until shifting is no longer possible due to numerical lim-
itations. Once the stable poles are found via shifting, their residues are obtained using
(4.35).

We should note that moment shifting does not necessarily guarantee stability, but it
has proven to be extremely reliable and useful in practice. To illustrate moment shift-
ing, consider a specific case: a single pole approximation. In conventional AWE, the
approximation takes the form

The coefficient is given by
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which implies
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In some RLC circuit responses it is possible for and to have the same signs,
and therefore unstable one pole approximations can occur. However, moment shifting
allows us to search for a stable first order approximation. For a general [n/1] Padé
approximation, the coefficient is given by Thus

So, n is increased until a stable pole is obtained. On the other hand, using (4.52) it
can be easily shown that the ratio of two successive moments converges to the most
dominant pole:

where it is assumed that is real. Thus the approximated pole given in (4.57) con-
verges to the actual dominant pole of the circuit as n increases.

For the bus example used in the previous subsection, the ratio in (4.57) for increasing
values of n is listed in Table 2.3 . The ratio rapidly converges to the most dominant
pole of that circuit, which is at -4.5879e+12.
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The rate of convergence to the dominant poles is established in the following theorem
[4.9]:

Theorem 4.3: Define and R such that where
are the actual poles of a circuit response such that Let

Let be the coefficients of the denominator polynomial of

Then

The quantity is a measure of the relative difference between and

According to the above theorem, the rate of convergence depends on Therefore,
the larger the ratio the faster the convergence to the actual poles.

4.6.4 Frequency Shifting

The dominant pole convergence property can be used to obtain stable low-order
approximations. The same property, on the other hand, limits the accuracy that can be
obtained from an approximation. As we have seen previously, the higher order
moments are dominated by the smaller poles, and consequently, beyond some order,
the quality of the approximation does not improve. As Theorem 4.3 implies, this lim-
itation is more pronounced if there is a big spread in the ratio of the poles. Frequency
shifting alleviates this problem to some degree.

To understand the shifting, refer to Figure 4.8. Initially the ratio is a very large
number which may cause numerical problems in AWE. Our objective is to reduce the
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ratio. This can be achieved by shifting all of the poles to the left or moving the jw
axis to the right, which is illustrated in Figure 4.8. As an example, consider a circuit
which has poles and If they are shifted by 1000 to the left,
and become -1001 and -2000, respectively, and their ratio reduces from 1000 to
approximately 2. Now the dominance of the smallest pole is decreased which in turn
causes the moments to contain more information about the initially non-dominant
poles.

In circuits, shifting is achieved by adding a parallel conductance to each capacitance
and a series resistance to each inductance as shown in Figure 4.9. Let us introduce a
new Laplace variable such that

where is the shift amount. In the shifted domain, we have
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The moments around can be calculated in a similar manner to stan-
dard AWE. Frequency shifting usually improves the quality of the approximation, but
it comes with additional computational cost. Because of the parallel conductances
added to capacitances, interconnect circuits can no longer be modeled as trees, and
therefore the methods such as path tracing cannot be applied efficiently. Perhaps, the
best way to compute frequency shifted moments is using modified nodal analysis for-
mulation as will be explained in the next chapter.

By applying the standard moment matching to shifted moments, we obtain the poles
and their residues in the form
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or shifting back

where and

An important practical issue with the frequency shifting is the amount of the shift or
the expansion frequency It must be obvious that it is impossible to find an optimal
shift amount, since this would require the original pole distribution on the complex
plane. Practically, the expansion point should be chosen such that from that point the
spread in the distances to the poles in the desired bandwidth should be minimized.
From this perspective, the shift amount should be comparable with the bandwidth.
For example, can be selected as:

where is the maximum frequency of interest. A shift much smaller than this may
not provide the effect that we seek. Importantly, an expansion too far away from the
origin can generate totally noisy poles because it may be difficult for AWE to find any
poles on which to converge.
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To demonstrate the effect of the frequency shifting, we consider a circuit with a dom-
inant first pole and compute four AWE approximation poles for various values of
The results are plotted in Figure 4.10. The first pole is not affected from shifting until

reaches 1e+12. But the quality of the second AWE pole is dependent on the
value. It is a good approximation to the second pole of the circuit when α is between
2e+9 and 2e+11, and it is almost random elsewhere.
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4.6.5 Expansions about

Another issue with AWE is that using expansions about s = 0 would produce large
time-domain errors near the initial time point (t = 0). This is due to the facts that the
moments obtained at s = 0 contain mostly low-frequency information and that initial
time-domain response near t = 0 is mainly determined by high-frequency behavior
of the circuit. The accuracy near initial time, therefore, can be improved by including
circuit information about to the approximation [4.10]. For this consider the
power series expansion of the circuit function around

The derivatives can be computed recursively similar to the moment computation.
This can be seen by considering the power series expansion of the state vector X(s)
around
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The coefficients of the above expansion are called Markov parameters [4.11]. They
are also known as derivatives in the literature because they are related to the time
derivatives of the impulse response at t = 0:

where From (4.5) it follows that

A . Mixed Moment and Markov Parameter Matching

Previously, to find the coefficients, and in (4.24), of the reduced model, we
used the first 2q moments of the original circuit. Alternatively, the reduced order
model can be constructed by matching the leading r moments and the leading 2q – r
Markov parameters:
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This 2-point matching yields the following linear equation set for the

The are then computed as

and

Derivatives have proven to be useful in piecewise linear transient simulation since it
is important to match initial conditions accurately [4.12]. In general, however, the
advantages over pure moment matching are not obvious. Also, it is not clear how
many derivatives to match. Perhaps the most useful technique is to include just the
first derivative to match the initial conditions at t = 0.
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4.6.6 Partial Padé Approximation

After trying all of these stabilizing methods we may still have unstable poles or we
may want to proceed with the original set of poles of which some are unstable. In
these cases, we simply discard all of the unstable poles. We then find the residues of
the stable poles by solving the residue equation given in (4.35):

The order of the approximation is now where

In this case, we match the first moments exactly and since the poles are calculated
using the first 2q moments, we approximately match 2q moments. Thus, the
approximation is known as partial Padé approximation [4.13].

4.7 Multi-point AWE Methods

To overcome the accuracy limitation of the single-point moment matching, a number
of multipoint AWE algorithms have been proposed. In these approaches, a merged
AWE approximation is formed from multiple expansion frequencies.

A general technique to include multiple shift frequencies in an AWE approximation is
described in [4.14]. The process begins by obtaining an AWE approximation with the
first shift frequency. A merged approximation is formed by repeatedly deflating each
subsequent set of shifted moments by the existing approximation. The deflated
moment set is used to form an AWE approximation -- this set of poles and residues is
added to the previous approximation as a corrector. This process continues until the
energy contained in the deflated data set is sufficiently small.

In transmission line circuits, the responses cannot be completely characterized by
low-frequency poles. The high-Q poles close to the imaginary axis poles also affect
the signal propagation. Therefore, for these types of circuits, expansions on the imag-
inary axis yield more accurate approximations.
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Such a technique, called complex frequency hopping (CFH) [4.15], first performs
expansions about s = 0 and If there exist poles that appear in both of
these expansions, then the search is considered complete. Otherwise, more frequen-
cies are selected using a binary search, and expansion is carried out until each inter-
mediate frequency has at least one pole in common with the frequency above and
below it.

Another approach is proposed in [4.16]. In this method, moments from different
expansion points are matched to a single transfer function. A qth order approximation
matches a total of 2q moments form different frequencies, hence it is a multipoint
Padé approximation [4.3] to the original circuit function.

4.8 Summary

Asymptotic waveform evaluation (AWE), with its many extensions for controlling
stability, provides an effective moment matching approximation methodology for
interconnect circuits. Although it has clear limitations and problems, we believe that
AWE is the best technique for waveform analysis for on-chip interconnection circuits
--- particularly those that are modeled as RC (or RL) circuits. Even for most on-chip
RLC interconnect circuits, AWE works very well. However, as the strong coupling
and transmission line effects start to dominate the behavior of the waveform propaga-
tion, AWE, as a single point moment matching method, suffers from accuracy and
stability problems. Circuits with strong coupling and reflection effects generally
require more poles than AWE can provide.

Although we addressed the stability issues of the reduced order models we have not
considered the passivity. For linear circuit analysis, passivity is not a concern. But
when reduced order linear models and nonlinear devices are combined together in a
circuit simulation environment, for a stable simulation, the reduced order blocks have
to be passive too. In the next chapter, we present the PRIMA method which guaran-
tees passivity and stability. Furthermore, PRIMA uses Krylov vectors instead of
moments and therefore does not suffer from the numerical problems that occur in
AWE.
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CHAPTER 5 Moment Generation

In Chapters 2 and 3 we introduced moment-based delay metrics, and in Chapter 4 we
presented Asymptotic Waveform Evaluation which uses moments to find Padé
approximations of circuit responses. In Chapter 6 we describe Krylov subspace based
order reduction methods, such as PRIMA, which are based on Krylov vectors. These
Krylov vectors can be viewed as modified moments for numerical conditioning. The
common thread through all of these methods are the moments and the efficiency with
which they can be calculated.

This chapter summarizes some of the efficient approaches for moment computation in
linear circuits. We first describe a path tracing algorithm for tree-like interconnect
structures, then a more general explanation of moment generation via the modified
nodal analysis (MNA) formulation.

5.1 Calculating Moments in Tree-Like Circuits

In Section 4.2, we demonstrated that moment calculation is performed via successive
analyses of a dc equivalent circuit model whereby capacitors are replaced by current
sources and inductors are replaced by voltage sources. It follows that the primary fac-
tor for guaranteeing efficient moment calculation is to employ a fast dc analysis algo-
rithm. In general, any circuit analysis technique can be used; however, most



interconnect model topologies follow a tree like structure which make them ideal for
path tracing methods.

In this section, we first provide a brief introduction to the graph theory and then
describe the path-tracing algorithm as employed in RICE [5.1]. The algorithm has an
O(n) complexity for RLC trees, and when combined with a circuit compaction
method it efficiently handles deviations from strict tree topologies with little degrada-
tion in runtime performance.

5.1.1 Circuit Graphs and Incidence Matrix

A graph G = (V, E) consists of a set of objects called verti-
ces or nodes, and another set of edges or branches, such that
each edge is identified with an unordered pair of vertices.

Branches with ends that fall on a node are said to be incident at that node. The number
of edges incident on a node i is the degree of node i. A graph with branches that are
oriented is called an oriented or a directed graph. Electrical circuits are mapped to
oriented graphs. Figure 5.1 shows an example of a directed graph with four nodes and
six branches. Branch 3 is incident on nodes n1 and n3.

A loop is a connected subgraph of a graph at each node of which are incident exactly
two branches of the subgraph. Clearly, the algebraic sum of branch voltages around
any loop of a circuit is zero (as we will see later, this statement is an alternative way
of expressing KVL). In Figure 5.1, {1, 5, 2} is a loop, as is {3, 2, 5, 6}.
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A tree is a connected subgraph of a graph that contains all the nodes of the graph but
no loops. In Figure 5.1, {1, 5, 6} is a tree, as is {3, 2, 5}. {1, 3, 6} is not a tree
because it contains a loop, and {1, 5} is not a tree because it does not contain node
n3 . Branches comprising the tree are called tree branches. The complement of the
tree subgraph is called the cotree. Branches comprising the cotree are called cotree
links or just links. Note that a graph with (n + 1) nodes has a tree with n branches.

A. Incidence Matrix

For an (n + 1) node, b branch graph without self-loops, the complete incidence
matrix rectangular matrix whose elements have the fol-
lowing values:

For the graph in Figure 5.1,

Note the following:
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Every column has a +1 and a –1.

The degree of a node i is the number of nonzeros in row i.

The sum of all the rows is a row with all zeros, implying that the rows are linearly
dependent.

For an (n + 1) node b branch connected graph, the rank of is n [5.2].

The reduced incidence matrix A of a graph is obtained by eliminating any row i from
its incidence matrix. The rank of A is n and node i is called the datum (or ground)
node. In electrical circuits, one node needs to be designated as a reference node
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(ground) and the voltage of all other nodes is expressed in terms of this reference
potential.

KCL can be conveniently written in terms of the reduced incidence matrix as follows:

Again, the order of nodes in the vector of node voltages in is the same as the order
of rows in A and the order of branch voltages in is the same as the columns of A.
The ith equation of (5.3) basically asserts that

5.1.2 The Basic Path-Tracing Algorithm

Before describing the algorithm, we first define our notion of the tree-like topology. If
a spanning tree of the circuit model can be constructed that includes all voltage
sources, inductors, and resistors and excludes all capacitors and current sources, then
it is strictly tree-like. It is obvious that most interconnect circuit models fall into this
category.

By definition of a strictly tree-like interconnect circuit, all capacitors must be links,
while all resistors and inductors must be tree branches. An example of an RLC inter-
connect and its spanning tree are shown in Figure 5.2. A spanning tree for a circuit
can be efficiently constructed in linear time using a standard algorithm such as that
found in [5.3].
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Equation (5.2) assumes that the order of the branches in the columns of A is the same
as the order of branches in the column vector of branch currents, Clearly, each row
represents the branches incident on that node, so when combined with the branch cur-
rents, equation (5.2) simply states that the sum of currents leaving (entering) every
node is zero.

KVL can also be conveniently written in terms of the reduced incidence matrix as fol-
lows:



Calculating Moments in Tree-Like Circuits

Now consider the dc equivalent circuit in Figure 5.3 which will be used to calculate
the moments of the circuit shown in Figure 5.2. Once the capacitor-current sources
and inductor-voltage sources are assigned their values from previous moment calcula-
tions, the tree may be traversed to solve for the currents and voltages of the dc circuit.
One complete traversal of the circuit graph is required to compute all branch currents
and another traversal is required to yield all node voltages.
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Current calculation: Beginning at any leaf node of the tree, each node is visited by
performing a reverse depth-first traversal of the spanning tree. As each node is vis-
ited, its incident tree branch and link currents are summed, excluding the current of
the tree-branch from the predecessor node. This sum becomes the total current for the
tree branch from its predecessor node. The use of reverse depth first traversal guaran-
tees that a node is not visited until the currents for all branches from descendant nodes
are known. The process is completed when the root node is encountered. For each
inductor tree branch, the resulting current is the new inductor moment to be used in
the next moment generation. The currents of tree branch resistors and their corre-
sponding resistance values are then used to compute the resistor branch voltages.

Voltage (moment) calculation: Beginning at the root node, a forward depth first tra-
versal of the tree is performed to visit each node. The voltage (moment) of each node
is computed by subtracting the voltage of the predecessor tree branch from the prede-
cessor node voltage. The use of forward traversal guarantees that a node is not visited
until the voltage of its parent node is known. The node voltages are then used to com-
pute the voltage of each capacitor, which becomes the new moment for each capacitor
used in the next moment generation.

We now present a circuit-theoretic explanation of the path tracing algorithm. First we
show that the application of the reverse path trace is equivalent to solving the KCL
equations where A is the reduced incidence matrix described in Subsec-
tion 5.1.1.

Consider a circuit graph with n nonground nodes and b branches, and assume that a
spanning tree of the graph is constructed. Partitioning the branch current vector
we can write the incidence matrix equation in the form

where the subscripts t and l represent the tree branches and links, respectively. Manip-
ulating (5.5) we obtain
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It is proven that the n × n matrix is always nonsingular [5.3], that is, it is invert-
ible. Furthermore, is always upper-triangular since tree branches are ordered as
they would be encountered during a forward traversal of the spanning tree. The
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n × ( b – n ) matrix maps the link currents to the nodes, that is, the ith element of
the vector is the sum of the currents of the links that are incident to the ith node.
Therefore, the tree branch currents can be solved with a simple back substitution. This
is, in fact, what is achieved during the reverse path trace. The A matrix, however, is
not explicitly built. The construction of the circuit graph and the selection of the span-
ning tree correspond to construction of A, and a depth first traversal of the tree is
equivalent to ordering A .

As an example, consider the dc circuit shown in Figure 5.3, for which (5.6) becomes

where we have entered the result of the product directly on the right hand side
of the equation. Note that, although obvious from the circuit schematic in this case,
the row ordering in (5.7), or more precisely the node ordering in Figure 5.3 which is
required for path tracing, would be the result of a depth first search of the tree.

Once the tree branch currents are known, we then calculate the resistor branch volt-
ages. Together with the inductor-voltage source and independent voltage sources they
form the tree branch voltages

where are the vector of independent voltage sources and
inductor-voltage sources, respectively, and is the tree branch currents from the
previous moment generation.

In (5.8), R and L are the resistance and inductance matrices whose nonzero diagonal
entries are the branch resistances and inductances, respectively. The nonzero off-diag-
onal entries in R and L represent the current-controlled voltage sources and mutual
inductances, respectively. For the example circuit of Figure 5.3, R and L are diago-
nal, and (5.8) becomes

Moment Generation 159



Moment Generation

The application of the forward path trace is equivalent to solving the KVL equations
With partitioning

is guaranteed to be lower-triangular, therefore a forward substitution can be
applied to solve the node voltages

The link voltages are calculated from the node voltages as

We then update the capacitor-current source values for the next generation of
moments
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For example, for the circuit in Figure 5.3, (5.11) becomes
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where is the vector of independent current sources and C is the diagonal capaci-
tance matrix. Note that C is always diagonal even in the presence of coupling capac-
itances.

We should point out that a dc circuit need only be (actually) path traced one time
regardless of the number of moment generations required. Since neither the circuit
graph nor spanning tree changes between each generation, the nodes will be visited in
the same order during each moment generation. Moreover, the amount of information
at each node (links and tree branches) does not change between generations. This sug-
gests that instead of executing an actual traversal of the graph and tree for each analy-
sis, the traversal can be performed only one time and we can vectorize the tree branch
and link elements in order of a depth-first traversal of the spanning tree.

5.1.3 Extension for Resistor Loops

A particularly important non-tree circuit topology that often appears for interconnect
structures is one containing resistor loops or links (R-loops or R-links). For example,
power/ground distribution circuits are often implemented as a grid. Similarly, some
clock lines are routed as a mesh.

Resistors that cause loops in the graph are classified as resistor links during the con-
struction of the spanning tree. The resistor links are undesirable since their currents
are not known a priori. This means we cannot use (5.6) to calculate the tree-branch
currents.

A. Branch Tearing

One way to handle link resistors in the AWE dc circuit is by branch tearing or Kron’s
method [5.4] [5.2]. Consider a circuit with a single link resistor as shown in
Figure 5.4. Assume that the circuit is solved to obtain the open circuit voltage,
across the open link resistor. From Kron’s method, the current that would flow
through the link, were it not opened, is

where is the Thevenin resistance and is the link resistance. is obtained
by summing the resistances of the tree branches that form a fundamental loop with the
link resistor. For the example of Figure 5.4 it is equivalent to
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The link resistor is then replaced by a current source of value thus restoring the
tree structure of the dc equivalent circuit and allowing the circuit to be solved by path
tracing. Note that only the tree branches that are in the fundamental loop are affected
by In the case where there are multiple loops, if the loops are isolated, we can
solve the R-link currents by applying the above method to each loop separately.

If the loops are not isolated, however, the problem becomes more complicated, but
the approach is still basically the same. We need to calculate the current value for
each R-link that would flow were they not opened. Therefore, we need to extend
(5.15) to the general case of m R-links. The Kron method also supports this case,
where and become vectors of size m and is replaced by Z as fol-
lows:

where F is the m × N fundamental loop/cutset matrix [5.2], is the N × N diago-
nal matrix of the tree-branch resistors, and is the m × m diagonal matrix of link
resistors, and, N and m are, respectively, the numbers of tree branch and link resistors.
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The vector is the torn or open-circuit voltages across the torn branches, which are
easily obtained by an initial path tracing.

Solving the system for the R-link currents, requires the inversion of Z, which is
m × m and symmetric for resistive circuits but can be very dense. This, of course,
depends on F, which in turn depends on the spanning tree that is selected for the cir-
cuit graph. Once again, we emphasize that the matrix F is not explicitly constructed.
Instead, a path tracing algorithm can be used to build Z directly from the circuit
graph [5.1]. Another path tracing yields the open-circuit voltages (i.e., with the R-
links not present), and solving (5.16) yields the R-link currents. Finally, these currents
are substituted for the torn branches and the circuit is path traced one last time to
obtain the final circuit solution.

Both the construction of Z and its inversion can be expensive. Empirical results sug-
gest that this method is suitable for circuits with few resistor loops (m < 100), but
tends to be overwhelming for circuits containing a large number of loops [5.1].

B. Solving by Circuit Compaction

A more efficient way to handle link resistors in the AWE dc circuit is by circuit com-
paction [5.5] [5.1]. The goal of this method is to formulate a smaller equivalent circuit
that may be solved to obtain the resistor-link currents. The circuit is reformulated
such that the original resistor loops are left intact, but Norton-equivalent subcircuits
are substituted for remaining sections of the circuit between the loops. These Norton
equivalents are easily constructed during the initial path tracing with R-loops opened
(R-links removed).

The compaction scheme replaces all long tree branch sections between successive R-
loops with a super tree-branch (STB). This is demonstrated in Figure 5.5. The STB
resistance is simply the sum of all resistances between the ends of the STB. The
Thevenin voltage is the voltage difference across the STB with all R-links opened.
This is illustrated in the fourth sub-figure in Figure 5.5 where the Thevenin voltage is
V(x) – V(y) and the Thevenin resistance is The total downstream current

through the STB is the sum of the capacitor current sources, and the unknown R-
link currents. The capacitor current will be known after the initial path tracing.

A Norton equivalent is used instead of a Thevenin model to facilitate the use of nodal
analysis to solve the compact circuit. An initial path trace is required to calculate the
Norton resistances. The starting and ending nodes of the STB are retained in the com-
pact circuit equivalent, while the intermediate nodes are deleted. The folding up of the
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current sources shown in Figure 5.5 is allowed by the source transformation [5.6] and
occurs naturally during the path trace. Conceptually, the values of the current sources
are modified so that the net current for each branch is unchanged. Figure 5.5 is used
only to illustrate the concept. We do not actually modify the current values, but we
jump immediately to the model in the last sub-figure, which is easily obtained during
path tracing.

What may not be immediately obvious is how the compact circuit can be efficiently
formulated. The first step is to decide which nodes in the main circuit must be
retained in the compact circuit. The most obvious nodes in the circuit that must be
retained are those with one or more incident resistor links. Other nodes that must be
retained are those that root two or more subtrees, each containing at least one resistor
link. This requirement guarantees that the mutual effects of resistor links on one
another are the same in the compact circuit as in the main circuit. A node that roots
two or more subtrees, where only one subtree contains R-links, need not be retained
since the effects of these subtrees will be reflected in the Norton currents. Likewise, a
node that roots two or mores subtrees with no resistor links may be discarded. After
determining the nodes in the compact circuit, the Norton resistances may be found by
summing all resistor values between mapped nodes. This is accomplished with a sin-
gle depth first traversal of the spanning tree.

An example of circuit compaction is illustrated in Figure 5.6. It is assumed that
Figure 5.6(a) is the AWE dc circuit obtained from an RLC circuit. It has two R-links:

and Note that the compact circuit contains only four of the original 11 nodes.
Node 5 was retained in the compact circuit since it roots two subtrees that contain R-
links. The topology of the compact circuit does not vary between moment genera-
tions, but the currents of the Norton sources, shown in Figure 5.6(b), must be recom-
puted between each generation. This is accomplished with a single path trace.

C. Formulating the Compact Circuit Equations

The solution of the compact circuit is obtained by formulating and solving the node
voltage equations

where is the n × n node-conductance matrix for the compact circuit, is the
vector of compact node voltages, is the vector of the sum of Norton currents at
each node, and n is the number of nodes in the compact circuit.
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In (5.18), the matrix is symmetric and positive-definite, thus allowing a
Cholesky factorization [5.7] to be performed. This accomplishes the decomposition

which is inherently more efficient than LU decomposition. Cholesky factorization is
more efficient than LU for two reasons. First, due to symmetry, only half of the usual
number of floating-point operations are required. Secondly, no pivoting is required,
thus allowing the use of very efficient matrix storage and ordering algorithms. For
example, RICE uses the reverse Cuthill-McGee technique for ordering the equations
and a vector-based format for storing and manipulating the matrix [5.7].
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D. Obtaining the Final Solution

The formulation of the compact circuit and associated equations and decomposition is
a one-time cost associated with circuit setup and is performed before any moments
are computed. To generate a set of moments, the circuit is initially solved via a path-
tracing as R-links opened. Next, the Norton currents are calculated, summed to the
right hand side of (5.18), and then a Cholesky forward and back substitution yields
the compact circuit node voltages. The node voltages in the compact circuit corre-
spond to voltages in the original circuit, so they may be used to directly compute the
current for each R-loop. These currents are substituted into the original circuit and a
second path tracing is performed to produce the final dc solution.

5.1.4 Extension for Floating Nodes and Inductor Loops

There are some interconnect models in which floating nodes or loops of inductors
may be present. A floating node has no dc path to ground, thus causing a pure cutset
of capacitors in the circuit graph. A loop of inductors is caused when a closed path of
inductors is specified with no intervening resistance or capacitance. These problems
can be solved by the application of charge and flux conversation, respectively [5.8].
Also, it is desirable to solve these types of circuits in a manner that is decoupled from
the solution of resistor loops, thus preserving the efficiency of the R-loop solution.

A. Floating Nodes

For an interconnect model, a floating node suggests that two interconnect nets are
capacitively coupled and one net has no active driver. This may be true for a line that
is driven by a three-state device in its high-impedance state or for an interconnect cir-
cuit model that is constructed to measure clock feedthrough.

Consider the circuit shown in Figure 5.7(a). Node 4 is a floating node since every
path from it to ground contains a series capacitor. The dc equivalent AWE circuit is
shown in Figure 5.7(b) where all the capacitors are replaced by capacitor-current
sources. As apparent from the figure, the circuit contains an illegal cutset among

and which causes a problem. First, if the sum of the currents is not zero, then
KCL is violated at Node 4. Therefore, we need a consistent equation,
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However, even if the KCL were satisfied, it would be a redundant equation and the
voltage values at Node 4 and Node 5 would be undefined. Thus we need to supple-
ment the circuit equations with an additional constraint to resolve the voltages at these
nodes but we still must keep current source cutset equation as consistent and redun-
dant.

Since charge conversation must hold for this circuit just as it must be for all dc cir-
cuits, we can use the following equation to supplement the circuit equations [5.8]:
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Now let us remember that when solving for the (k + 1 )th set of voltage moments, the
current source corresponding to capacitor is set equal to the product of and
capacitance voltage from the kth set. Therefore using the charge conversation equa-
tion to calculate the kth set of moments guarantees that the equations for the
(k + 1 )th set of moments will be consistent.

In nodal analysis the charge conversation equations are simply substituted for the
redundant current source equations as described in [5.2]. We now discuss how we can
use charge conversation equations to resolve the floating node situation in path trac-
ing.

In path tracing, when an illegal cutset of capacitors is formed, it causes one of the
capacitors to be replaced in the spanning tree. Then, one charge conversation equation
is formulated for each tree-capacitor. Thus, for a circuit with m tree-capacitors, a
m × m linear system of equations results. For example, consider the example in
Figure 5.7 where is selected as the tree-capacitor. In the AWE circuit, it is
replaced by a (voltage-controlled) voltage source and the voltage across it can be
resolved by solving the following set of equations:

Note that the first equation is the charge conversation equation given in (5.21). The
last two KVL equations are easily eliminated using substitution and a single equation
is obtained for the tree capacitor voltage:

where and are, respectively, the right hand sides of the second and
third equations in (5.22), and they are calculated during path tracing. By combining
the equations for m tree-capacitors we obtain an m × m system equations. Note that
some of these equations can be coupled.

This system is formulated and LU-factored prior to computing any moments. Compu-
tation of moments requires two path traces. In the initial trace, the branch currents are
calculated and their values do not depend on the tree-capacitor voltages. A subset of
the results of this path trace are used to setup the right hand side of the m linear equa-
tions. Next, these equations are solved via a forward and back substitution step,
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resulting in the actual tree-capacitor voltages. Finally, these voltages are substituted in
the place of the zero-values and the circuit is path traced a second time to get the final
dc solution.

B. Loops of Inductors

Another situation that can occur in certain interconnect models is inductance loops.
This type of situation arises, for example, in the modeling of backplane or pc-board
interconnections where two devices drive a line simultaneously and the metal
between them is modeled as a lossless inductive line.

The solution for loops of inductors is simply the dual of the floating node problem. A
loop of inductors will cause one of the inductors to be excluded from the spanning
tree and create an inductor link. Since inductors in AWE are modeled as voltage
sources, this again presents a problem. There is no well defined dc solution for a loop
of voltage sources. In this case, flux conversation must be applied to resolve the
unknown current of each inductor link.

C. Mixing Loops of Resistors, Loops of Inductors, and Floating Nodes

If a circuit contains a combination of the three types of troublesome elements, then
they must be solved in a specific order to guarantee a valid solution. Link inductors
must be solved first, followed by tree capacitors, and then link resistors. A loop of
inductors can only contain other inductors and a cutset of capacitors may contain only
other capacitors, so these do not affect each other and are not affected by changes of
current in loop resistors.

5.2 Calculating Moments Using MNA

Tree structured interconnect circuits can be analyzed very efficiently using path trac-
ing. With some extensions, such as compaction and factorization, path tracing still
works very well when the circuit model contains non-tree elements such as resistor
links. However, as the circuit becomes more and more non-tree structured, the path
tracing method loses its efficiency and in the limit it becomes equivalent to a nodal
analysis. In this section, we first provide a formal derivation of modified nodal analy-
sis (MNA) formulation and then describe moment generation in terms MNA formula-
tion.
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5.2.1 Modified Nodal Analysis (MNA) Formulation

MNA [5.9], which is an extension of the nodal analysis method, can handle all types
of circuit elements, and is well suited to computer applications. Although there exist
more efficient circuit formulation techniques for specific circuit topologies, MNA is
very easy to implement and equally suitable for both frequency and time-domain
analyses. Because of these nice properties it constitutes the standard formulation
method for computer-based circuit analysis [5.10] and is used in general purpose cir-
cuit simulators such as SPICE.

Consider a linear circuit which consists of resistors, inductors, capacitors, and inde-
pendent voltage and current sources. The current and voltage vectors of the circuit
can be partitioned such that the matrix KCL equation, defined in (5.2), can be written
in the form

where the subscripts g, c, l, v, and i, respectively, represent branches containing resis-
tors, capacitors, inductors, voltage sources, and current sources.

With this partitioning the KVL equations become
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where is the vector of all node voltages.

The branch constitutive relations for the first three partitions are as follows:

Denoting
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Here G, C, and L are matrices whose elements are the conductance, capacitance,
and inductance values of each element, respectively. The equations from (5.24) to
(5.32) are the required set of circuit equations to solve the circuit. Modified nodal
analysis (MNA) formulation combines these equations in a more compact form by
eliminating as many unknowns as possible. Rewriting (5.24) and substituting (5.30)
and (5.31) for and we obtain

Branch voltages and are eliminated by substituting (5.25) and (5.26):

Substituting (5.27) into (5.32),

Combining (5.34), (5.35), and (5.28), we obtain the MNA formulation
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the MNA matrix equation can be represented in the compact form

where X is the solution vector containing node voltages appended by inductance and
voltage source currents,

and b is the excitation vector,

Although we have showed the derivation of MNA formulation only for RLC circuits,
any type of linear(ized) element can be inserted into MNA formulation and the form
in (5.38) is still retained. Moreover, its implementation actually does not require any
graphs or incidence matrices. MNA matrices can be built by inspection on a branch-
by-branch basis by stamping the elements [5.10].
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Consider the example circuit shown in Figure 5.8. The branch numbering is modified
so that the partitions in the branch vector are ordered as defined in (5.24). From
Figure 5.8 and (5.24), we have

The matrices in branch constitutive relations are

where and

The MNA matrices and vectors become
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5.2.2 Calculating Moments Using MNA

Consider a linear circuit and its MNA formulation of the form

where G, C, X, and b are defined in (5.37), (5.39), and (5.40).

Now assume a moment expansion for the solution vector X:

Inserting (5.48) into (5.47), we obtain

or

The above equation implies that the moment vectors can be calculated recursively as

with

Equation (5.52) is the dc solution of the circuit. For higher order moments the same
matrix equation is solved with a different input vector. To solve (5.52), first an LU
decomposition is performed for the matrix G,

where L and U are, respectively, lower and upper triangular matrices. Then using a
simple forward substitution an auxiliary vector is obtained:
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Then the solution vector is obtained with a back substitution as

or
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Once the LU factors of the matrix G is obtained for the first moment, the higher order
moments can be calculated with simple forward and back substitutions.

Using sparse techniques it has been shown that the cost of finding LU factors is
for matrices that typically arise in circuit simulation, where n is the

matrix dimension [5.11]. For typical interconnect circuits, the matrix G is known to
be extremely sparse having only few nonzero elements at each row. It has been
reported that by suitably tuning the sparse matrix techniques for tree type interconnect
circuits, the cost of LU decomposition can become very close to O(n) [5.12].

The choice of path tracing or matrix factorization depends on the circuit topology and
the number of resistor links. If it is known that G is symmetric positive definite,
which is the case in RC circuits with current source excitations, then Cholesky factor-
ization can be used for further speedup over LU decomposition. In general, however,
path tracing has less computational overhead when compared with either LU or
Cholesky factorization.

One situation for which matrix factorization is preferred over path tracing is when
there are numerous grounded resistors. When frequency shifting is applied to improve
the stability and accuracy of moment matching, the dc equivalent moment-generation
circuit represents capacitors by Norton equivalents, thereby establishing a resistor
from every node to ground for a typical interconnect circuit.

A. Calculating Frequency-Shifted Moments

We introduce a new Laplace variable such as

where is the shift amount. Then, the MNA equations become
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The moments around can be calculated in a similar manner to stan-
dard AWE. The only difference is that now the matrix G in (5.51) and (5.52) is
replaced by However, since C may have nonzero entries where the entries
of G were zero, the sparsity of the matrix is often destroyed by frequency shifting.
This may diminish the computational efficiency of the LU factorization.

On the other hand, frequency shifting has one advantage; it breaks the capacitance
cutsets and inductance loops, which would otherwise have rendered the matrix G sin-
gular.

5.3 Calculating Moments in Transmission Line Circuits

So far, we have explained how to calculate moments for linear lumped circuits. We
now describe a method for moment generation for general linear circuits; namely
those which can contain distributed elements. Consider a circuit and its system equa-
tion

Moment Generation

with an output function

If the circuit has transmission lines and retarded coupling elements in addition to
lumped components then its system matrix includes transcendental functions and is
regarded as an infinite-dimensional system. The circuit functions for an infinite-
dimensional systems have infinite number of poles and they cannot be expressed as a
ratio of two polynomials of finite degree. However, they can be approximated with a
finite order system using AWE. For this we first need the moments of H ( s ) .

Consider the Taylor series expansion of the system matrix

We wish to compute the moments of the solution vector X so that we can obtain the
moments of H(s). Inserting (5.61) into (5.59) and expanding X, we get
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Therefore, the moment computation needs only one matrix decomposition similar to
the lumped circuits.

Once the moments of H(s) are computed, a reduced order model, can be found
by applying moment matching as described in the previous chapter.

5.3.1 Transmission Lines

A general way to include a transmission line system into the MNA formulation is to
treat it as a linear N-port system with a frequency-domain terminal equation in the
form
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Then it is easy to show that the moment vectors can be computed recursively as

where and are the s-domain terminal voltages and currents, respectively. The
matrices A and B are described in terms of the per-unit-length line parameters and
are usually exponential type functions of s. With this approach, arbitrary number of
N-port transmission lines can be combined with linear lumped elements to obtain a
system matrix equation in the form of (5.59) for the entire circuit.

Obviously, the most important step in the order reduction of linear circuits containing
transmission lines is the determination of the coefficients given in (5.61) which
requires the derivatives of A and B. For this purpose, a method, which is called
matrix exponential moment method, is proposed in [5.13]. It is generalized for disper-
sive transmission lines in [5.14].

Instead of applying order reduction to the entire circuit which may contain transmis-
sion lines, we can also treat each transmission line system separately. Such an
approach, which combines AWE with the method of characteristics, is proposed in
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[5.15]. The “pure delay” factors are computed exactly and extracted from the propa-
gation functions of the lines. The remainder responses can be viewed as containing
the attenuation and dispersion behavior of the propagation responses. A conventional
moment matching is used to accurately approximate the propagation response without
delay.

5.4 Summary

In this chapter we described efficient methods for generating moments for linear cir-
cuits. Among these methods the path-tracing algorithm achieves the optimum effi-
ciency for RLC tree-like interconnect structures, and for many interconnect
topologies that contain resistor loops. The MNA formulation, in addition to being
general and very simple to implement, can provide excellent runtime efficiency when
combined with sparse matrix techniques and special ordering algorithms.
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CHAPTER 6 Passive Reduced-Order
Multiport Models

Circuit level simulation of interconnects with their (non)linear drivers and receivers
can be runtime costly due primarily to the size of the linear interconnect portion of the
model. Considering that the number of interactions between interconnect and drivers/
receivers (ports) will be small compared to the number of interconnect elements, it is
often appropriate to partition the linear interconnect portions from the drivers and
receivers. The interconnect can then be macromodeled using an efficient order reduc-
tion technique. These macromodels are then combined with other linear blocks and
nonlinear components in a circuit simulation environment.

This chapter focuses on the macromodeling part of the problem. We first present lin-
ear multiport Y-parameter models, followed by various Krylov subspace based projec-
tion methods for their reduced order modeling. Among these methods, PRIMA
guarantees stability and passivity in addition to providing superior accuracy.

6.1 Multiport Modeling

Consider a simple interconnect problem which consists of a driver, a load, and an
interconnect between them. The entire circuit can be partitioned into linear intercon-
nect and (non)linear driver and receiver blocks as pictured in Figure 6.1. Notice that
the only connection between the interconnect block and the outside world is a few ter-
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minals. If we are not interested in what is happening inside the block, the only infor-
mation we need to know about it is the current-voltage characteristics at the terminals.
This section concentrates on effective modeling of such interconnect blocks. But first,
we give a few definitions.

A terminal is a node that is accessible from outside of the block. For each terminal
there is also a reference terminal, which provides the return path for the current. A ter-
minal together with its reference is called a port. Usually the reference terminal is the
ground node. A circuit which is represented with its terminals or ports is called a mul-
tiport. A general representation of a multiport is shown in Figure 6.2. Such a circuit
can be characterized in terms of one of the following interchangeable descriptions: Y
(admittance), Z (impedance), H (hybrid), S (scattering), or transmission parameters.
Since it is more suitable to the MNA formulation, most of the time in this chapter we
use Y-parameter representations. Definitions of Y and Z parameters are given next.
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6.1.1 Y and Z parameters

Consider the multiport shown in Figure 6.2. Its port behavior can be described by a
matrix equation in the form

or

where Y is the admittance matrix and, and are the port voltages and currents,

respectively. To determine we apply voltage sources to all ports and short-circuit

all of them except the jth. We then measure the currents at the ports. Only the jth col-
umn of the matrix (6.2) remains, yielding

or

Similarly, the Z parameters are defined as

where Z is the N × N impedance matrix. To determine we apply current sources

to all ports and open-circuit all of them except the jth. We then measure the voltage
across the ith port.

The Y and Z parameters are subsets of the more general so-called matrix transfer
functions. Given the linear circuit with input/output ports are identified, the matrix
transfer functions, and the Y and Z parameters in particular, can be obtained in a sys-
tematic manner using a suitable circuit formulation technique such as the MNA for-
mulation.
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6.1.2 Circuit Formulation for Macromodeling

Consider a multi-input multi-output linear circuit and its time-domain MNA descrip-
tion:

For a formal derivation of the MNA formulation, refer to Section 5.2. Here we pro-
vide a brief definition of the terms in (6.6). Let n be the total number of MNA vari-

ables, and, and be the number of inputs and outputs, respectively. Then,

G and C are the n × n MNA circuit matrices, representing the conductance and
energy storage elements, respectively;

x is the vector of MNA variables of size n ;

is the vector of input excitations of size

B is the source connectivity matrix mapping to the MNA vector x ;

is the output vector of size ;

L is the probing matrix mapping to the MNA vector x ;

Now let us define the matrix transfer function H(s) as

where and are the Laplace transforms of and respec-
tively.

From (6.6) and (6.7) it follows that

Next assume that G is invertible. Defining
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we can rewrite the double matrix MNA description in (6.6) in the form of a single
matrix representation:

The matrix transfer function H(s) becomes

Equation (6.11) can also be written as

where adj and det stand for adjacent and determinant, respectively. From (6.12) it fol-
lows that the entries of the matrix H(s) are in the form of rational polynomials of s :

The denominator polynomial, det(I – sA), is common to all entries, and its roots,
reciprocals of the eigenvalues of A, are the poles of the multiport. Equation (6.13)
can also be expressed in the pole-zero or pole-residue representation.

In Y parameter formulation, the only sources allowed in the circuit are the voltage
sources across the ports. In this case, we replace with , the vector of port

voltages, and with , the vector of currents flowing into the multiport.

Moreover, since the outputs are measured at the inputs, it can be shown that

Thus the MNA description becomes
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and the admittance matrix is given by

An example is given in Figure 6.3. It shows a two-port circuit and the corresponding
MNA quantities.

The Z parameter formulation is similar:

Thus
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The same type of expressions for Y(s) and Z(s) in (6.16) and (6.18) may be confus-
ing at first glance; however, even for the same multiport circuit, all three matrices
(G, C, B) are different. An example of these differences is shown by comparing the Y
parameter formulation in Figure 6.3 with the Z parameter formulation in Figure 6.4
for the same example circuit.

6.1.3 Circuit Formulation Types

We now analyze some properties of the MNA matrices. These properties, such as
symmetry and positive definiteness, are important when investigating the accuracy,
stability, and passivity characteristics of the multiport model order reduction tech-
niques.
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First we define the definiteness of a matrix. A matrix A is said to be positive definite,

denoted by A > 0, if for every nonzero vector x . It is positive semidefi-

nite, denoted by , if for every nonzero vector x .

We categorize linear circuits into the following four types depending on the properties
of the corresponding MNA matrices.

A. Symmetric Formulation of RLC Circuits:

The standard MNA formulation for RLC circuits was derived in Chapter 5. It was
shown that the MNA matrices can be partitioned as

The matrices and L are square and symmetric. They are also

known to be positive semidefinite. Consequently, the G and C matrices are clearly
symmetric but indefinite.

For this type of formulation we also require B = –L or B = L. Thus, the imped-
ance and admittance formulations of RLC circuits fall into this category.

B. Passive Formulation of RLC Circuits:

Now change the signs of the second and third blocks in (6.19) to obtain
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The matrix G is not symmetric anymore, but it can easily be shown that both matri-
ces have become positive semidefinite. This transformation is important in both pre-
serving and proving the passivity property in PRIMA. Note that although both (6.19)
and (6.20) describe the same passive RLC circuit, it is very difficult, if not impossi-
ble, to prove the passivity with (6.19).

Similar to the symmetric formulation, this type of formulation is also restricted to the
circuits with B = L.

C. Symmetric and Passive Formulation of RC and RL Circuits:

In this case we only consider the Z-parameter modeling. In the impedance modeling
of RC circuits, the G and C matrices simply become

with B = L. Thus both G and C are symmetric and positive semidefinite.

It is possible to obtain similar symmetric and passive formulations for RL and LC cir-
cuits.

D. General Linear Circuits

Some of the methods mentioned in this chapter do not pose any restrictions on the
matrices (G, C, B, L). An obvious example for this type is the general matrix trans-
fer function formulation in (6.10) and (6.11). Clearly, such a flexibility is very advan-
tageous. However, most provably stable and passive methods lose their appealing
properties for this most general case.

6.2 Macromodeling Using AWE

Consider again a linear N-port. We have shown that the multiport admittance function
of such a circuit can be represented as a matrix of transfer functions in the pole-resi-
due form
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In Chapter 4 we introduced Asymptotic Waveform Evaluation (AWE) as a technique
to find Padé approximations of circuit transfer functions. Thus, a macromodel of a
linear multiport can be obtained by applying AWE to the entries of its admittance
matrix. That is, each entry in (6.16) is modeled by a reduced order AWE approxima-
tion:

It is apparent that once the moments of are computed, finding the poles and

residues is a straightforward application of moment matching. A different order can
be used for each approximation. Alternatively, all the entries may be forced to have a
common set of poles. In this case, an AWE approximation is determined only for one
entry. The same set of poles is then used to find the residues for all the other entries
applying partial Padé approximations. For different macromodeling approaches that
employ explicit moment matching techniques, refer to [6.1] [6.2] [6.3].

The cost of finding moments for an entire multiport is a single LU factorization and
the required number of forward and back substitutions. Consider the block moments

of Y(s) which are the coefficients of the Taylor expansion of Y(s) around s = 0:

The ith block moment

is an N × N matrix. It is easy to show that these block moments can be computed
recursively using the relation
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with It follows from (6.26) that we need only one LU factorization for

the first moment vector in the first block. All others are computed using simple for-
ward and backward substitutions. The kth moment of is then obtained as

As explained in Chapter 4, despite its nice properties, AWE suffers from certain
numerical limitations. Recall that these problems are mainly due to moment calcula-
tion and explicit moment matching. More precisely, we have shown that the sequence

which we use to generate moments, converges rapidly to the eigenvector of the largest
eigenvalue of the matrix A . Thus, including more moments does not add extra infor-
mation to the reduced order model.

The remainder of this chapter presents a different approach for the order reduction
problem. The methods based on this approach do not use numerically ill-conditioned
explicit moment matching. Instead, they employ projection, or congruence transfor-
mation, to construct reduced order models. In addition, rather than moments, they use
Krylov vectors, which are numerically better conditioned. We introduce the Krylov
subspaces in the next section and the projection method in Section 6.4.

6.3 Krylov Subspaces

Before we begin, we point out that to understand Krylov subspaces and projection
methods some basic linear algebra knowledge is required. In this chapter, we assume
that the reader has a working knowledge of this subject and we review a basic concept
only when necessary. Some good references are [6.4] for linear algebra, [6.5] for
computational issues, and [6.6] for linear system considerations.

Before introducing the Krylov subspaces, we first provide a few basic definitions
from linear algebra.

A subset of a vector space is called a subspace. Given a set of vectors
, the set of all linear combinations of these vectors is a sub-

space referred to as the span of :
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where are real numbers. If the are linearly independent, then each vector of

span admits a unique expression as a linear combination of the The set

is called a basis of the subspace span

Given an n × n matrix A and a vector r, the Krylov subspace Kr(A, r, q) is defined
as

Consider an n × q rectangle matrix whose columns form bases for the subspace

spanned by the Krylov sequence that is,

where colspM denotes the column space of M. Equation (6.31) is equivalent to say-

ing that for each i = 0, 1, , q – 1 there exists a q-dimensional column vector

such that

Later in this chapter we explain how to generate the basis matrix via two numeri-

cally robust methods: Arnoldi process and Lanczos algorithm. But for now, we pro-
vide a simple interpretation of the Krylov vectors, the columns of the matrix in

the circuit analysis context. The details of this subject are discussed at different places
throughout the chapter. A brief discussion follows:

Consider a linear circuit with a single excitation and its MNA description of

{G, C, b} . By defining and it is straightforward to show

that the moment vectors of this circuit are given by Assume that a
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basis matrix is generated for the Krylov subspace Kr(A, r, q). Equation (6.32)

clearly shows how the columns of are related to the circuit moments. Any

moment vector can be expressed as a linear combination of the Krylov vectors.
Roughly speaking, these vectors contain the same information. However, the Krylov
vectors contain much less numerical noise compared to the circuit moments because
during the generation of a Krylov vector the effects of lower-order moment vectors
are implicitly subtracted. We will also see that calculating Krylov vectors is as simple
and efficient as calculating circuit moments.

The Krylov subspace in (6.30) is defined for a single starting vector. Similarly, given
an n × n matrix A and an n × N matrix R, the block Krylov subspace is defined as

where k = q/N. If q/N does not result as an integer, we set1 and
define the Krylov subspace as

where is the ith column vector of R, and l = q – kN. For the sake of simplicity,

however, we will always assume that q/N is an integer.

Now consider an n × q rectangle matrix whose columns form bases for the sub-

space spanned by the Krylov sequence that is,

Thus, there exist q × N matrices such that

Analogous to the single input case, equation (6.36) shows the relation between the
Krylov matrix and the block moments of a circuit with multiple excitations (refer to
equations (6.6), (6.9), and (6.28)).

1. The operator is the truncation to the nearest integer towards zero.
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6.4 Projection Methods for Order Reduction

We now introduce the projection methods. Iterative projection methods have long
been used in linear system solutions [6.7] and have recently become popular for
model order reduction [6.8] [6.9] [6.10]. Here we will introduce the basic concepts to
establish the background for the following sections, where we combine projection
methods with Krylov subspaces to obtain robust and accurate order reduction tech-
niques. For a detailed review of projection method, refer to [6.7].

Consider a linear system

where A is an n × n real matrix. Projection techniques extract an approximate solu-
tion to the above system from a search subspace K of dimension q so that q con-
straints are satisfied. Generally, these constraints are described as imposing q
independent orthogonality conditions. For example, the residual vector Ax – b is con-
strained to be orthogonal to q linearly independent vectors. This defines another sub-
space L of dimension q. Such constraints are known as Petrov-Galerkin conditions.

There are two classes of projection methods: if the subspace K is the same as L, the
projection is said to be orthogonal; otherwise, it is an oblique projection.

In terms of linear dynamic systems, the projection is associated with matrix transfor-
mations. For example, consider a single-input single-output linear circuit and its gov-
erning equations in terms of n × n MNA matrices

Defining and we obtain

Consider two q-dimensional subspaces K and L. Let be an n × q matrix whose

column vectors form a basis of K, and similarly let be an n × q matrix whose

column vectors form a basis of L, i.e.
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Then a reduced order model for the system in (6.39) via projection is given as

Since the approximation order, q is smaller than the number of original variables, n,
the system in (6.41) is a reduced-order approximation to the original in (6.39), that is,
the output response is an approximation to the actual output response

in (6.39). In projection terms, the q × q matrix is the projection of A onto

the subspace spanned by and orthogonal to the subspace spanned by Simi-

larly, one can think that the solution vector is approximated by another solution vec-
tor, but in the subspace K,

Alternatively, the original system in (6.38) can be reduced with double matrix projec-
tion (reducing G and C separately):

In model order reduction via projection, the approximate solution is sought in the sub-
space and the residual is orthogonal to the subspace

that is, it satisfies the Petrov-Galerkin conditions. The first condition is apparent from
(6.42). For the second condition, consider the residual for (6.38) in the Laplace
domain which is given by

where we have assumed that Multiplying (6.44) by and using

(6.42) and (6.43) yields
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which means that the residual e is orthogonal to Therefore, the
reduced order system in (6.43) satisfies the Petrov-Galerkin conditions. A similar der-
ivation is also possible for (6.41).

So far we have explained model order reduction via projection for single-input single-
output systems, and we have used arbitrary subspaces. Next we introduce projections
onto Krylov subspaces. We consider two methods for this purpose: block Lanczos and
block Arnoldi. These methods are developed for multi-input multi-output linear
dynamic systems so that they can be used for multiport interconnect macromodeling.

Specifically, we take a system in the form

or

where and and then approximate it via projection:

6.4.1 Block Arnoldi

The first algorithm we describe to produce bases for Krylov subspaces is the block-
Arnoldi process. It was originally introduced to reduce a dense matrix to block upper
Hessenberg form [6.11]. The block Arnoldi process recursively produces an orthonor-
mal basis for the Krylov subspace generated by a given matrix A and a starting block
of vectors R . The basic algorithm is as follows:

196 IC Interconnect Analysis



Projection Methods for Order Reduction

Algorithm (Block Arnoldi):

The above steps will be explained individually when we present the Arnoldi-based
PRIMA algorithm in Subsection 6.7.1. For now, we briefly show some properties of
the items generated by the Arnoldi algorithm.

Assume that A is n × n and R is n × N. After k iterations the block Arnoldi process

produces an n × q matrix 1

whose columns form bases for the Krylov subspace generated by A and R. Namely,

Furthermore, its columns can be shown to be orthonormal

The algorithm also generates a q × q block upper Hessenberg matrix

1. The subscript q is reserved for denoting a basis matrix with q columns. Any other subscript i
denotes the ith block in
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which satisfies

and

where I is a square identity matrix with the appropriate size.

Now we return to the problem of model order reduction via projection. Assume that
is generated for the matrices A and R in (6.47). Applying an orthogonal projec-

tion, the reduced order model in (6.48) becomes

Thus the reduced-order admittance matrix is given by

Its moments are

The moment-matching property of the block Arnoldi for general linear circuits is
given by the following theorem. But first we present a lemma whose proof is given in
Appendix 6.A:

Lemma 6.1: Let be an Arnoldi generated basis matrix for Kr(A, R, q), then
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Theorem 6.2: The block Arnoldi method preserves the first k = q/N block
moments, that is,

Proof: The proof follows from Lemma 6.1. Multiplying both sides with yields
(6.59). QED

A special case for this algorithm is noteworthy. For RLC circuits with symmetric for-

mulation, the matrix is symmetric, which implies that the reduced order

matrix will also be symmetric. In other words, will be block tridi-

agonal. This causes a simplification in the algorithm: will be zero for

so that the orthogonalizations in steps 4-7 need to be executed only for i = 1, 2. Fur-
thermore, the moment matching accuracy is also superior in this case. Consider the
following theorem:

Theorem 6.3: For RLC circuits with symmetric formulation (see Subsection 6.1.3),
the block Arnoldi method preserves the first 2k block moments, that is,

Proof: By assumption, and are all symmetric,

and B = –L. Under these assumptions, Lemma 6.1 can be manipulated to obtain

Choose any i and j such that i < k and j < k. Then we can write the moments of the
reduced system as

From Lemma 6.1 and (6.61) it follows that
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6.4.2 Block Lanczos

The other technique we will describe to generate bases for Krylov subspaces is the
Lanczos algorithm. It was originally proposed by Lanczos [6.12] as a method for the
computation of eigenvalues of symmetric and nonsymmetric matrices. The Lanczos
algorithm starts with a matrix A and two blocks of vectors R, L, and proceeds to
generate two sequences of block matrices

which are bases for the Krylov subspaces

The following algorithm is taken from [6.13].

Algorithm (Block Lanczos):

In steps 1 and 8, the normalization matrices and are generally chosen to make

For example, if we choose, as proposed in [6.9],
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it follows that

However, if turns out to be singular, a breakdown error occurs [6.5].

Recently, a robust block Lanczos algorithm was given in [6.14] which includes a
built-in deflation procedure to detect and delete linearly dependent vectors in the Kry-
lov sequence, and the option to employ look-ahead to avoid the potential breakdowns.

After k iterations the matrices generated by the block Lanczos algorithm satisfy

where

Once the block Lanczos algorithm is run with the matrices A, R, and L in (6.47), a
projection with and produces the reduced-order model
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The corresponding reduced-order admittance matrix becomes

From the above equation, the block moments of the reducer order system can be writ-
ten as

In [6.15], it is shown that

where are the block moments of the original circuit. Hence we have the
following theorem:

Theorem 6.4: The block Lanczos method preserves the first 2k block moments.

In other words, the first 2q/N block moments are matched for a qth order system,
hence is a matrix Padé approximation of Y(s) .

The first method that used a block Lanczos algorithm for interconnect macromodel-
ing was MPVL [6.15]. Subsequently, a more computationally efficient version of
MPVL, SyMPVL [6.16], was tailored for RLC circuits with symmetric formulation.
Later in this chapter, we show that SyMPVL preserves stability and passivity for RC,
RL, and LC circuits.

6.5 Stability and Passivity

The Krylov-based projection methods are, in general, well conditioned; however, the
reduced-order model of a stable RLC circuit can still have unstable poles. Although it
is possible to obtain an asymptotically stable model by simply discarding the unstable
poles, passivity, in general, cannot be guaranteed.
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A passive system denotes a system that is incapable of generating energy, and hence
one that can only absorb energy from the sources used to excite it [6.17]. Passivity is
an important property because stable, but not passive macromodels can produce
unstable systems when connected to other stable, even passive, loads. A property in
classical circuit theory states this fact: Interconnections ofstable systems may not nec-
essarily be stable; but passive circuits are stable; and arbitrary interconnections of
passive circuits are passive, and, therefore, stable [6.18].

To see that passivity is a practical problem, consider the simple interconnect circuit
with a load and a nonlinear driver as shown in Figure 6.5. The interconnect portion is
modeled as a two port and its admittance parameters are approximated by fifth order
stable Padé approximations. Consider the SPICE simulation results for the combined
circuit. The waveform in the subgraph clearly shows the growing oscillations at the
output. Also shown in the same figure is the waveform obtained using the PRIMA
method, which is the subject of the next section. As seen from the figure, the PRIMA
result is stable, and indistinguishable from the exact waveform.
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PRIMA was proposed by the authors of this book in 1997 [6.19] [6.20] [6.21] as a
provably passive reduced order macromodeling method for general RLC interconnect
circuits. Approximately at the same time, another provably passive order reduction
method was developed. The details of this method, which is based on a concept called
Split Congruence Transformations, can be found in [6.22] and [6.23].

We next present the PRIMA method.

6.6 PRIMA

PRIMA (Passive Reduced-order Interconnect Macromodeling Algorithm) is a Kry-
lov subspace based projection method which generates guaranteed stable and passive
reduced order models. The version we describe here is based on the passive MNA
formulation that we explained in Subsection 6.1.3. It is possible, however, to extend it
to other type formulations as well, as we discuss in Subsection 6.6.2. In this and the
following sections, several properties of the algorithm are investigated and a practical
implementation is developed.

Briefly, PRIMA is an orthogonal projection method which takes a linear circuit in the
form

and finds a reduced-order model:

Note the difference between PRIMA and the other block Krylov methods: PRIMA
employs a double matrix projection whereas the order reduction methods based on
Arnoldi and Lanczos use a single matrix projection.

We first describe the simplest implementation of PRIMA which consists of three
stages: a specific type of circuit formulation, finding an appropriate Krylov subspace,
and projection.
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6.6.1 Basic Implementation

A. Circuit Formulation:

In order to preserve passivity, PRIMA requires a minor modification in the MNA for-
mulation of the original circuit. Essentially, PRIMA uses the passive formulation
mentioned in Subsection 6.1.3. The details follow:

Consider the s-domain MNA formulation of an RLC circuit

For the details of the MNA formulation and the definition of the terms in (6.77), refer
to Subsection 5.2.1.

Assume that we are interested in the admittance formulation, therefore the only
sources allowed in the circuit are the voltage sources connected to the ports. Conse-
quently, the vector in the right hand side becomes empty. Furthermore, we can

express the vector as where is the vector of port voltage sources.

Multiplying both sides of the second and third block of equations in (6.77) by minus
one and defining

we obtain

With this change, the MNA matrices in (6.79) are formed as
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where and are the matrices containing the stamps for resistors, capac-

itors, and inductors, respectively. In terms of the items given in (6.77), they are

From these relations it is apparent that             and are symmetric positive

semidefinite matrices. Consequently, it follows from (6.80) that G and C are also

positive semidefinite. In addition, C is also symmetric.

The reason for this modification will be apparent in Subsection 6.6.3, where we
address the passivity issue. An example is given in Figure 6.6, which shows the mod-
ified MNA quantities for the example circuit given in Figure 6.3.

B. Finding the Projection Matrix,

Having obtained the required circuit formulation, the next step is to find the Krylov
subspace to be used in the projection. This stage is important for the accuracy and size
of the reduced-order system. It is possible to employ different methods to obtain the
transformation matrix, since, as we will see later, the inherent passivity property

of PRIMA is independent of the selection of The simplest way is to use a block

Arnoldi algorithm with an expansion around s = 0, as proposed originally in [6.20].
But it is also possible to obtain the transformation matrix from an Arnoldi process
with multipoint expansion points [6.24] or from a block Lanczos algorithm [6.25].
Unless otherwise stated, for the rest of this chapter it is assumed that the block
Arnoldi process is used to generate the transformation matrix

C. The Congruence Transformations to Obtain the Reduced-Order Model:

Once the transformation matrix is obtained, the reduced-order model is constructed as
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where the reduced-order system matrices can be obtained using the congruence trans-
formations:
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6.6.2 Beyond RLC Circuits

In this book we present PRIMA as an RLC circuit reduction method. However,
PRIMA has been successfully applied to some other interconnect problems as well
[6.26] [6.27] [6.28]. The crucial point in any application is to find a system descrip-
tion with the symmetry and positive definiteness properties explained in Subsection
6.6.1. Once such a model representation is obtained, applying PRIMA is no different
than RLC circuit reduction.

In order to simulate high speed systems, designers need to analyze accurate electro-
magnetic models of the interconnect and package together with their drivers and
receivers in a circuit simulation environment. For many portions of a system, the
interconnect may be sufficiently long and uniform so that it can be modeled using a 2-
D approximation and the transmission line theory. The s-domain models of transmis-
sion lines, however, are not compatible with the PRIMA formulation, hence they can-
not be used directly. The brute force approach is to model them with multiple RLC
segments. But in addition to the possible accuracy loss, this approach also increases
the size of the system to be reduced. A more compact and accurate PRIMA compati-
ble transmission line model [6.29] is proposed in [6.26], where a compact finite dif-
ferences scheme is employed to discretize the transmission line equations. The same
approach is also extended to dispersive lines [6.30].

Although a significant portion of the interconnect and package can be modeled with
2-D approximations, discontinuities in the 2-D interconnect, such as vias, bends, and
chip to board connectors, require full 3-D modeling. One well known approach to
generate circuit models for the 3-D structures is the PEEC method [6.31]. PEEC mod-
els are derived from the discretization of the integral formulation for Maxwell’s equa-
tions, and they can be converted to RLC circuits with some post processing. However,
the number of densely coupled circuit elements can be easily in the tens of thousands
for a typical 3-D structure for which skin and proximity effects are important. Such
PEEC generated circuits are much too expensive to include in a SPICE-like simulator.
Thus, PEEC modeling is an area where PRIMA can be very useful by generating
reduced-order passive models.

A recent PEEC-based method uses mesh analysis instead of a nodal analysis approach
[6.27]. In this method, PRIMA is directly applied to a passive formulation of the full
quasistatic Maxwell’s equations. The expensive matrix factorizations required to find
the Krylov vectors are avoided by employing an iterative method. It is claimed that
mesh formulation has better convergence properties than nodal formulation [6.27].
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6.6.3 Preservation of Passivity

To prove that PRIMA produces passive and stable reduced order models, we will
make use of many theorems and definitions from the classical network synthesis the-
ory. All of the theorems used here, except the ones with proofs, are taken from [6.32].

The first theorem we use relates the passivity of a linear circuit to the positive realness
of its associated transfer function:

Theorem 6.5: A linear dynamic system is passive if and only if the associated transfer
function, H(s), is positive-real.

Thus, all we have to do is to show that the governing matrix transfer function of the
system, in our case the admittance matrix of the reduced order model, is posi-

tive real. The following theorem provides a test for the positive realness:

Theorem 6.6 (Direct positive-realness test):  A matrix function H(s) is positive real
if and only if all of the following conditions are satisfied:

1.

2.

3.

4.

5.

H(s) is real-rational.

H(s) has no poles in Re{s} > 0.

Poles of H(s) on Re{s} = 0 are simple.

For each pole on Re{s} = 0, the residue matrix K is positive semidefinite.

whenever it is defined1.

In any order reduction method we can satisfy the first four conditions (either during
the construction of the model or by postprocessing) and we can easily test them. It is,
however, very difficult the test the fifth condition. Thus, we need other means to
prove the passivity. Consider the following definition of a positive-real matrix func-
tion:

Definition 6.7: A matrix function H(s) is called positive-real if

1. Each element of H(s) is analytic for Re{s } > 0.

1. denotes the Hermitian part of a matrix, A(s), defined as

Passive Reduced-Order Multiport Models 209



Passive Reduced-Order Multiport Models

2.

3.

for Re{s}>0.

for Re{s}>0.

Also consider the following theorems:

Theorem 6.8: If a matrix, A, is positive-real, then so is its inverse, if it exists.

Theorem 6.9: If A is positive-real and if for some fixed and some

fixed with then for all s with Re{s} >0.

Theorem 6.10: If F is a real constant m × n matrix and A is an m × m positive-real

matrix, then the matrix is a positive real matrix.

Now we can state and prove our passivity theorem:

Theorem 6.11: Let G and C be n × n , and B n × N real matrices. Assume that

and Also assume that (G + sC) is invertible at least at

one point s with Re{s} > 0. Then, the matrix transfer function

is positive real.

Proof: Let W(s) = G + sC . Since the matrices G and C are real, the requirements
1) and 2) in Definition 6.7 are automatically satisfied. For the requirement 3), set

such that Since the Hermitian part of W is

Since both                 and        are nonnegative definite, it follows that is positive

semidefinite for satisfying the third requirement in Definition 6.7. Hence,
W(s) = G + sC is positive real.
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We next prove that its inverse, exists for Re{s} > 0. If we assume that

does not exist at with then there is an such that

and hence But by Theorem 6.9 this Hermitian

form is zero for all s with Re{s} > 0. This requires W(s) be singular. But, this con-

tradicts the assumption that G + sC is invertible at least for one point s with

Therefore, exists for Re{s}>0.

Finally, in view of Theorems 6.8 and 6.10, is proved to be
positive real. QED

With this theorem it is easy to show that the original circuit in (6.79) is passive
because the MNA matrices satisfy the assumptions of Theorem 6.11. For the passivity
of reduced order models consider the following result:

Corollary 6.12: Let G and C be n × n , B n × N , and n × q real matrices.

Assume that and is full rank. Define

and Then, the matrix transfer function

is positive real, and thus the reduced order model given by (6.86) is passive.

Proof: From the assumption we have and is full rank.

Thus, and Then, from Theorem

6.11 it follows that (6.86) is positive real. QED

It is important to note that in the proof the only requirement is that the transformation
matrix have full column rank. This gives the algorithm significant flexibility in

choosing to improve macromodel accuracy and runtime.
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6.6.4 Preservation of Moments

The moment-matching property of PRIMA is stated by Theorem 6.14. In the proof of
the theorem we use of the following lemma, whose proof is given in Appendix 6.A.

Lemma 6.13: Let be a basis matrix for the Krylov subspace Kr(A, R) and N be

the number of columns in R . Then, the matrix

satisfies the relation

Theorem 6.14: Let be a basis matrix for the Krylov subspace Kr(A, R). Then,
the transformation in (6.82) preserves the first k = q/N block moments of the origi-
nal system.

Proof: First we prove the relation

Since is a basis matrix for the Krylov subspace Kr(A, R) , there exists a matrix
such that

Multiplying both sides of (6.90) with and using again (6.90), we
obtain (6.89).

The moments of the original circuit and the reduced-order models are given by

where and and are as defined in

(6.83). From the definitions in (6.83) and (6.87), it follows that
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Substituting (6.89) into (6.92), we obtain

Finally, from Lemma 6.13 and (6.93) it follows that

which concludes the proof. QED

6.6.5 Accuracy of Double Matrix Projection

In Figure 6.7 a two-bit bus driven by CMOS inverters is shown. One of the drivers is
switching while the other is quiet to demonstrate the coupled noise effect. The inter-
connect, consisting of 40 coupled RLC sections, is modeled as a 4-port and reduced
by PRIMA. Transient analysis is done using recursive convolution. The time domain
waveforms at the load end are compared for various orders of approximations. Since
this is a 4-port, an 8-pole approximation corresponds to matching only and
generated by four different sources. The plot shows that in the time domain, even the
coupled noise can be accurately simulated using the 8 poles from PRIMA.
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The second example is a 12-port containing six coupled transmission lines modeled
by 40 coupled RLC sections. The input admittance reduced by block
Arnoldi, MPVL and PRIMA are compared with the exact input admittance in
Figure 6.8 using 48 poles. Block Arnoldi captures the exact response up to 16 GHz,
while MPVL and PRIMA match up to 28 GHz. When the order of approximation is
increased to 72 poles, it is observed that the frequency spectrum is captured up to 60
GHz by both MPVL and PRIMA.

The above example reveals a surprising accuracy property of PRIMA. As expected,
MPVL is more accurate than the block Arnoldi method since it matches twice the
number of moments for the same order. But, interestingly, PRIMA’s accuracy is also
superior to that of the block Arnoldi although it theoretically matches only the same
number of moments. This difference in accuracy is attributable to the accuracy loss
that appears in the single matrix projection.

Assume that the left and right eigenvectors of A are known exactly, that is,

where is the diagonal eigenvalue matrix and, and are the right and left
eigenvector matrices, respectively, with the relation
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We also make use of

which follows from (6.95) and the fact that

The transformation matrices and are approximations to the left and right
eigenspaces. If we use the perfect transformation matrices and
to perform the projection, these are the eigenvalues of the reduced system in different
reduction methods:

Lanczos:

Arnoldi:

PRIMA:

Notice the oblique projection in the block Lanczos and orthogonal projections in the
block Arnoldi and PRIMA. It can be observed from the derivations that both the
Lanczos and PRIMA recover the exact eigenvalues whereas Arnoldi cannot, although
both Arnoldi and PRIMA have used the same transformation matrix, Therefore, it
is possible to capture more information by using PRIMA’s double matrix projection.

6.6.6 Connections Between Other Projection Methods

PRIMA reduces the two circuit matrices, G and C, separately, however there are
algebraic connections to the single matrix reduction schemes like the Arnoldi and
Lanczos algorithms. These connections can be exploited in the implementation of
PRIMA for efficiency purposes.

First we define
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and rewrite the PRIMA reduced order models in the form

A. Relation to the Block Arnoldi Process

Assume that the reduced order matrices in (6.101) and (6.102) are obtained using a
block Arnoldi process. Recall the relation (6.54):

where is defined as

Note that only the last N columns of are nonzero. In (6.103), is a q × q
block upper Hessenberg matrix which is the system matrix in the Arnoldi generated
reduced order model as shown in (6.55).

Multiplying both sides in (6.103) with and since we obtain

or

Multiplying both sides by reveals the connection between PRIMA and the
Arnoldi:

Only the last N columns of the q × q matrix are nonzero because of

(6.104). The interpretation of (6.107) is that Arnoldi based PRIMA system matrix is
equivalent to the Arnoldi system matrix except the last N columns (see Figure 6.9a).
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B. Relation to the Block Lanczos Process

Assume that the transformation matrix is obtained from the block Lanczos algo-
rithm. Then satisfies (from (6.68))

where is defined as

Following a similar algebra as in the Arnoldi case, we obtain the relation between the
Lanczos and PRIMA system matrices:

Since is a tridiagonal matrix, is a tridiagonal matrix with a modification
for the last N columns as pictured in Figure 6.9 (b).
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6.7 Practical Issues

In the previous section we showed that PRIMA takes a linear circuit in the form

and finds a reduced order model:

Furthermore, we proved that the reduced order model in (6.112) is passive if the pro-
jection matrix is full rank, i.e.,

We also showed that the reduced model in (6.112) matches the first q/N block

moments of the original system if for each i = 0, 1, ..., q/N – 1 there exists a matrix

such that

The remaining task is to present a robust method to generate a projection matrix

which satisfies (6.113) and (6.114). As we have mentioned earlier, a simple and
robust method for this purpose is the block Arnoldi algorithm.

6.7.1 The PRIMA Algorithm

Here we describe a simple practical implementation of PRIMA that employs a block-
Arnoldi process with a single point expansion.

Algorithm (Block Arnoldi Based PRIMA): Given an RLC circuit with the MNA for-
mulation in (6.111), where G, C, and B are constructed as defined in (6.80) and

(6.81), the following algorithm first finds a basis matrix using a block Arnoldi

process and then constructs a reduced-order model via projection in the form of
(6.112).
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The purpose of steps 1 and 4, which involve operations in terms of the original circuit
matrices, is to generate the next block of vectors expanding the Krylov subspace. In
Subsection 6.7.3 we give a detailed explanation for efficient evaluations of these steps
since they dominate the run time of the algorithm.

Steps 6-10 correspond to a modified Gram-Schmidt orthogonalization of the new
block against all the previously generated blocks. Modified Gram-Schmidt is mathe-
matically equivalent to the ordinary Gram-Schmidt process, but has a much better
numerical performance [6.5]. The major limitation of the block Arnoldi is the orthog-
onality loss that occurs between the Krylov vectors as j increases. As step 5 implies,
we repeat the Gram-Schmidt orthogonalization to enforce the orthogonality. As we
will see a little later, the double orthogonalization is a very effective method to
improve the quality of the approximations.

1. We once again emphasize that the subscript q is reserved for denoting a basis matrix with q
columns. Any other subscript i will denote the ith block in
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After the new block is orthogonalized against all the previous blocks, steps 2 and 12
use the QR factorization to orthonormalize the vectors in the block. Assuming

the QR factorization of an n × m, rank r matrix M is given by A = QR ,
where Q is an n × r matrix with orthonormal columns and R is an r × m upper tri-
angular matrix. There are several methods to carry out the QR factorization. These
methods either are based on a modified Gram-Schmidt orthogonalization process or
they apply a sequence of Householder or Givens transformations [6.5].

An important and practical issue in PRIMA is the order selection, which is a common
problem in all order reduction methods. There are always two issues associated with
the order selection problem. The first one involves finding the minimum order for the
desired accuracy. We address this subject in Subsection 6.7.4. The second problem is
with the numerical limitation of the algorithm: what is the maximum order that we
can obtain from the algorithm? Or perhaps the more important question is, how can
we improve the numerical properties of the method?

6.7.2 Improving Numerical Conditioning

Although the Krylov subspace methods are, in general, numerically much more
robust than explicit moment matching, they still have limitations on the approxima-
tion orders. Due to finite machine precision, the ever-generated Krylov vectors even-
tually lose orthogonality and the method using them stagnates. The effect of this
phenomenon on the accuracy is identical to what happens in AWE: including more
Krylov vectors does not necessarily increase the quality of the approximation after
some order.

But more importantly, a rank-deficient projection matrix due to orthogonality loss can
yield unstable and therefore nonpassive reduced order models. Recall that our passiv-
ity proof in Subsection 6.6.3 assumes positive semidefinite reduced order matrices.
This assumption in turn requires a full-rank projection matrix. Thus, even if the
reduced order model turns out to be stable, we cannot guarantee passivity with a pro-
jection matrix that does not possess full rank.

In the case of a rank-deficient projection matrix the simplest approach is to
remove blocks from starting from the last one until a full rank matrix is obtained.
But if we have to use the original set, we can apply a final orthogonalization on
using singular value decomposition.

We next explain two powerful methods to improve the quality of PRIMA approxima-
tions:
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Frequency shifting: Ironically, the orthogonality loss is related to the convergence of
the Krylov vectors to the eigenvectors of the matrix A. This is analogous to the dom-
inant pole convergence property of moments. The convergence rate depends on the
separateness of the eigenvalues. If they are well separated the Krylov vectors con-
verge quickly to the eigenvectors of A starting from the one that corresponds to the
largest eigenvalue. Obviously this gives a good approximation around s = 0, but the
poles near the origin block the effects of the other poles. Thus we can improve the
conditioning of Krylov vectors with frequency shifting. With shifting, the poles
become less separated and the convergence rate is slowed down. This first deterio-
rates the quality of the approximation around s = 0, but we can generate many more
well-conditioned Krylov vectors, and eventually obtain a good approximation in the
global sense.

With frequency shifting the PRIMA algorithm is identical to the algorithm in Subsec-
tion 6.7.1 except that the steps 1 and 4 are replaced with

and

respectively. Usually the expansion point is a real positive number. For the selec-
tion of and more discussion on frequency shifting, readers are referred to Subsec-
tion 4.6.4.

Perhaps the best approach, if we have to apply shifting, is to start generating Krylov
vectors at s = 0 and then switch to when an orthogonality loss is observed.
This type of multiple, and even complex, frequency point expansions [6.33] are possi-
ble in PRIMA and it extensions [6.24], [6.34], [6.35]. However, we once again
emphasize that the improvement with frequency shifting comes with a cost: very
often the sparsity of the G matrix is destroyed. Therefore, frequency shifting should
be avoided if at all possible.

Reorthogonalization: In most cases we can improve the conditioning by simply
employing two passes of modified Gram-Schmidt orthogonalization, an approach that
has proven to be very effective. The double orthogonalization scheme [6.36], a well-
known technique in the Krylov methods, has been observed to produce much higher
orders of approximation than the single pass even with expansions at s = 0.
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We close this subsection by demonstrating the above discussions with an example.
The circuit we will consider is a complex two-line interconnect structure. It is mod-
eled as a four port RLC circuit based on the PEEC approach. The size of the MNA
matrix is 980 elements and the order of the circuit is 728, i.e., it has 728 finite poles.
The C matrix is very dense since it includes hundreds of capacitively and inductively
coupled elements.

Here we consider only the response. The other responses exhibit similar

behavior. In Figure 6.10 the exact response is shown together with the PRIMA result
with single orthogonalization and an expansion about s = 0. The PRIMA result is
obtained from 49 iterations of the block Arnoldi process producing a stable 196th
order model. After 49 iterations, PRIMA starts producing unstable poles because of
orthogonality loss in the Krylov vectors. Also, as expected following the discussions
above, the accuracy does not improve after this 196th order.

222 IC Interconnect Analysis



Practical Issues

We next consider the PRIMA behavior with double orthogonalization and with an
expansion about s = 0. With two passes of modified Gram-Schmidt orthogonaliza-
tion, we do not observe any rank deficiency in the basis matrix until we reach 125
iterations. Thus, we are able to produce a stable 500th order approximation. The
response of the reduced model is compared with the exact one in Figure 6.11. It is
indistinguishable from the exact response up to 127 GHz.

Consider the PRIMA results with frequency shifting. With single orthogonalization
the maximum number of iterations we can get with an expansion about
is 63, which yields a stable 252th order approximation. With double orthogonalization
we can continue until the 80th iteration without seeing any orthogonality loss. The
response is shown in Figure 6.11. It matches the exact response very closely up to 95
GHz.
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Clearly this is well beyond the frequency range of interest in most IC interconnect
problems. But more importantly, what is the runtime cost associated with this level of
approximation accuracy?

6.7.3 Calculation of Krylov Vectors

In terms of runtime, the most critical steps in the PRIMA algorithm are the linear sys-
tem solutions in steps 1 and 4. In general they can be solved with an LU decomposi-
tion of the MNA conductance matrix G. The Krylov vector generation in linear
circuits is similar to moment generation, therefore, all of the techniques we have
described in Chapter 5 for moment generation can also be used for efficient Krylov
sequence computation.

Recall that the block moments of a linear circuit are obtained recursively using the
following algorithm:

Thus, for a linear circuit with N ports, in order to generate k block moments, we need
to carry out kN forward and back substitutions in addition to a single LU factoriza-

tion of the usually sparse matrix G .

The Krylov vector blocks are obtained from a similar recursive scheme:
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which is a condensed and mathematically equivalent version of the PRIMA algorithm
given in Subsection 6.7.1. A glance at (6.117) and (6.118) reveals that they require the
same type and same number of circuit matrix operations. The PRIMA algorithm has
some overhead because of the orthogonalization and orthonormalization procedures.
To summarize, in terms of the circuit matrix operations the computational cost of the
recursive scheme given in (6.118) is equivalent to that of (6.117).

A. Implementation with Path Tracing

The block matrix equation we recursively solve in PRIMA is of the form

Each block in (6.119) requires the solution of N linear systems:

where is the lth column of As shown in the previous chapter, this can be

viewed as the recursive solution of an equivalent dc circuit in which the capacitors
and inductors are replaced by current and voltage sources, respectively, with the val-
ues derived from the columns of Therefore, the Krylov vectors can be effi-

ciently generated using the path tracing algorithm described in Chapter 5.

Recall, however, that the matrices G and C are not explicitly constructed in path trac-
ing. We now describe how we can obtain the matrix products and in this

situation. Construction of is straightforward because its columns are the values

of the current and voltage sources that are used to replace capacitors and inductors at
each moment generation. This information is already available during path tracing.
Now consider line 5 in (6.118), which corresponds to the orthogonalization of the new
Krylov block against all the previously generated blocks,

The next step in the algorithm, line 6 in (6.118), is the orthonormalization of

using, for example, the QR factorization
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where is an N × N upper triangular nonsingular matrix. Multiplying both

sides with G and substituting (6.121) for we obtain

where we also have substituted (6.119) for Thus, the blocks of can be

computed recursively from the previous blocks of and the previous block of

The question remaining is, how many times do we apply this recursion; i.e., what is
the required order of approximation?

6.7.4 Order Selection and Error Estimation

As we already mentioned, an important step in any order reduction scheme is order
selection. Unfortunately, in most methods predicting the order of approximation a
priori is very difficult. The approach usually applied is to increase the order until a
convergence criterion is satisfied.

Ideally we would want to compare the approximated response with the exact one at
the desired frequency points. But this is impractical due to the efficiency consider-
ations. A practical and trivial convergence criterion is to check the new reduced order
model against the previous lower order approximations. For example, after each
block Arnoldi iteration we can construct a reduced order model and obtain the fre-
quency response at some frequency points. For an N-port circuit, the order of the
approximation is increased by N with each iteration. We can monitor the changes in
the responses and increase the order until successive iterations converge. Obviously,
there is no guarantee of always attaining convergence. This uncertainty can be caused
by unrealistic frequency point selection. While trying to reach convergence at an arbi-
trary point we can start generating useless Krylov vectors. Thus any stopping crite-
rion should also monitor the orthogonality loss between the Krylov vectors.

Although the above approach is very practical, having an error estimation of the
reduced order model accuracy can still be very useful. In Appendix 6.B we describe
an attempt to derive an error estimation that is easy to evaluate.
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6.7.5 Post Processing of the Reduced Models

Consider the general representation of a PRIMA reduced model

and its admittance matrix

In the next chapter we discuss interfacing reduced order models with SPICE-like cir-
cuit simulators. In PRIMA, we have two options: 1) we either convert (6.125) into a
pole-residue representation and then use a circuit simulator with recursive convolu-
tion capability or 2) we transform (6.124) into a state-space representation and then
synthesize an equivalent circuit. All these issues including recursive convolution and
circuit synthesis are described in detail in the next chapter.

We describe two methods to reduce (6.124) to state-space form

The first method finds the Cholesky decomposition of to find a state-space
description of the reduced order model. Since it is Cholesky based, this method is
computationally very efficient, but usually yields a dense matrix. The other
method is slightly more costly since it is based on eigendecomposition. The benefit is,
however, a block diagonal matrix. This method also gives the poles and the resi-
dues of the macromodel

where is the N × N residue matrix corresponding to the ith pole of the system
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6.8 Special Cases in Multiport Modeling

6.8.1 Symmetric Case (RC, RL, and LC circuits)

For the important special cases of RC, RL, and LC circuits, we can simplify the
reduction techniques by exploiting the symmetry seen in the MNA matrices of these
types of circuits. In the following, we discuss the RC case. For the case of RL and LC
circuits, readers are referred to [6.16].

Consider an RC circuit and its Z parameter formulation:

The impedance matrix is then given by

In this case, as we have previously seen in Subsection 6.1.3, the MNA matrices sim-
ply become both symmetric and positive semidefinite:

Now assume that G is positive definite so that its Cholesky factorization exists:

where is lower triangular with positive diagonal entries.

Letting and inserting (6.131) into (6.128) we obtain

where the matrix is symmetric and positive definite.

Interestingly, for this case, all three methods -- block Arnoldi, block Lanczos, and

PRIMA -- yield the same result. Running the block Arnoldi with and
R = JB results in a projection matrix with q columns. Then applying projection

to (6.132) results in
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where is a q × q block tridiagonal and symmetric matrix. In
Subsection 6.4.1 we showed that the reduced order system in (6.133) matches the first
2q block moments for a qth order system, thereby resulting in a matrix Padé approxi-
mation. Hence, the Lanczos and Arnoldi processes produce the same reduced order
matrices for the system in (6.132).

A practical problem, however, arises for RC trees with no resistive path to ground.
For the impedance modeling of such circuits in which current sources are connected
to the ports and voltages at the ports are measured, G becomes singular. Note that we
would have a nonsingular G matrix, had we used Y parameter formulation. But in
this case we could not have obtained the symmetric formulation in (6.132).

The singularity problem in impedance formulation is usually avoided with frequency
shifting. In this case, we solve the circuit at Unfortunately, frequency shift-
ing, which transforms G into destroys the sparsity of the problem. But we
can avoid shifting by employing a practical approach as follows. We can add resistors
between the output terminals and the ground node with very large resistance values.
Then we can either neglect their effects or compensate for them by adding negative
resistances of equal values during the subsequent analyses of the macromodel.

For those who are not satisfied with this practical engineering solution, a more rigor-
ous approach follows. Assume a one-port RC circuit with a singular G matrix for the
sake of explanation. The results can be generalized for the N-port case. Suppose that
the nodes are numbered such that the first node in the circuit is the one corresponding
to the positive terminal of the port. Thus, the input impedance function of this circuit
can be written as

where is the first unit vector. Now consider adding a parallel resistor between the
terminals of the port. It is simple to show that the new conductance matrix is related
to matrix G with a rank one update:

where R is the value of the resistance. Note that is now invertible because it
corresponds to an RC circuit with at least one dc path to ground. Interestingly, in
[6.37], it is shown that the span of a Krylov subspace is invariant to certain rank-one
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updates such as the one used in (6.135). Thus we can run the Arnoldi process and find
a Vq matrix for the circuit, but then apply the projection to the

circuit to find a reduced order model for the impedance function in
(6.134).

6.8.2 Single-Input Single-Output Case

In Chapter 4 we introduced AWE -- an explicit moment-matching technique -- to find
reduced order models for circuit transfer functions. Likewise, the Krylov subspace
based projection techniques can be used to find such approximations as well. In this
case, the Krylov vectors are obtained by running the single vector versions of the
block Arnoldi and block Lanczos processes given in Section 6.4. We now give a sum-
mary of these methods.

We begin with the MNA description of a single-input single-output circuit

Applying Laplace transformation to (6.136) and letting we obtain

where and The transfer function of this
circuit which we wish to approximate is given by

ing vectors r and l to obtain a tridiagonal matrix a diagonal matrix and two
sequences of vectors
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such that

and

The first vectors in and are selected as

Applying an oblique projection to the system in (6.137) with the matrices and

yields a reduced order transfer function of the form

where is the first unit vector.

From the moment matching property of the block Lanczos method (see Theorem 6.4),
it follows that the first 2q moments of the transfer functions in (6.138) and (6.143) are
matched at Therefore,                 is just the Padé approximation of H(s'). This

means that with exact arithmetic, hence infinite machine precision, PVL and AWE
would produce the same approximations. This is indeed the case for approximation
orders up to, typically, After that AWE begins to suffer from its known
numerical problems. PVL, on the other hand, being based on Krylov subspaces, stays
numerically stable for much higher orders.

PVL, as a Padé approximation, in general, cannot guarantee stability. However, it has
very good convergence properties in the frequency domain. In fact, it was the suc-
cessful demonstration of PVL’s accuracy that has made the applications of Krylov-
based techniques popular in linear circuit and electromagnetic analysis [6.39] [6.40]
[6.41] [6.42]. We also recognize the work in [6.43], which, approximately at the same
time frame as for the PVL work, showed the connection between the Lanczos process
and the Padé approximation.

Similar to the Lanczos algorithm, we can also make use of the Arnoldi process to
approximate the transfer function in (6.138). In this case, we run the Arnoldi process
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with the matrix A and the starting vector r. After q iterations, we obtain a q × q
upper Hessenberg matrix and a sequence of vectors

such that

The first Arnoldi vector is selected as Applying an orthogonal projec-

tion to the system in (6.137) with the matrix yields a reduced order transfer func-

tion of the form

From Theorem 6.2 it follows that the first q moments of (6.138) are matched in

The use of the Arnoldi process in linear circuit analysis was first proposed in [6.39].
Later, it was combined with a modification in the MNA formulation to obtain guaran-
teed stable transfer function approximations for RLC circuits [6.44], which was the
first step towards the passive formulation used in PRIMA.

6.8.3 Single-Input Multi-Output Case

An important difference between the Lanczos- and Arnoldi-based methods is that
Lanczos is double-sided. More precisely, a reduced-order model based on a Lanczos
algorithm is specifically obtained for a certain input-output pair. On the other hand,
the Arnoldi process does not depend on the output. That is, during the generation of
Arnoldi vectors we do not use the probing vector or vectors information. Once the
matrix is obtained, we construct transfer function approximations to the desired

responses in the original circuit. This property can be exploited when using PRIMA
for certain applications.

The following approach can be used in all applications that require stability but not
passivity, or only one-port passivity. A typical scenario follows: Consider an intercon-
nect circuit with one driver and N – 1 receivers. For a SPICE level simulation we
need to macromodel the N-port interconnect portion, but now we assume that the
receivers can be modeled with linear gate capacitors and only the driver is nonlinear.
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This circuit can be efficiently analyzed as follows: First find a driving point model for
the interconnect circuit which also includes the fanout capacitances. After the wave-
form at the driver output is obtained from a circuit simulation of the nonlinear driver
loaded by the driving point model, replace the driver with a time-varying voltage
source. Then, the output waveforms at the fanouts are found by analyzing the inter-
connect circuit. This requires only a one-port passive model plus N – 1 stable transfer
functions.

As an example, consider an RLC circuit with a single excitation, and its s-domain
MNA formulation

where the n × n matrices G and C satisfy the required conditions given in Subsec-
tion 6.6.1 for a passive reduction. Define a vector of N output responses

where L is the n × N probing matrix. Let the first column of L be equal to b so that

is the driving point function.

Also let be the projection matrix obtained by running the Arnoldi process with

and Now we can construct our reduced-order model:

where is a qth order approximation for Clearly, all the transfer function
approximations are stable, and in addition, is a passive driving point model.
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The reduced-order model in (6.150) matches the first q moments at each output. Had
we used the standard N-port modeling and wanted to match q moments at each port,
the order of the reduced model would have been qN. This simple comparison shows
the efficiency of using a SIMO (single-input multi-output) version of PRIMA assum-
ing that a fully passive N-port model is not required.

6.9 Summary

In this chapter, we described multiport interconnect modeling using PRIMA. Reduced
order models of multiport circuits can be obtained via projections onto Krylov sub-
spaces. Krylov vectors, bases for Krylov subspaces, contain the same information
with moments, but numerically better conditioned. Thus their use allow us to obtain
very high order accurate reduced order models. In addition, PRIMA exploits the prop-
erties of RLC circuit formulation to generate guaranteed stable and passive models.

In the next chapter, we explain how to combine these frequency-domain macromod-
els with nonlinear drivers and receivers in a SPICE-like simulation environment.

6. A Appendix -- Proofs of the Lemmas

Proof of Lemma 6.1: The proof is by induction. The block Arnoldi process starts
with the QR factorization of the starting block of vectors R, that is, an upper triangu-
lar matrix and a matrix of orthonormal columns are computed such that

Multiplying both sides with and using the orthonormality property of (see
equation (6.51)), we obtain

Multiplying both sides with and using (6.151) yield
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which proves (6.58) for i = 0.

After k iteration of the block Arnoldi process, we have the relation:

Multiplying both sides of (6.154) from right with we obtain

Because of (6.152), the second term on the right hand side is zero. Thus,

Now we can finish the proof. Assume that (6.58) is true for i – 1, that is,

Multiplying both sides of (6.157) with A and then using (6.156) yield (6.58).

Proof of Lemma 6.13: The proof is by induction. It is trivial to prove that (6.88) is
true for i = 0. Now assume that (6.88) is true for i – 1, that is,

Multiplying both sides with yields

From the assumption of the lemma, be a basis matrix for the Krylov subspace

Kr(A, R). Thus for each i = 0, 1,..., q/N – 1, there exists an N×N matrix

such that
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Substituting (6.160) into (6.159) and multiplying both sides in (6.159) with

we obtain

From the definition of in (6.87) and from (6.160) it follows that

which completes the proof of the relation in (6.88).

6.B Appendix -- Error Estimation in PRIMA

In the following, an approximate error measure is derived for PRIMA. However, it is
not very suitable to measure the error directly, rather it is useful as a guide to under-
stand the convergence properties.

Recently PVL-WEB [6.45] showed such an error measure for the PVL algorithm, but
the region of validity was quite limited. In a similar manner, the exact error of
PRIMA transfer function is derived here. This exact error measure is then approxi-
mated into an efficient form using a simple heuristic.

We start with rewriting (6.107)

which shows the relation between the system matrices of block Arnoldi and PRIMA.
Multiplying both sides with and rearranging terms yield

From (6.103), Substituting this into (6.164) and multiplying
both sides with s, we obtain

Subtracting from each side in (6.165) yields
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Multiplying both sides with and from left and right, respec-
tively,

This time multiplying both sides with and from right and left, respectively,

Since from Lemma 6.1 and recognizing

the exact error of PRIMA matrix transfer function is given by

Evaluation of (6.169) is not practical because of the term. To compute the
error bound for PVL, [6.45] replaces by using of the fact
that

A similar approximation could be applied for (6.169) as well; however, the condition
in (6.170) dictates a very narrow region for typical high frequency circuit applica-
tions. Preconditioning A to enlarge the validity of (6.170) is possible [6.45] but
causes an increase in the overall cost of reduction process. Instead, we choose to
replace in (6.169) with Although this is not a bound, it
is very useful in determining the convergence behavior. Therefore, the approximate
error measure becomes

Since and due to the orthonormality property of the Krylov
vectors, we obtain
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At a specific order of approximation, equation (6.172) can be used to estimate the
region of convergence. For example consider the circuit used in Subsection 6.7.2. In
Figure 6.12, the approximate error measure (6.172) is plotted for two different
PRIMA approximations for the same response.
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CHAPTER 7 Interfacing with SPICE

In the previous chapter, we introduced techniques to find reduced order macromodels
for large linear interconnect blocks. These macromodels are usually described in
terms of frequency-domain matrix functions, which are not directly compatible with
time-domain circuit simulation. In this chapter, we explain methods to convert these
frequency-domain descriptions into time-domain equivalents. We will consider two
alternatives: equivalent circuit synthesis and recursive convolution.

7.1 Multiport Interconnect Models

Consider the multiport shown in Figure 7.1. In the previous chapter, we saw that such
a linear multiport circuit can be fully characterized with its s-domain admittance
matrix, Y. We described different approximation methods in different forms. Here
we will focus on two types of admittance matrix representations.

One of the representation types that we will consider in this chapter is in terms of
poles and residues:
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In general, a different set of poles can be used for each entry. Furthermore, the order
for each entry can be different. Alternatively, a single set can be used for some or all
of the entries. These cases can be collected in the three categories:

1.

2.

3.

SISO: Each input-output pair is treated independently from the others producing a
different set of poles for each entry. A straightforward application of AWE to each
entry results in this type of admittance models.

SIMO: All the entries in a column of the admittance matrix share the same set of
poles. For example, an AWE approximation can be obtained for first and then
the poles can be used for all other transfer functions in the same column. Simi-
larly, a specific version of PRIMA can be used for each column (refer to Subsec-
tion 6.8.3).

MIMO: A single set of poles is used by all the entries in the admittance matrix. All
projection methods, including PRIMA, produce this type of admittance models.

The other type of representation is in terms of reduced order circuit matrices:
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Such reduced order matrices can be obtained from PRIMA and other block Krylov
techniques as we discussed in the last chapter, The matrix representation in (7.2) can
easily be converted to a pole-residue form. It is also possible to obtain a matrix repre-
sentation starting from the poles and residues as we explain later in this chapter.

There are basically two ways of combining multiport interconnect macromodels with
other macromodels and (non)linear drivers and receivers in a circuit simulation envi-
ronment:

1.

2.

Synthesis: An equivalent circuit is synthesized using basic circuit elements. Then
any time-domain circuit simulator can be used.

Recursive convolution: This method requires a modification in the simulator in
order to exploit the pole-residue information.

The remainder of this chapter presents these two techniques starting with the synthe-
sis approach. But first we describe in detail how to obtain state-space and pole-resi-
due representations of PRIMA-reduced models.

7.2 Post Processing of the PRIMA Models

Consider the general representation of a PRIMA-reduced model from Chapter 6:

and its admittance matrix

A. Reduction to State-Space Form With Cholesky Factorization

If is invertible, we can simply multiply the first equation in (7.3) by to obtain

a state-space form. Recall that for a passive model, the only requirement for the

matrix is that it be positive nonnegative. Thus, invertibility is not necessary. Most of
the time, however, we expect it to be invertible or full rank.
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Since is symmetric, we use Cholesky factorization [7.1] rather than direct inver-

sion or LU decomposition. The Cholesky factorization gives a lower triangular matrix
with positive diagonal entries such that

For a q × q matrix, the Cholesky algorithm involves only flops and it does not
require any pivoting or reordering. In addition, it runs to completion only if the matrix
is positive definite. Thus, a failure to complete the Cholesky factorization of the

matrix indicates a potential passivity problem in the reduced-order model. Such a pas-
sivity problem could be caused by numerical noise when generating the passive
reduced-order model.

Defining we can obtain a state-space form of the reduced order model by
inserting (7.5) into (7.3)

where

B. Reduction to State-Space Form With Eigendecomposition

The above method diagonalizes only one of the matrices, However, we can

(block-)diagonalize both of them using a similarity transformation. This process,
which also gives the poles of the system, requires the solution of a generalized eigen-
value problem involving the reduced order MNA matrices and More pre-

cisely, we find an invertible transformation matrix S and a diagonal matrix such
that
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where S and are, in general, complex matrices. Once the eigendecomposition in
(7.8) is obtained, it can be inserted into (7.3) to block-diagonalize the system matri-
ces.

We next explain the details of a robust approach for the solution of the eigenvalue
problem in (7.8). Refer to [7.1] for various algorithms that are used in the solution of
general eigenvalue problems. Source codes for some of these algorithms are available
in the software package LAPACK [7.2].

Rather than separate and matrices, we work with the matrix,
which we know from (6.107) that is a block upper Hessenberg matrix

The blocks in (7.9) are obtained directly from the block Arnoldi algorithm. The

blocks are computed according to (6.107).

We first transform to upper quasi-triangular form using the real Schur decomposi-
tion [7.1]. This corresponds to finding an orthogonal matrix Q and an upper quasi-
triangular matrix T such that

where each is either a 1×1 or a 2 × 2 real matrix having complex conjugate
eigenvalues.

The real Schur decomposition is achieved with a QR iteration algorithm:
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In the first step, the matrix is reduced to upper Hessenberg form, by a

sequence of Householder matrix operations or Givens rotations. Note that, in our
case, is already in the block upper Hessenberg form, therefore we can use Givens

rotations to reduce it to actual Hessenberg form. It is more advantageous to use Given
rotations because they zero out one element at a time, whereas Householder matrices
zero out the entire column. The QR factorizations in (7.11) are performed until the

converge to upper quasi-triangular form. The convergence rate can be acceler-

ated by incorporating shifts [7.1]. The overall cost is approximately flops,
where q is the size of the matrix

The algorithm in (7.11), however, does not generate the eigenvectors. It only yields
the eigenvalues of as 1 × 1 or 2 × 2 blocks on the diagonal of T . The eigenvec-
tors can be calculated as follows. Suppose that the kth diagonal element is a real
eigenvalue,

where is a (k–1)×(k–1) upper quasi-triangular block and u is a vector of

length k – 1. Solve the linear system The n-dimensional vector
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is the corresponding right eigenvector,

The 2 × 2 diagonal blocks, which correspond to complex eigenvalue pairs, are han-
dled similarly. For each 2 × 2 block, we obtain two real vectors. Combining the
eigenvector equations for all eigenvalues, we obtain

where

Now we turn our attention back to our reduced order system. With the matrix rep-
resentation, (7.3) becomes

where Inserting (7.15) into (7.16) and after some manipulation we
obtain

The reduced-order state matrix is the inverse of the block-diagonal matrix D,

where each is either a 1 × 1 or a 2 × 2 block

The other two state-space matrices are defined as

If desired, the reduced order model can also be represented in terms of the poles and
residues of its matrix admittance function. To achieve this, we need one more similar-
ity transformation
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which reduces the block diagonal to the diagonal matrix . This time, and the

block-diagonal transformation matrix J may have complex elements. Assuming the

same form of partitioning with we construct and J as follows:

If is a 1 × 1 block, set and

Otherwise, must be a 2 × 2 block of the form

Inserting (7.21) into (7.17) and after some matrix operations, we obtain

From (7.24) it follows that

Thus

where is the kth diagonal element of is the (i, k)th element of the N × q

matrix is the (k, j) th element of the q × N matrix and N is the size

of the matrix. Note that the poles, are common to all elements of
Thus
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where is the N × N residue matrix corresponding the ith pole of the system.

Having seen how to post-process PRIMA-reduced models, we now return to the gen-
eral problem: state-space realization from poles and residues.

7.3 State-Space Realization from Poles and Residues

There are two steps involved in generating an equivalent circuit for multiport macro-
models. First a state-space representation is obtained, which is also known as state
space realization. The second step is to synthesize an equivalent circuit. In this section
we explain the realization part. In the following section, we describe the synthesis
part.

The problem of state-space realization is defined as follows [7.3]: Given an s-domain
matrix function Y(s), find the matrices {A, B, C} in

such that

The matrix function to be realized, Y(s), can be expressed in terms of matrices,
which is the case in the projection-based order reduction methods such as PRIMA.
Construction of the state-space descriptions from PRIMA was explained in the previ-
ous section.

Alternatively, Y(s) can be specified in terms of poles and residues. We now discuss
this case.

We start with the simplest case. Consider a linear one-port and assume that its admit-
tance is approximated with a one-pole model:
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where the pole p is a negative real number with the associated residue k. A state-space
realization for this admittance is as follows:

where v(t) and i(t) represent the port voltage and current, respectively, and x(t) is
the state introduced.

Let us now assume that the admittance of the one-port is a q-pole approximation:

where all the poles are negative real numbers. In this case, a state-space realization is
achieved by introducing q state variables such that

where V and are the Laplace transforms of v(t) and respectively. The
state-space equations are then written as

or in a more compact form
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In the presence of complex poles, the representation becomes slightly more compli-
cated. To avoid complex numbers in the state matrix, a similarity transformation is
used. We now explain this with a simple case. Since the complex poles appear in con-
jugate pairs, we assume that the admittance is of the form

where p = a + bj, k = c + d j .

A state-space realization of (7.36) is in the form of (7.35), where

It can be shown that the two realizations shown below are equivalent as long as the
similarity transformation matrix J is non-singular:

Choosing J as

and applying the transformations and we get

Next we extend these results to linear multiports. We will consider three cases: SISO,
SIMO, and MIMO as defined in Section 7.1.
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First consider the SIMO case, that is, take only one column, say jth, in the admittance
matrix Y(s) and assume that all of the entries in the column share the same set of
poles,

In terms of input voltage and output currents, (7.41) is equivalent to

It can be shown that the following is a realization for (7.42):

where is the residue matrix in (7.42) and, and b are as defined in (7.34) and
(7.35), but expressed in terms of the poles used in (7.41). The realization of the entire
Y(s) matrix is obtained by combining the state equations given in (7.43) for all
inputs:

We should point out that the sizes of are not required to be the same, that is, the
number of poles can be different for each SIMO system. Also note that all can be
the same, corresponding to the realization of an admittance matrix with a common set
of poles for all entries, i.e., the MIMO case.
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Finally, we discuss the SISO case in which each entry has a different set of poles, i.e.,

A realization for each entry is similar to the one obtained for the SISO system given
in (7.35):

By combining all the input output pairs -- their total number is -- a realization for
the whole admittance matrix can be obtained.

As an example, consider the admittance matrix of a two-port:

and assume each entry has a state space realization of as defined in
(7.46). Then a realization for Y(s) is given by

Note that the size of the state matrix for the SIMO and MIMO cases is Nq while it is
for the SISO case. Assuming that the number of poles, q, is comparable in all

cases, it is more efficient to use a SIMO or MIMO based technique. Also, we recog-
nize that the MIMO approach does not have an advantage over SIMO with respect to
the size of the state matrix.
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7.4 Synthesis of State-Space Realizations

We now synthesize equivalent circuits for the state-space descriptions. We again start
with the simplest case. Take the Laplace transform of (7.31) which is the realization
of Y(s) = k/(s – p), one-pole admittance model of a one-port. After some manipu-
lation we obtain

where is the Laplace transform of x ( t ) . The system given in (7.49) can be synthe-
sized with simple circuit elements as shown in Figure 7.2.

We now consider the general case: multiport multipole admittance models. Assume
that the admittance matrix has a state-space realization in the form

The above system can be implemented using basic linear circuit elements such as
capacitors, resistances, and voltage controlled current sources. In the equivalent cir-
cuit, an internal node is created for each entry of the state vector. Consider a row from
the first matrix equation in (7.50). In the Laplace domain it becomes
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The term is realized with a parallel combination of a capacitor of a unity
value and a resistance with a value of All the other terms on the left hand side
are represented as voltage controlled current sources. All the terms on the right hand
side are also current sources which are controlled by the port voltages, The equiv-
alent circuit is shown in Figure 7.3.

Now consider a row from the second matrix equation in (7.50):

which can be synthesized as voltage controlled current sources at the ports as shown
in Figure 7.4. Figure 7.5 shows the complete circuit which synthesizes (7.50). Each of
the blocks in the middle corresponds to a state variable.
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7.5 Recursive Convolution

Another way of converting a frequency-domain description to a time-domain model
is through convolution, which, in general, has a quadratic runtime cost. But if the fre-
quency-domain descriptions are in terms of poles and residues we can exploit this fact
and evaluate the convolutions in a recursive manner so that the computational cost is
constant regardless of the time. In this section we present an efficient recursive con-
volution method which is also very easy to implement.

7.5.1 Numerical Convolution versus Recursive Convolution

Consider a one-port with an s-domain admittance model

In the time domain, its branch equation is given by the convolution

258 IC Interconnect Analysis



Recursive Convolution

Now suppose that a voltage source is connected between the terminals of the one-
port. We seek to find the values of i(t) at discrete time points Assume that we
can approximate v(t) and y(t) as piecewise constant waveforms. Namely,

Assuming that all the past values of v(t) are available, the value of can be com-
puted by discretizing the integral given in (7.54):

where we have assumed that v(t) = 0 for t < 0.

Two obvious drawbacks of the numerical convolution method are immediately recog-
nized from (7.56). First, all the past values of the waveforms must be stored, and more
importantly it has a complexity of In addition, we have to compute the
impulse response, y(t), from Y(s). For this, we can use either numerical inverse
Laplace transformation [7.4] or inverse fast Fourier transformation type approaches
[7.5]. Both of these transformations are often subject to some numerical problems.

Now suppose that the poles and residues of the admittance function are known. For
the sake of simplicity consider a one-pole model

whose inverse Laplace transform is given by the closed form expression
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Thus the convolution integration in (7.54) becomes

Dividing the integration into two parts, the value of the current at time can be
expressed as

It is easily recognized that the first integral in the second equation in (7.60) is nothing
but . Evaluating the second integral in (7.60) with a piecewise constant volt-
age waveform assumption, we obtain the following recursion to compute

It is apparent from (7.61) that we only need the most recent values of the waveforms.
Furthermore, the number of operations at each time step is fixed which results in a
computational complexity of O ( T ) .

In the above discussion we have assumed that the value of v(t) is known at the cur-
rent time point. This assumption is true only if a voltage source is connected to the
terminals of the one-port. Otherwise, and in general, the value of is unknown as
well, and has to be calculated simultaneously with and other circuit variables.
Hence (7.61) can be interpreted as an equivalent conductance and an equivalent cur-
rent source,

which is illustrated in Figure 7.6.
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Recursive convolution was first used in [7.6] for power transmission line simulations.
Recently, it has become popular again, this time for digital interconnect simulation.
After the development of model order reduction techniques, several recursive convo-
lution methods have been proposed in order to use these reduced order models in non-
linear simulators [7.7] [7.8] [7.9] [7.10]. Next, we present an efficient and simple
implementation of recursive convolution.

7.5.2 A Simple Implementation of Recursive Convolution

In the case of a q-pole admittance model for the one-port,

the convolution in (7.59) becomes

where the state corresponds to the pole and is defined as

Using a similar approach as in the last subsection, we can manipulate the above inte-
gration to obtain
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Since we do not know the exact shape of v(t) between and the integral in
(7.66) cannot be computed explicitly. In the introductory implementation described in
the previous subsection we assumed that the voltage waveform is piecewise constant
so that we could evaluate the integral analytically. A more acceptable waveshape is
piecewise linear as shown in Figure 7.7. Thus, the voltage between and is
expressed as follows:

Using the piecewise linear assumption in (7.67), the integral in (7.66) can be evalu-
ated explicitly:

We can rewrite the expression in (7.68) as
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with the parameters and defined as

These parameters depend only on the poles and the time step. They remain constant
when the time step is fixed for consecutive time points.

The current at time point can be expressed as

where the equivalent current source and the equivalent conductance are defined as

Once the voltage at time point is known from the solution of the overall circuit, the
states should be updated using (7.69) to perform the next time point calculation.

Complex poles are handled slightly differently. In this case, each conjugate pair owns
two states coupled to each other. Consider a pair of conjugate poles, and and
their residues:
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One can show that the corresponding states are updated as follows [7.10]:

where the parameters and are defined as

A. Extension to Multiports

We will explain the multiport case with a two-port example. Consider the frequency-
domain description of a two-port:

where the four admittance terms are given by
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Our goal is to calculate the discrete time-domain model at each time point:

From the circuit analysis point of view, the equivalent circuit of (7.78) is shown in
Figure 7.8. The discrete time domain model for a two-port at time point consists of
an equivalent conductance, an equivalent current source, and an equivalent VCCS at
each port. For a general multi-port, the discrete time-domain model will have the
same topology, except that there will be more voltage-controlled current sources.

During the simulation process, at each time point, a discrete time domain model simi-
lar to the one shown in (7.78), is constructed first, based on a reduced-order model
expressed in the frequency domain, as shown in (7.76). Then the model in (7.78) is
combined with the models connected to its ports via a circuit equation formulation
scheme such as the Modified Nodal Analysis (MNA). The solution of the nonlinear
MNA equations is obtained using a numerical integration approximation for the
capacitors and inductors that are not within the N-port(s), and a nonlinear iteration
method such as Newton-Raphson [7.11].

Upon choosing the appropriate time step, the parameters for each real pole are
calculated based on the formulae in (7.70). The equivalent conductance can then be
calculated as:
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The number of states to update is 4q. These states can be stored in a single vector x:

At each time point, if the time step is unchanged, only the equivalent current sources
have to be updated. This procedure can be carried out as shown in Figure 7.9. Note
that all the floating-point operations involved are SAXPY type. For a
modern computer architecture this is the simplest floating point operation and there-
fore, it can be carried out with the utmost efficiency.

B. Local Truncation Error (LTE) of the Algorithm

Following the common assumption of LTE estimation, we assume that the exact value
of the state at time point is known. Furthermore, we assume that the voltages at
time points and are calculated. Between the two time points, the voltage is
modeled as a perfect ramp, which is the general assumption in LTE estimation. We
will consider the LTE estimation for a first-order admittance

Then the exact solution of the state variable x at time point is

It is clear that using recursive convolution with a piece-wise linear waveshape model
yields the solution in (7.82), hence there is no error.
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7.6 Summary

We have described two methods to include interconnect macromodels into SPICE-
like time-domain nonlinear circuit simulators. The first one relies on finding a state-
space realization of the reduced order model. We have shown that once such a realiza-
tion is obtained, it can be synthesized with an equivalent circuit so that any circuit
simulator can be used. The second method, based on the recursive convolution,
requires a modification in the simulators. In this approach the multiports are replaced
by their discrete time-domain companion models. The parameters of these companion
models are calculated with a constant cost at each time step by exploiting the fact that
the pole-residue descriptions of the macromodels are available.
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CHAPTER 8 Interfacing Interconnect
and Gate-Delay Models

To shorten design cycles, digital systems are often designed at the gate and/or cell
level. In contrast to designing at the transistor level, gate or cell level design can sig-
nificantly reduce costly design verification by precharacterizing the gate and cell
delays for static timing analysis. The cell delays and transitions are generally
expressed empirically as a function of load capacitance and input signal transition
time. However, with the emerging interconnect dominance, gate loads can no longer
be modeled by purely capacitive loads for high performance digital circuits. In this
chapter we propose methods for interfacing empirical gate models to R(L)C intercon-
nect models. This is followed by application of the same modified gate models to cap-
ture dominant interconnect coupling effects.

8.1 Logic Stage Delay Calculation

For digital IC technologies in general, and CMOS in particular, it is assumed that the
load at the output of the gate has a negligible impact on the waveform behavior at the
gate input. Therefore, digital circuit delay calculation along timing paths can be per-
formed gate by gate or logic stage by logic stage for applications such as timing anal-
ysis [8.1], as shown in Figure 8.1. It should be noted that the gate-source and gate-
drain capacitances are included as part of the gate characterization and, therefore, not
considered during the partitioning process.
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Delay calculation is performed for each logic gate/stage input individually. It is
assumed that all other gate inputs are set to logic values such that the input pin under
consideration can cause the gate output to transition. The outputs that are expected
from a delay calculator are the waveforms at the fanouts, as a function of the wave-
form at the switching input pin. For example when we look at the logic stage in
Figure 8.1, the waveforms at Z, D and C pins are computed in the delay calculator for
when A pin is switching from low to high. Notice that a separate computation is
required when A switches from high to low or when B switches.

8.2 Gate Characterization

There are two approaches to gate delay modeling which have gained widespread
acceptance: 1) empirically derived expressions or look-up tables for delay and output-
signal transition as a function of load capacitance and input-signal transition time (k-
factor equations) [8.2]; and 2) a switch-resistor model comprised of a linear resistor
and a step function of voltage [8.3]. Both methods are empirically-based, since even
the second method requires empirical fitting to approximate the resistance value [8.5].

Switch resistor models have the advantage that their coupling with the RC intercon-
nect is inherently modeled. That is, the resistance model is able to capture the interac-
tion of the gate’s output resistance and the RC load. Timing analysis tools such as TV
[8.4] and Crystal [8.5] were developed using switch-resistor models to analyze the
transistor level circuit descriptions. The main difficulty with these approaches is cal-
culating a single linear resistor which captures the switching behavior of a CMOS
gate. Recognizing that this resistance is a function of the gate’s input signal transition
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time and output load, in [8.5] a single output resistance for the gate is empirically
derived. That is, the resistance is calculated as the average output impedance over a
range of input signal transition times and output loads.

When the load is purely capacitive, one can completely precharacterize a gate’s delay
and output signal behavior as a function of input signal transition time, and load
capacitance, [8.2]. The experimental data for the delay, and the gate-output
waveform transition time, are generally fitted to k-factor equations:

Interfacing Interconnect and Gate-Delay Models

where k and are empirically fitted functions, and the delay and transition times are
defined as shown in Figure 8.2. Note that we have simplified the waveforms as satu-
rated ramps by fitting a line through two predefined characterization points. With this
approximation it is possible to represent the waveshape with a single number, the
transition time. Sometimes it is useful to keep the rail-to-rail value instead of remem-
bering the characterization points. The extended transition time, can be computed
as

where denotes the time at which the waveform is at k percent of its final value.

Some methodologies use more than two points to characterize the waveshape, while
others employ more complex load models -- both of which increase the complexity of
delay calculation significantly. These types of characterizations are mainly used for
back-end verification processes for which speed is not critically important. For nota-
tional simplicity in this chapter, we assume the waveshape to be a saturated ramp. The
generalization beyond simple ramps will be discussed as required.

The delay and output transition time can also be characterized via look-up tables. The
construction of such a table is illustrated in Figure 8.3. Throughout this chapter, we
assume that gate delays are characterized with look-up tables. But, the methods we
present are equally applicable to k-factor delay models (regression fit of table data) as
well.
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8.3 Effective Capacitance Concept

Due to the increase in total metal resistance with scaling, and the tendency for the
effective gate output resistances to decrease as technologies are advanced, the RC
shielding effect becomes significant for deep submicron CMOS. To illustrate this
point, consider a simple gate model driving a distributed RC interconnect, with a load
capacitance at the end of the line, as shown in Figure 8.4. Assume that the gate is
modeled by a resistance and a Thevenin voltage source that are functions of input
transition time and output capacitance load. In this case, assume that the gate output
resistance, and Thevenin voltage signal were selected as those values that would
yield the same output delay and transition time as the actual gate when the load is the
total capacitance,

If then the gate delay is accurately characterized by the empirical model as
a function of total capacitance. However, if we consider the same gate resistance and
total load capacitance, but increase the metal resistance so that then the gate
delay at node will decrease. This decrease in delay is due to the metal resistance
shielding a portion of the downstream load capacitance. The difference in responses
are sketched in Figure 8.4. Note that the gate delay decreases, but the overall delay at

would increase due to an increase in We should also point out that the
responses for lines with significant metal resistance also tend to have non-digital
shaped waveforms as shown.
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In order to preserve the simplicity and efficiency of the empirical gate models for
complex RC loads, one can map the complex load to an effective capacitance (Ceff)
[8.6]. Since its invention, the Ceff approach has been successfully used in the design
of high-speed ICs. For an example, refer to [8.7], where the importance of modeling
the effective capacitance loading was analyzed for an industrial microprocessor
design.

8.4 Two-Step Delay Approximation

The simplest model of a gate and corresponding interconnect delay would be a two-
step approximation, as shown in Figure 8.5. The complete stage delay is the sum of
the gate and interconnect delays. To capture the gate delay using a simple empirical
gate delay model, the RC load is replaced by the effective capacitance, and then
the gate delay and output transition time is obtained from the empirical model of the
gate. Once the transition time at the gate output is calculated, the gate output wave-
form is approximated with a saturated ramp. The interconnect delay is then calculated
using this saturated ramp waveform as the input excitation.

The two-step delay approximation works well when the load seen by the gate is accu-
rately approximated by the total capacitance of the net. That is, if the metal resistance
is negligible, the whole interconnect behaves like an equipotential surface and the
waveform at the gate output appears instantly at all fanouts -- i.e., there is no slope
degradation or delay from gate output to fanouts.
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8.5 Thevenin Delay Modeling

With the increasing effects of interconnect resistance, however, gate output wave-
forms become increasingly non-digital and can no longer be modeled as saturated
ramps. A solution to this problem is to use Thevenin gate models based on the Ceff
concept, as proposed in [8.8] [8.9]. The gate is replaced by a time-varying voltage
source and a constant resistor, as shown in Figure 8.6. Based on a gate input wave-
form, A, the gate is modeled as a linear Thevenin equivalent with a time-varying volt-
age waveform, T. The voltage waveshape T is iteratively determined as a function of
the effective capacitance. Once the Thevenin model is parameterized, the intercon-
nect is then attached to the linear gate model and a linear circuit evaluation is per-
formed. With this modeling approach, the RC nature of the interconnect can be
captured to obtain the gate output and fanout waveforms more accurately.

8.5.1 Construction of the Thevenin Model

The Thevenin voltage waveform T is generally modeled via a saturated ramp voltage
that is characterized by a transition time and a delay These parameters, along
with some other delay and slew rate definitions, are illustrated in Figure 8.7.

The values of the Thevenin model parameters, and are chosen such that
the waveshape at the model output and the actual waveform from the library lookup
match. However, since the look-up tables and k-factor equations are not defined for
noncapacitive loads we need to use an intermediate effective capacitance value,
To find a commonly used procedure is to compute a capacitance value such that
when the driver is the Thevenin model, the average current into the interconnect and

are equal. Once is computed, it is used in the library lookup to obtain the
gate output (delay and transition time). Then a Thevenin voltage is computed to
match the library response.

Interfacing Interconnect and Gate-Delay Models 277



Interfacing Interconnect and Gate-Delay Models

278 IC Interconnect Analysis



Thevenin Delay Modeling

The process of Thevenin delay modeling is illustrated in Figure 8.8. Mathematically,
it is equivalent to solving the following set of nonlinear equations:.

where and are the parameters we wish to obtain. The first two equations in
(8.6) are the k-factor equations, and in the case of a table characterization they repre-
sent the table look-up process. The third and fourth equations correspond to the con-
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struction of the Thevenin model. The last equation matches the currents in the actual
and Ceff circuit.

We represent the actual interconnect circuit with a pi symbol since we use a reduced
order pi-model to approximate the driving-point characteristic of the RC load. The pi-
model has been observed to provide sufficient accuracy for the purpose of driving
point modeling inRC circuits. What is not shown in (8.4) is the selection of the Thev-
enin resistance which is addressed in Section 8.6.3.

We solve (8.4) iteratively to find and As shown in Figure 8.8, we can divide
each iteration stage into five steps. In the following we explain these steps in detail
and describe their correspondence to (8.4).

Precomputations

Certain parameters such as the moments of the interconnect, driving point load
model, and gate resistance can be calculated before the iteration process. Also
prior to iterating we can determine if we need to perform a full Ceff model delay cal-
culation or a simpler model will suffice. Refer to sections 8.6.1 and 8.6.2 for a
detailed treatment of the subject. For the computation of the gate resistance, refer to
section 8.6.3.

Iterations

a) Library lookup: From the empirical gate delay tables, obtain the gate output delay,
and the gate output transition time, for the given and input transition

time, values. The initial guess for in the first iteration is the total
capacitance of the interconnect. This step corresponds to evaluating the first two
equations.

b) Compute Thevenin voltage: If necessary, first update the value (Section 8.6.3).
Then find the Thevenin voltage parameters, and such that the output of the

circuit in Figure 8.8(b) matches the waveform obtained from the table in the
library lookup step. This step is represented in (8.4) by the functions f(.) and f’(.) and
on the details of derivations and computations for obtaining the and values are
outlined in Section 8.6.4.
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c) Find Given and the load model (Section 8.6.1) for the inter-
connect, compute the average current into the interconnect, The details are
given in Section 8.6.5.

d) Compute We find such that
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where is the average current into the circuit in Figure 8.8(d). We later show
that it is given by

Defining and multiplying each side by yields

The right side of equation (8.7) is a smooth function of x and bounded by A
regula-falsi scheme can be employed to iteratively solve for x in (8.7).

e) Converged?: The steps are repeated until the values of and converge. Alter-
natively, we can check for the convergence of Typically it takes 2-3 iterations to
converge on the value. However, there are certain cases where is only 10%
of (for example, a long interconnect with a large load at the end). In these cases,
a larger number of iterations may be required.

After the iterations

To get the waveforms at the gate output or the fanouts we need to simulate the inter-
connect and the Thevenin gate model together. The problem at hand is a very familiar
one: linear circuit analysis with a saturated ramp voltage source driver. For each
fanout of the net, we need to compute tvf and fanout_tr_s as defined in Figure 8.7 (tvf
is the 50%-50% delay between the saturated ramp and the fanout waveform;
fanout_tr_s is the rail to rail transition time of the fanout waveform). For details, refer
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to Section 8.6.6. When tvf and fanout_tr_s are found we can convert them to fanout_d
and fanout_tr using:

8.6 Thevenin Delay Model Computation Details

In the following subsections we describe the details of the Thevenin gate model com-
putation. Note that it is possible to employ entirely different strategies for each step.
Here, some commonly used and simple approaches are explained for completion of
the Ceff model description.

8.6.1 Computation of the Load Model

Rather than analyzing the entire interconnect at each iteration to calculate the average
current flowing into it, we can find a reduced order driving point model during the
precharacterization step and use the reduced model during the iterations. Although
more general Cauer realizations [8.10] are possible, a simple pi-model (as shown in
Figure 8.9), which is equivalent to a two pole realization of an RC driving point, is
often accurate enough for most typical CMOS technologies and circuits. The pi-cir-
cuit has is popular for driving-point characteristic modeling since it is the simplest
model which captures some resistive shielding [8.11].

The pi-model can be easily obtained from the moments. Let Y(s) be the driving point
admittance function of the actual gate load and be the moment of Y(s):
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where is zero for RC trees. Earlier chapters have shown how these moments are
calculated efficiently. The driving point admittance of the pi-circuit can be written
directly

8.6.2 Is Ceff Model Needed?

For interconnects with a small resistance value, can be very close to In
these cases the interconnect behaves as an equipotential surface, i.e., there is no signal
degradation because of the interconnect. To catch this situation prior to the start of
iterations, we can compare the pi-model resistance to the Ceff gate model resistance.

Similarly, we can define a maximum frequency of interest as
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By matching (8.10) to (8.11) up to third order we obtain the parameters for the pi-cir-
cuit model which will match the first three moments of the actual load:

where is the transition time at the gate output due to If at that frequency the
impedance of is much larger than R, we can ignore R since it will have no effect
at lower frequencies. Therefore, if the filtering criteria of

holds, we can simply use to calculate the gate delay.
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8.6.3 Gate Resistance

The gate resistance can be derived of varying complexity. It can be created as a func-
tion of input transition time as multiple resistance values, or as a single constant
The benefits of a single value are obvious [8.9], and the corresponding Ceff pro-
cess is greatly simplified.

An value can be precomputed [8.8] and the Ceff iterations can be started using
this value. Although the Ceff method is fairly insensitive to the value, we can
change it adaptively during the iterations to further increase the accuracy. Experimen-
tally it has been observed that gate resistance should be as large as possible. If a small

is selected, will be slower and closer to gate output transition time, This
is not desired since it means that the Ceff gate output will look more like a saturated
ramp, which we are trying to avoid. Therefore it makes sense to select as large as
possible to make the Ceff gate output waveform look more realistic. However, there is
a limit on how large we can select We have to select it small enough so that the
output of the circuit in Figure 8.8b can have a signal with a transition time of

8.6.4 Computation of Thevenin Voltage Parameters

At step b in Figure 8.8 we find the Thevenin voltage parameters and such that
the output waveform of the circuit matches the waveform obtained from the
empirical model. Recall that the empirical model output is represented by the delay

and transition time pair. Assuming a rising output transition, the (normal-
ized) output of the circuit can be written as

where is the unit ramp response
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To find the value we need to solve the following nonlinear equation systems:

In the last equation of (8.17), we match the transition times of the empirical model
and the circuit assuming a x-y (i.e. 20%-80%) slope characterization for the
exponential waveform. Note that the value is independent from

Instead of solving these nonlinear equations at each Ceff iteration, we can precharac-
terize the solution with 2-d look-up tables similar to k-factor representation:
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which is the fourth equation in (8.6). Note that for each different x%-y% slope char-
acterization, a different empirical model is required.

Once is found we can calculate the value of tvo from (8.15). Therefore, a similar
precharacterization for tvo (delay between gate output waveform and Thevenin wave-
form as defined in Figure 8.7) is possible:

Finally, is obtained as

which corresponds to the third equation in (8.6).

8.6.5 Computation of Average Current

In this section we detail the steps for calculating the average currents for the two cir-
cuits shown in Figure 8.10. The average current is defined as the ratio of the total cur-
rent flowing into the load model during the transition period of the input waveform to
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the transition period. For example, if is the driving point current waveform for
the pi-model, the average current is given by

We next find a closed form expression for so that it can be easily evaluated
during Ceff iterations. For this, we first write the input admittance function Y(s) in
terms of the circuit parameters:

where

Note that the input to the circuit is a saturated ramp waveform. However, we are inter-
ested in only for the time interval from and Therefore, we consider
as the ramp response for the driving point current. In the s-domain it is given by

286 IC Interconnect Analysis



Thevenin Delay Model Computation Details

From (8.22) and (8.24) it follows that

where

From (8.25), we obtain the current waveform as
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Inserting (8.27) into (8.21) and after some algebra, we obtain

In (8.28), the parameters and b are dependent, thus they need to
be updated whenever changes. Note that (8.28), which is derived for a second
order model, can be easily obtained for higher order load models also.

In a similar manner, the current waveform in the case of Ceff load is given by

After evaluating the integration, we obtain
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8.6.6 Calculation of the Delay at the Fanouts

Once the Thevenin model is obtained for the gate -- based on convergence to a
model we can solve the equivalent circuit shown in Figure 8.11 to
find the delays at the fanout nodes. In general, such a linear circuit can be analyzed
using one of the many delay calculation methods explained in the previous chapters
of this book.

These methods usually have two steps: (1) moment calculation from the circuit and
(2) delay computation from the moments. In this case, the first step can be skipped
since we already know the moments of the input admittance and transfer functions of
the interconnect circuit (at least to find the pi model). Referring to Figure 8.11, we
have the relation

we wish to compute the moments of
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For this we first substitute the moment expansions of Y(s) and H(s) in (8.33) into
(8.31), and then use (8.34) to obtain

8.7 Gate Models for General RLC Loading

As interconnect inductance effects become more pronounced for long, wide wires,
and as supply voltages scale down, shapes at the gate outputs become more and more
nondigital and the single saturated ramp may not be enough to model the Thevenin
voltage source. The Thevenin model accuracy can be increased by using a more gen-
eral piecewise linear model [8.12], as shown in Figure 8.12.

In this model, the total transition time is split into pieces such that

where are the predefined percentage points. It is natural to select these points to
be equally spaced in order to minimize the number of parameters required to charac-
terize the waveform. Thus, for an n-piece approximation
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After cross-multiplying and then matching the s terms, we obtain

Once the moments of and are known, depending on the desired accuracy,
any delay estimation or calculation method described earlier in this book can be used
to obtain the delay value at the fanout.
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Note that n = 1 reduces to the saturated ramp model. We construct the piecewise lin-
ear gate delay model, which is equivalent to finding the values of and simi-
lar to the saturated ramp model except with small modifications in the steps
corresponding to subfigures (b), (c), and (d) in Figure 8.8. We next explain the details.

Calculation of Thevenin Model

The Thevenin voltage source can be expressed in terms of unit ramp functions, r(t),
as

where and are the slopes which are functions of and
The waveform at the Ceff load becomes

The problem is now, given a value, find For this, we match the Ceff wave-
form to empirical model output at n different delay points
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where are obtained from the k-factor equations or tables of the empirical model.
This requires the characterization of the models for at least n delay points:

Calculation of Ceff

Similar to the RC interconnect loading case, we find by matching the currents
flowing into the Ceff load and actual load. To calculate the current flowing into the
actual load, previously we have modeled the driving point characteristics with a pi-
circuit. But a more accurate model for general RLC loads, including the effect of the
Thevenin resistance can be found using AWE. For example, a q-pole AWE char-
acterization is given in the form

This allows us to write the ramp response for the driving point current as

where we have utilized the fact that for RLC loads
with no dc paths to ground. From (8.39) and (8.44), the current to the actual load is
found as

The average current during the active interval, i.e., until reaches its final value,
can be obtained by evaluating the integral in (8.21) from
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The current waveform in the circuit is given by

8.8 Interconnect Coupling

As described in Chapter 1, as IC dimensions scale, the multi-level interconnects are
constructed such that the coupling capacitance becomes the dominant component of
load capacitance. This effect is largely the result of the increased ratio between the
lateral and the vertical capacitance of the line. This dominant coupling presents a dif-
ficult problem for gate and cell models that are characterized as a function of
grounded output load capacitance. In addition, if the interconnect lengths and signal
frequencies become such that inductance effects become evident, then modeling of
the magnetic couplings might be required as well.

8.8.1 Coupled Interconnect Gate-Delay Calculation

The familiar delay computation becomes simulation of coupled RLC linear networks
driven by CMOS gates, as shown in Figure 8.13. This section deals with the problem
of combining coupled RLC networks with precharacterized gates when no transistor
level information is present. We typically have two separate problems: One is the
solution of the coupled interconnect waveforms when the input waveforms are given.
The other problem is finding the worst/best case waveforms when only switching
windows from timing analysis are known -- i.e. the exact waveform positions are
unknown.

IC Interconnect Analysis

and the average current during the active interval becomes

To find we solve the nonlinear equation
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We first examine the traditional “Miller factor” approach to the coupling problem.
Then in Section 8.8.3 more accurate delay/noise analysis is presented with the use of
gate models for the coupled system. Lastly, Section 8.8.4 investigates how to compute
worst/best case delays due to coupling on a victim net by “noise pulse method” when
switching windows are available.

8.8.2 Miller Capacitance Approach

A simple approach to approximating the impact of capacitive coupling is to use a fac-
tored “Miller capacitance” to ground in the place of the actual coupling capacitance.
As shown in Figure 8.14, the coupling capacitance is replaced by a capacitance to
ground, whose value is multiplied by a Miller factor1. Typically, the Miller factor is
chosen as zero for min timing analysis and 2.0 for max timing analysis. This is an
accurate approximation if the aggressor and victim lines and are perfectly symmetri-
cal and switched at exactly the same time. But in general, for most problems other
than busses, this is rarely the case. In addition, it should be noted that the zero and 2.0
Miller scaled models are not guaranteed worst case bounds [8.13]. In more elaborate
schemes, the Miller factor can be a function of the aggressor’s transition times and the
switching windows. The functions are determined by experimentation. Despite all its
inadequacies, this model is often used due to its simplicity.

1. Although this is not the true “Miller effect” that is well known for analog circuits [8.14], its
similarity to that phenomena has resulted in it being used to denote these scaled coupling
capacitances.
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8.8.3 Gate Models With Coupled R(L)C interconnect

As described in earlier sections of this chapter, we replace all of the gates with their
Ceff gate models and iteratively solve for the gate switching behavior in terms of a
Thevenin model. With coupling, the iterative procedure is very similar [8.15]. The
basic Ceff principle is maintained: The average charge delivered by the Thevenin
voltage source should be the same for the actual interconnect loading and the
loading (Figure 8.8 c&d). The Thevenin equivalent parameters allow the model to fit
two points of the actual gate response for the case of a capacitive load (Figure 8.8
steps a and b).

The only difference between the coupled system and the single gate system is in how
to compute the average current for the actual loading (Figure 8.8 step c). For the sin-
gle gate case, we solved for the average current as described in Section 8.6.5. For the
coupled case, we solve for the linear system given in Figure 8.15, whereby we com-
pute that is the total average current that is flowing into port k using
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is the average current flowing into port k when port j is on (and the rest of the
sources are set to zero). The signs in (8.50) are determined such that is maximum
when we are computing the worst case and the minimum when we are computing the
best case. By assuming infinite switching windows at this stage, the resulting Ceff
gate models are guaranteed to be pessimistic.

After all are computed, steps d &a in Figure 8.8 are completed for each gate sepa-
rately in Figure 8.8 will be replaced by The iterations are repeated until con-
vergence in Ceff gate model parameters have been reached. Upon completion of the
iterations, a multiport linear circuit analysis is performed to solve for the waveforms
at the probe points. More on the details for computing the average current and noise
waveforms in Section 8.8.5.

8.8.4 Computing worst and best case waveforms

Thus far we have considered the coupled interconnect problem when the positions of
the input waveforms are known exactly. However, in a timing analysis environment,
we only know the min-max ranges for the arrival and transition times at each gate
input. The problem now becomes one of determining the worst-case alignment of
aggressor signals as they impact the response on the victim.

To find the set of these variables that generates the best/worst case for the victim net
is a difficult problem. Assuming that we start with some known switching points for
the aggressors, upon Ceff iteration convergence we have a linear gate model for all
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the aggressors and the victim. When combined with the exact interconnect, this sys-
tem constitutes a large linear time-invariant system.

The of the Thevenin sources are already computed upon convergence of the Ceff
iterations. From this information, the noise-free victim waveform and the noise
bumps from each aggressor on the victim can be computed from the linear system.
The problem of worst-case aggressor alignment now becomes one of finding the
shifts in the Thevenin gate delay models, which produce the slowest (fastest for
min timing) victim waveform. Obviously the actual alignment problem is not linear,
but the linear system produced within each Ceff iteration can be analyzed via super-
position. It should be noted, however, that both the original signal and the noise wave-
forms are modified by their relative positions, which greatly complicates finding the
worst case. Fortunately the observations made on the linear problem can be used to
upper bound the worst case delay [8.15].

We investigate only the worst case scenario in detail here since the best case can be
found by applying similar principles. In the worst case for capacitive coupling1 we
assume that the switching direction of the victim and the aggressors will be opposite.
This fact can be found by observation. Since everything in the circuit is linear, we
could simply add up the noise bumps and the noise-free victim waveform to find com-
posite victim waveform, had we known the exact aggressor shifts. In such a wave-
form, the 50% switching point is defined as the last point the signal crosses 50% (see
Figure 8.16). Due to crosstalk noise, the signal can cross the 50% several times, but
the last crossing is the only value used for a static timing analysis.

It is possible to solve for the latest 50% crossing of the composite victim waveform
using any root finding algorithm if the composite waveform is known exactly. But

1. Note that this can correspond to the best case for inductive coupling.
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since the aggressor shifts are unknown, we still don’t know the composite victim
waveform. To find the worst-case alignment and the worst case 50% delay on the
composite signal in a pessimistic way, we introduce the concepts of “noise pulse” and
“noise combo-pulse.” We begin for the case of a single aggressor.

Theorem 8.1: We can approximate the “noise bump,” with an encapsu-
lating pulse, such that  for all t. This always results in a
more pessimistic 50% delay of the composite victim waveform, regardless of the posi-
tion of the pulse.

Proof: Assume a falling victim waveform without loss of generality. Define
and where

It is important to observe that the last 50% crossing of
will always happen when it is falling. Since for all t, will

always cross 50% the last time later than It follows that the result is pessimis-
tic. QED

It may not be practical to use pulses that completely encapsulate the noise bump. For
practical purposes, the pulse only covers (see Figure 8.17).

Theorem 8.2: Define the noise pulse to be
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Where is the peak of the noise bump. The values are defined by:

where denotes the monotonic noise-free victim waveform. The worst case 50%
delay, is always between independent of the position of the pulse. More-
over, if the pulse position is known, it can be derived that

Proof: Observe from Figure 8.18 that crosses 50%
at Since for all t,
for all t. Since is monotonic, 50% crossings of will always be less than that
of This proves that is the maximum possible 50% delay for a given noise
pulse with a peak voltage of independent of the position of the pulse. Also
observe that

It is possible to draw with different   to come up with the formula in
(8.53). QED
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In some cases the peak of the noise bump may exceed the 50% switching threshold.
In such a case, Theorem 8.2 is no longer valid and the circuit may cause a switching
anytime after The circuit operation may be disrupted due to this glitch and it is
indeed a reliability violation [8.12].

Theorem 8.3: Define

and for all k, that is the pulses do not intersect. We refer to as the
combo-pulse. Worst case 50% delay of is given by

which corresponds to the maximum of the worst case 50% delays when pulses are
considered separately. Moreover, a noise pulse can be divided into several sections
with the same peak value and treated as a combo-pulse.

Proof. Since pulses do not intersect, we can write as

The worst 50% crossing of will occur in only one of the regions and is
independent of the other pulses widths and heights. Therefore, we can solve for the
worst case 50% delay for each individually and take the maximum among them.
QED

Theorem 8.4: Assume that the victim and aggressor switching windows are known.
Let denote the special points on earliest and latest noise-free vic-
tim waveforms as shown in Figure 8.19. Similarly and denote the start
and end points of the noise pulses corresponding to the aggressor’s earliest and latest
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arrival times. The worst case 50% delay can be found from the interaction of the lat-
est victim waveform with the enlarged noise pulse between and that is

Proof. Enlargement of the noise pulse between and follows from the fact that
the noise bump can be anywhere within the enlarged pulse, from the definition of a
switching window. Since this enlarged noise pulse encapsulates any portion of it,
from Theorem 8.3 its impact on 50% delay will be always worse than any portion of
it. As for the worst case alignment of the victim waveform with the enlarged noise
pulse, we must pick the latest one (i.e. Since (worst alignment case
50% delay) is always between according to Theorem 8.2, the larger they are,
the larger the delay will be. is independent of the position of the victim waveform,
therefore any victim waveform that happens before the latest one will yield less or
equal QED

We can apply the theorems developed above to the multi-aggressor case. The noise
pulses from each aggressor will be added to form a noise combo-pulse, as illustrated
in Figure 8.20. The addition of noise pulses can be thought of as partitioning them
into their intersecting portions and combining the pulses (Theorem 8.3). When com-
bining the intersection sections, we add the heights of pulses to model the effect of
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pulses at the same position from different aggressors. To solve for the worst case 50%
delay, we apply Theorem 8.3 and Theorem 8.4. Namely, the worst case delays for
each section in the combo-pulse are solved for using Theorem 8.4 and the results are
combined using Theorem 8.3.

It is easy to extend the noise pulse method to yield more accurate results by modeling
the pulse to fit to the noise shape better. An illustration of an RLC coupling noise and
its combo-pulse is illustrated in Figure 8.21.

Interfacing Interconnect and Gate-Delay Models 301



Interfacing Interconnect and Gate-Delay Models

8.8.5 Computation details for coupled waveforms

This section is a generalization of the concepts in Section 8.6.6 to the multiport case.
Different methods can be used to compute the currents for a multiport system. For
efficiency reasons, moment based systems are more popular. It is better to abstract the
coupled RC interconnect into driving point admittance and transfer function
moments. The problem that we will consider here is as follows: How do we analyze
the coupled linear circuit in Figure 8.22 which is obtained by combining the intercon-
nect block with the Thevenin source models which are used to replace the gates?

302 IC Interconnect Analysis



Interconnect Coupling

Let Y(s) be the n × n admittance matrix for the interconnect portion of the circuit
(multiport N in Figure 8.22). Thus

Interfacing Interconnect and Gate-Delay Models

where and are, respectively, the vectors of the port voltages and currents of
multiport N. Assume that moments of are Y ( s ) known:

Also let H(s) be the n-dimensional row vector containing the transfer functions from
the multiport inputs to the output node, i.e.,

with the moment expansion

Let and be the vectors of the port voltages and currents of multiport NP. Then

where R is the diagonal matrix such that is equal to the Thevenin resistance at
port k. Applying the Bartlett-Sherman-Morrison-Woodbury formula [8.16] to (8.65)
and dropping the s terms for convenience,
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Now consider the multiport that is labeled NP in Figure 8.22. It is obtained by com-
bining the coupled interconnect with the Thevenin driver models. From this model we
would like obtain the admittance matrix, Q(s), and the transfer functions from Thev-
enin voltage sources to the output, W(s) to analyze the output and driving point
responses.
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Equation (8.67) nicely eliminates the inverse Y term. In coupled RC tree circuits, Y0
is equal to zero, therefore it is not invertible. Setting

the moments of B can be found using polynomial division as the following recursive
formula:

Inserting B into (8.66) and expanding moment terms, we can see that the moments of
Q are given by

After the moments of Q(s) are computed, it is straightforward to use AWE or other
moment matching methods to find poles and residues. With the reduced order model
contained dominant poles, the time domain responses can be obtained by applying
symbolic convolution to solve for the driving point currents.

The transfer function moments at the output node of the victim net are updated simi-
larly after the Thevenin resistances are connected to the multiport. It can be shown
that

Expanding the terms into polynomials and after some algebra, we obtain the follow-
ing recursive formula to compute the moments of W(s):

The ith element of the row vector is the kth transfer function moment of the output
node due to the ith Thevenin source.
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8.9 Summary

Popular solutions as well as recent innovations are presented for the solution of the
combined gate and interconnect system. The impact of crosstalk noise was also
explored and methodologies were proposed to measure the delay and noise impact
under a static timing analysis context. The reader should be warned that the gate delay
modeling remains an ongoing research problem and may continue to evolve as new
technologies emerge.
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