
IEEE Std 1801™-2009

IEEE Standard for 
Design and Verification of 
Low Power Integrated Circuits

IEEE
3 Park Avenue 
New York, NY 10016-5997, USA

27 March 2009

IEEE Computer Society

Sponsored by the
Design Automation Standards Committee

and the

IEEE Standards Association Corporate Advisory Group

18
01

T
M

Authorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



Authorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



A

IEEE Std 1801™-2009

IEEE Standard for 
Design and Verification of 
Low Power Integrated Circuits

Sponsor

Design Automation Standards Committee
of the
IEEE Computer Society
and the
IEEE Standards Association Corporate Advisory Group

Approved 19 March 2009

IEEE-SA Standards Board
uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



A

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2009 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 27 March 2009. Printed in the United States of America.

Verilog is a registered trademark of Cadence Design Systems, Inc.

PDF: ISBN 978-0-7381-5929-4 STD95919
Print: ISBN 978-0-7381-5930-0 STDPD95919

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

Grateful acknowledgment is made to Accellera, Inc. for the permission to use the following source material:
Unified Power Format (UPF) Standard, Version 1.0

Abstract: The power supplied to elements in an electronic design affects the way circuits operate.
Although this is obvious when stated, today’s set of high-level design languages have not had a
consistent way to concisely represent the regions of a design with different power provisions, nor
the states of those regions or domains. This standard provides an HDL-independent way of
annotating a design with power intent. In addition, the level-shifting and isolation between power
domains may be described for a specific implementation, from high-level constraints to particular
configurations. When the logic in a power domain receives different power supply levels, the logic
state of portions of the design may be preserved with various state-retention strategies. This
standard provides mechanisms for the refined and specific description of intent, effect, and
implementation of various retention strategies. Incorporating components into designs is greatly
assisted by the encapsulation and specification of the characteristics of the power environment of
the design and the power requirements and capabilities of the components; this information
encapsulation mechanism is also described in this standard. The analysis of the various power
modes of a design is enabled with a combination of the description of the power modes and the
collection, generation, and propagation of switching information.
Keywords: corruption semantics, interface specification, IP reuse, isolation, level-shifting, power-
aware design, power intent, power domains, power modes, power states, progressive design
refinement, retention, retention strategies
uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



A

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of
the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus
development process, approved by the American National Standards Institute, which brings together volunteers
representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the
Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote
fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of
any of the information or the soundness of any judgments contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other
damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly
resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims
any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or
that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied
“AS IS.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase,
market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint
expressed at the time a standard is approved and issued is subject to change brought about through developments in the
state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least
every five years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed,
it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the
art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services
for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or
entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon his or her
independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of
a competent professional in determining the appropriateness of a given IEEE standard.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to
specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate
action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is
important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason,
IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant
response to interpretation requests except in those cases where the matter has previously received formal consideration.
A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations Manual
shall not be considered the official position of IEEE or any of its committees and shall not be considered to be, nor be
relied upon as, a formal interpretation of the IEEE. At lectures, symposia, seminars, or educational courses, an individual
presenting information on IEEE standards shall make it clear that his or her views should be considered the personal
views of that individual rather than the formal position, explanation, or interpretation of the IEEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation
with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with
appropriate supporting comments. Comments on standards and requests for interpretations should be submitted to the
following address:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854
USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by The Institute of
Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To
arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood
Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for
educational classroom use can also be obtained through the Copyright Clearance Center.
uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



A

Introduction

The purpose of this standard is to provide portable low power design specifications that can be used with a
variety of commercial products throughout an electronic system design, analysis, verification, and
implementation flow.

When the electronic design automation (EDA) industry began creating standards for use in specifying,
simulating and implementing functional specifications of digital electronic circuits in the 1980s, the primary
design constraint was the transistor area necessary to implement the required functionality in the prevailing
process technology at that time. Power considerations were simple and easily assumed for the design as
power consumption was not a major consideration and most chips operated on a single voltage for all
functionality. Therefore, hardware description languages (HDLs) such as VHDL (IEC/IEEE 61691-1-1)a

and Verilog (IEEE Std 1364™) [B2]b provided a rich set of capabilities necessary for capturing the
functional specification of electronic systems, but no capabilities for capturing the power architecture (how
each element of the system is to be powered).

As the process technology for manufacturing electronic circuits continued to advance, power (as a design
constraint) continually increased in importance. Even above the 90–100 nm process node size, dynamic
power consumption became an important design constraint as the functional size of designs increased power
consumption at the same time battery-operated mobile systems, such as cell phones and laptop computers,
became a significant driver of the electronics industry. Techniques for reducing dynamic power
consumption—the amount of power consumed to transition a node from a 0 to 1 state or vice
versa—became commonplace. Although these techniques affected the design methodology, the changes
were relatively easy to accommodate within the existing HDL-based design flow, as these techniques were
primarily focused on managing the clocking for the design (more clock domains operating at different
frequencies and gating of clocks when logic in a clock domain is not needed for the active operational
mode). Multi-voltage power management methods were also developed. These methods did not directly
impact the functionality of the design, requiring only level-shifters between different voltage domains.
Multi-voltage power domains could be verified in existing design flows with additional, straight-forward
extensions to the methodology.

With process technologies below 100 nm, static power consumption has become a prominent and, in many
cases, dominant design constraint. Due to the physics of the smaller process nodes, power is leaked from
transistors even when the circuitry is quiescent (no toggling of nodes from 0 to 1 or vice versa). New design
techniques were developed to manage static power consumption. Power gating or power shut-off turns off
power for a set of logic elements. Back bias techniques are used to raise the voltage threshold at which a
transistor can change its state. While back bias slows the performance of the transistor, it greatly reduces
leakage. These techniques are often combined with multi-voltages and require additional functionality:
power management controllers, isolation cells that logically and/or electrically isolate a shutdown power
domain from “powered-up” domains, level-shifters that translate signal voltages from one domain to
another, and retention registers to facilitate fast transition from a power-off state to a power-on state for a
domain.

The EDA industry responded with multiple vendors developing proprietary low power specification
capabilities for different tools in the design and implementation flow. Although this solved the problem
locally for a given tool, it was not a global solution in that the same information was often required to be
specified multiple times for different tools without portability of the power specification. At the Design

aInformation on references can be found in Clause 2.
bThe number in brackets correspond to those of the bibliography in Annex A.

This introduction is not part of IEEE Std 1801-2009, IEEE Standard for Design and Verification of Low Power
Integrated Circuits.
iv Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



A

Automation Conference (DAC) in June 2006, several semiconductor/electronics companies challenged the
EDA industry to define an open, portable power specification standard. The EDA industry standards
incubation consortium, Accellera, answered the call by creating a Technical SubCommittee (TSC) to
develop a standard. The effort was named Unified Power Format (UPF) to recognize the need of unifying
the capabilities of multiple proprietary formats into a single industry standard. Accellera approved UPF 1.0
as an Accellera standard in February 2007. In May 2007, Accellera donated UPF to the IEEE for the
purposes of creating an IEEE standard. The donation was executed to the P1801 working group and,
although this standard is the first version of what is formally titled the IEEE Standard for the Design and
Verification of Low Power Integrated Circuits, it represents the second version of what is more colloquially
referred to as UPF.

Notice to users

Laws and regulations

Users of these documents should consult all applicable laws and regulations. Compliance with the
provisions of this standard does not imply compliance to any applicable regulatory requirements.
Implementers of the standard are responsible for observing or referring to the applicable regulatory
requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in
compliance with applicable laws, and these documents may not be construed as doing so. 

Copyrights

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and private
uses. These include both use, by reference, in laws and regulations, and use in private self-regulation,
standardization, and the promotion of engineering practices and methods. By making this document
available for use and adoption by public authorities and private users, the IEEE does not waive any rights in
copyright to this document.

Updating of IEEE documents

Users of IEEE standards should be aware that these documents may be superseded at any time by the
issuance of new editions or may be amended from time to time through the issuance of amendments,
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the
document together with any amendments, corrigenda, or errata then in effect. In order to determine whether
a given document is the current edition and whether it has been amended through the issuance of
amendments, corrigenda, or errata, visit the IEEE Standards Association Web site at http://
ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously.

For more information about the IEEE Standards Association or the IEEE standards development process,
visit the IEEE-SA website at http://standards.ieee.org.

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: http://
standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for
errata periodically.
Copyright © 2009 IEEE. All rights reserved. v

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.

http://ieeexplore.ieee.org/xpl/standards.jsp
http://ieeexplore.ieee.org/xpl/standards.jsp
http://standards.ieee.org/reading/ieee/updates/errata/index.html
http://standards.ieee.org/reading/ieee/updates/errata/index.html
http://standards.ieee.org


A

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/
index.html.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. A patent holder or patent applicant has filed a statement
of assurance that it will grant licenses under these rights without compensation or under reasonable rates,
with reasonable terms and conditions that are demonstrably free of any unfair discrimination to applicants
desiring to obtain such licenses. Other Essential Patent Claims may exist for which a statement of assurance
has not been received. The IEEE is not responsible for identifying Essential Patent Claims for which a
license may be required, for conducting inquiries into the legal validity or scope of Patents Claims, or
determining whether any licensing terms or conditions provided in connection with submission of a Letter of
Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this
standard are expressly advised that determination of the validity of any patent rights, and the risk of
infringement of such rights, is entirely their own responsibility. Further information may be obtained from
the IEEE Standards Association.
vi Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.

http://standards.ieee.org/reading/ieee/interp/index.html
http://standards.ieee.org/reading/ieee/interp/index.html


A

Participants

The Unified Power Format Working Group is entity based. At the time this standard was completed, the
Unified Power Format Working Group had the following membership:

Stephen Bailey, Chair
Gary Delp, Vice-Chair

Joe Daniels, Technical Editor
 

The following members of the entity balloting committee voted on this standard. Balloters may have voted
for approval, disapproval, or abstention.

 

Karen Bartleson
Frank Berntsen
Jason Binney
John Biggs
Minh Chau
Marc Edwards
Ed Huijbregts

Knut Just
Juergen Karmann
Kevin Kranen
Rolf Lagerquist
Olivier Lunven
Lisa McIlwain
Arvind Narayanan

Judith Richardson
Michael Rifani
Arturo Salz
Andrew Saunders
Eike Schmidt
Jim Sproch
Yatin Trivedi

ARM 
Accellera 
IBM 
Improv Systems 

Intel 
JEITA 
LSI Corporation 
Magma Design Automation 

Mentor Graphics 
NXP 
Synopsys 
Texas Instruments 
Copyright © 2009 IEEE. All rights reserved

uthorized licensed use limited to: ST Microelectronics. Dow
.

nloaded on May 27, 2009 at 11:23 from IEEE Xplore.  R
vii

estrictions apply.



A

When the IEEE-SA Standards Board approved this standard on 19 March 2009, it had the following
membership:

Robert M. Grow, Chair

Steve M. Mills, Past Chair

Judith Gorman, Secretary

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Satish K. Aggarwal, NRC Representative
Michael Janezic, NIST Representative
Howard Wolfman, TAB Representative

Michelle Turner
IEEE Standards Program Manager, Document Development

Michael D. Kipness
IEEE Standards Program Manager, Technical Program Development

Noelle Humenick
IEEE Standards Corporate Client Manager

John Barr
Karen Bartleson
Victor Berman
Ted Burse
Richard DeBlasio
Andy Drozd
Mark Epstein

Alexander Gelman
Jim Hughes
Rich Hulett
Young Kyun Kim
Joseph L. Koepfinger*
John Kulick
David Law
Ted Olsen

Glenn Parsons
Ron Petersen
Chuck Powers
Thomas Prevost
Narayanan Ramachandran
Jon Rosdahl
Sam Sciacca
v

utho
iii

rized licensed use limited to: ST Microelectronics. Downlo
Copyrig

aded on May 27, 2009 at 11:23 from IEEE Xplore.  Res
ht © 2009 IEEE. All rights reserved. 

trictions apply.



A

Contents

1. Overview.............................................................................................................................................. 1

1.1 Scope .......................................................................................................................................... 1
1.2 Purpose ....................................................................................................................................... 1
1.3 Key characteristics of the Unified Power Format (UPF) ........................................................... 1
1.4 Power supply network design intent .......................................................................................... 3
1.5 Extending logic specification ..................................................................................................... 5
1.6 Conventions used ....................................................................................................................... 6
1.7 Use of color in this standard....................................................................................................... 7
1.8 Contents of this standard ............................................................................................................ 7

2. Normative references ........................................................................................................................... 9

3. Definitions, acronyms, and abbreviations............................................................................................ 9

3.1 Definitions.................................................................................................................................. 9
3.2 Acronyms and abbreviations.................................................................................................... 12

4. Power domains, supply sets, name spaces, and precedence .............................................................. 15

4.1 Power domains ......................................................................................................................... 15
4.2 Supply nets and ports ............................................................................................................... 16
4.3 Supply sets................................................................................................................................ 16

4.3.1 Explicit connection of supply nets ............................................................................ 17
4.3.2 Automatic connection of supply nets ........................................................................ 17
4.3.3 Implicit connection of supply nets ............................................................................ 17
4.3.4 Predefined supply set functions ................................................................................ 18

4.4 Naming rules ............................................................................................................................ 18
4.5 Name space semantics.............................................................................................................. 19
4.6 Attributes and HDLs ................................................................................................................ 20
4.7 Precedence................................................................................................................................ 21
4.8 Lexical elements....................................................................................................................... 21
4.9 Units ......................................................................................................................................... 21
4.10 Boolean expressions................................................................................................................. 22

5. Simulation semantics ......................................................................................................................... 23

5.1 Supply network creation........................................................................................................... 23
5.2 Supply network simulation semantics...................................................................................... 23

5.2.1 Supply network initialization .................................................................................... 23
5.2.2 Supply network update and evaluation ..................................................................... 24

5.3 Power switch modeling ............................................................................................................ 24
5.4 Power states.............................................................................................................................. 26

5.4.1 Power states of supply nets and ports ....................................................................... 26
5.4.2 Power states of supply sets ....................................................................................... 26
5.4.3 Power states of power domains ................................................................................ 27
5.4.4 Power states of systems and subsystems .................................................................. 31

5.5 Power state name spaces .......................................................................................................... 32
5.6 Simstate simulation semantics ................................................................................................. 32
Copyright © 2009 IEEE. All rights reserved. ix

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



A

5.6.1 NORMAL ................................................................................................................. 33
5.6.2 CORRUPT ................................................................................................................ 33
5.6.3 CORRUPT_ON_ACTIVITY ................................................................................... 33
5.6.4 CORRUPT_STATE_ON_CHANGE ....................................................................... 33
5.6.5 CORRUPT_STATE_ON_ACTIVITY ..................................................................... 34
5.6.6 NOT_NORMAL ....................................................................................................... 34

5.7 Transitioning from one simstate state to another ..................................................................... 34
5.7.1 Any state transition to CORRUPT ............................................................................ 34
5.7.2 Any state transition to CORRUPT_ON_ACTIVITY ............................................... 34
5.7.3 Any state transition to CORRUPT_STATE_ON_CHANGE ................................... 34
5.7.4 Any state transition to CORRUPT_STATE_ON_ACTIVITY ................................ 35
5.7.5 Any state transition to NORMAL ............................................................................. 35
5.7.6 Any state transition to NOT_NORMAL .................................................................. 35

6. Commands ......................................................................................................................................... 37

6.1 Conventions used ..................................................................................................................... 37
6.2 Generic UPF command semantics ........................................................................................... 38
6.3 effective_element_list semantics.............................................................................................. 38

6.3.1 Transitive TRUE ....................................................................................................... 39
6.3.2 Result ........................................................................................................................ 40

6.4 Command refinement............................................................................................................... 41
6.5 Error handling .......................................................................................................................... 42

6.5.1 errorCode .................................................................................................................. 42
6.5.2 errorInfo .................................................................................................................... 43

6.6 add_domain_elements.............................................................................................................. 43
6.7 add_port_state ......................................................................................................................... 44
6.8 add_power_state ...................................................................................................................... 45
6.9 add_pst_state ........................................................................................................................... 47
6.10 associate_supply_set ............................................................................................................... 48
6.11 bind_checker ........................................................................................................................... 50
6.12 connect_logic_net .................................................................................................................... 51
6.13 connect_supply_net ................................................................................................................. 52
6.14 connect_supply_set ................................................................................................................. 53
6.15 create_composite_domain ....................................................................................................... 55
6.16 create_hdl2upf_vct .................................................................................................................. 56
6.17 create_logic_net ...................................................................................................................... 58
6.18 create_logic_port ..................................................................................................................... 58
6.19 create_power_domain ............................................................................................................. 59
6.20 create_power_switch ............................................................................................................... 61
6.21 create_pst ................................................................................................................................. 64
6.22 create_supply_net .................................................................................................................... 65

6.22.1 Supply net resolution ................................................................................................ 65
6.22.2 Resolutions methods ................................................................................................. 66
6.22.3 Supply nets defined in HDL ..................................................................................... 67

6.23 create_supply_port .................................................................................................................. 67
6.24 create_supply_set .................................................................................................................... 68

6.24.1 Predefined supply set functions ................................................................................ 69
6.24.2 Referencing supply set functions .............................................................................. 69

6.25 create_upf2hdl_vct .................................................................................................................. 70
6.26 describe_state_transition ......................................................................................................... 71
6.27 load_simstate_behavior ........................................................................................................... 72
6.28 load_upf ................................................................................................................................... 72
6.29 load_upf_protected .................................................................................................................. 73
x Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



A

6.30 map_isolation_cell .................................................................................................................. 74
6.31 map_level_shifter_cell ............................................................................................................ 76
6.32 map_power_switch .................................................................................................................. 77
6.33 map_retention_cell .................................................................................................................. 78
6.34 merge_power_domains ........................................................................................................... 81
6.35 name_format ............................................................................................................................ 83
6.36 save_upf .................................................................................................................................. 84
6.37 set_design_attributes ............................................................................................................... 85
6.38 set_design_top ......................................................................................................................... 86
6.39 set_domain_supply_net ........................................................................................................... 86
6.40 set_isolation ............................................................................................................................. 88
6.41 set_isolation_control ............................................................................................................... 94
6.42 set_level_shifter ...................................................................................................................... 95
6.43 set_partial_on_translation ..................................................................................................... 100
6.44 set_pin_related_supply .......................................................................................................... 101
6.45 set_port_attributes ................................................................................................................. 102
6.46 set_power_switch .................................................................................................................. 106
6.47 set_retention .......................................................................................................................... 108
6.48 set_retention_control ............................................................................................................. 112
6.49 set_retention_elements .......................................................................................................... 114
6.50 set_scope ............................................................................................................................... 115
6.51 set_simstate_behavior ........................................................................................................... 115
6.52 upf_version ............................................................................................................................ 116
6.53 use_interface_cell .................................................................................................................. 117

7. Queries ............................................................................................................................................. 121

7.1 find_objects ........................................................................................................................... 122
7.1.1 Pattern matching and wildcarding .......................................................................... 123
7.1.2 Wildcarding examples ............................................................................................ 123

7.2 query_upf .............................................................................................................................. 124
7.3 query_associate_supply_set .................................................................................................. 126
7.4 query_bind_checker .............................................................................................................. 127
7.5 query_cell_instances ............................................................................................................. 128
7.6 query_cell_mapped ............................................................................................................... 128
7.7 query_composite_domain ..................................................................................................... 129
7.8 query_design_attributes ........................................................................................................ 130
7.9 query_hdl2upf_vct ................................................................................................................ 131
7.10 query_isolation ...................................................................................................................... 132
7.11 query_isolation_control ......................................................................................................... 133
7.12 query_level_shifter ................................................................................................................ 135
7.13 query_map_isolation_cell ..................................................................................................... 136
7.14 query_map_level_shifter_cell ............................................................................................... 137
7.15 query_map_power_switch .................................................................................................... 138
7.16 query_map_retention_cell ..................................................................................................... 139
7.17 query_name_format .............................................................................................................. 140
7.18 query_net_ports ..................................................................................................................... 141
7.19 query_partial_on_translation ................................................................................................. 142
7.20 query_pin_related_supply ..................................................................................................... 142
7.21 query_port_attributes ............................................................................................................ 143
7.22 query_port_direction ............................................................................................................. 144
7.23 query_port_net ...................................................................................................................... 144
7.24 query_port_state .................................................................................................................... 145
7.25 query_power_domain ............................................................................................................ 146
Copyright © 2009 IEEE. All rights reserved. xi

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



A

7.26 query_power_domain_element ............................................................................................. 147
7.27 query_power_state ................................................................................................................ 147
7.28 query_power_switch ............................................................................................................. 148
7.29 query_pst ............................................................................................................................... 149
7.30 query_pst_state ...................................................................................................................... 150
7.31 query_retention ...................................................................................................................... 151
7.32 query_retention_control ........................................................................................................ 153
7.33 query_retention_elements ..................................................................................................... 154
7.34 query_simstate_behavior ....................................................................................................... 155
7.35 query_state_transition ........................................................................................................... 156
7.36 query_supply_net .................................................................................................................. 157
7.37 query_supply_port ................................................................................................................. 158
7.38 query_supply_set ................................................................................................................... 159
7.39 query_upf2hdl_vct ................................................................................................................ 160
7.40 query_use_interface_cell ....................................................................................................... 161

8. Switching Activity Interchange Format (SAIF) .............................................................................. 163

8.1 Syntactic conventions............................................................................................................. 164
8.2 Lexical conventions................................................................................................................ 165

8.2.1 White space ............................................................................................................. 165
8.2.2 Comments ............................................................................................................... 165
8.2.3 Numbers .................................................................................................................. 165
8.2.4 Strings ..................................................................................................................... 166
8.2.5 Parenthesis .............................................................................................................. 166
8.2.6 Operators ................................................................................................................. 166
8.2.7 Hierarchical separator character ............................................................................. 166
8.2.8 Identifiers ................................................................................................................ 166
8.2.9 Keywords ................................................................................................................ 166
8.2.10 Syntactic categories for token types ....................................................................... 167

8.3 Backward SAIF file................................................................................................................ 167
8.3.1 SAIF file ................................................................................................................. 168
8.3.2 Header ..................................................................................................................... 168
8.3.3 Simple timing attributes .......................................................................................... 171
8.3.4 Simple toggle attributes .......................................................................................... 171
8.3.5 State-dependent timing attributes ........................................................................... 173
8.3.6 State-dependent toggle attributes ............................................................................ 175
8.3.7 Path-dependent toggle attributes ............................................................................. 177
8.3.8 SDPD toggle attributes ........................................................................................... 178
8.3.9 Net, port, and leakage switching specifications ...................................................... 178
8.3.10 Backward SAIF info and instance data ................................................................... 180

8.4 Library forward SAIF file ...................................................................................................... 181
8.4.1 The SAIF file .......................................................................................................... 182
8.4.2 State-dependent timing directive ............................................................................ 184
8.4.3 State-dependent toggle directive ............................................................................. 185
8.4.4 Path-dependent toggle directive .............................................................................. 185
8.4.5 SDPD toggle directives ........................................................................................... 186
8.4.6 Module SDPD declarations .................................................................................... 186
8.4.7 Library SDPD information ..................................................................................... 187

8.5 The RTL forward SAIF file ................................................................................................... 188
8.5.1 The SAIF file .......................................................................................................... 188
8.5.2 Port and net mapping directives .............................................................................. 190
8.5.3 Instance declarations ............................................................................................... 191
xii Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



A

Annex A (informative) Bibliography ....................................................................................................... 193

Annex B (normative) Supply net logic type ............................................................................................. 195

Annex C (normative) Value conversion tables (VCTs) ............................................................................ 207

Annex D (informative) UPF procs ........................................................................................................... 211

Annex E (informative) De-rating factor for inertial glitch ....................................................................... 217
Copyright © 2009 IEEE. All rights reserved. xiii

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



A
uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



A

IEEE Standard for 
Design and Verification of 
Low Power Integrated Circuits

IMPORTANT NOTICE: This standard is not intended to ensure safety, security, health, or
environmental protection in all circumstances. Implementers of the standard are responsible for
determining appropriate safety, security, environmental, and health practices or regulatory requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers. These
notices and disclaimers appear in all publications containing this document and may be found under the
heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents.”
They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/
disclaimers.html.

1. Overview

1.1 Scope

This standard establishes a format used to define the low power design intent for electronic systems and
electronic intellectual property. The format provides the ability to specify the supply network, switches,
isolation, retention and other aspects relevant to power management of an electronic system. The standard
defines the relationship between the low power design specification and the logic design specification
captured via other formats (e.g., standard hardware description languages).

1.2 Purpose

The standard provides portability of low power design specifications that can be used with a variety of
commercial products throughout an electronic system design, analysis, verification and implementation
flow.

1.3 Key characteristics of the Unified Power Format (UPF)

The Unified Power Format (UPF) provides the ability for electronic systems to be designed with power as a
key consideration early in the process. UPF accomplishes this by allowing the specification of what was
traditionally physical implementation-based power information early in the design process—at the register
Copyright © 2009 IEEE. All rights reserved. 1

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.

http://standards.ieee.org/IPR/disclaimers.html
http://standards.ieee.org/IPR/disclaimers.html


IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

transfer level (RTL) or earlier. Figure 1 shows UPF supporting the entire design flow. UPF provides a
consistent format to specify power design information that may not be easily specifiable in a hardware
description language (HDL) or when it is undesirable to directly specify the power semantics in an HDL, as
doing so would tie the logic specification directly to a constrained power implementation. UPF specifies a
set of HDL attributes and HDL packages to facilitate the expression of power intent in HDL when
appropriate (see Table 1 and Annex B). UPF also defines consistent semantics across verification and
implementation, i.e., what is implemented is the same as what has been verified.

Figure 1—UPF tool flow

As indicated in Figure 1, UPF files are part of the design source. Combined with the HDL, the UPF files are
used to describe the intent of the designer. This collection of source files is the input to several tools, e.g.,
simulation tools, synthesis tools, and formal verification tools.

— Synthesis tools can read the HDL/UPF design input files and produce a netlist. The tool or user may
produce a new UPF fileset that, combined with the netlist, represents a further refined version of
same design.

— In those cases where names change, a UPF file with the new names is needed. A UPF-aware logical
equivalence checker can read the full design filesets and perform the checks including the results of
the UPF commands to ensure equivalence.

Synthesis

UPF
HDL

(RTL)

P & R

UPF
Verilog
(Netlist)

UPF
Verilog
(Netlist)

Si
m

ul
at

i o
n ,

Lo
g i

ca
lE

q u
iv

a l
en

c e
C

he
ck

in
g,

.. .

Synthesis

UPF
HDL

(RTL)

P & R

UPF
Verilog
(Netlist)

UPF
Verilog
(Netlist)

Si
m

ul
at

i o
n ,

Lo
g i

ca
lE

q u
iv

a l
en

c e
C

he
ck

in
g,

.. .
2 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

— Place and Route tools read both the netlist and the UPF files and produce outputs, potentially
including an output UPF file.

UPF is a concise power design intent specification capability. Power design intent can be easily specified
over many elements in the design. A UPF specification can be included with the other deliverables of
intellectual property (IP) blocks and reused along with the other delivered IP. UPF supports various
methodologies through carefully defined semantics, flexibility in specification, and, when needed, defined
rational limitations that facilitate automation in verification and implementation.

A UPF specification defines how to create a supply network to supply power to each design element, how
the individual supply nets behave with respect to one another, and how the logic functionality is extended to
support dynamic power switching to these logic design elements. By controlling the operating voltages of
each supply net and whether the supply nets (and their connected design elements) are turned on or off, the
supply network only provides power at the level the functional areas of the chip need to complete the
computational task in a timely manner.

1.4 Power supply network design intent

Designing electronics to meet low power design constraints requires the specification of a power supply
network that can control the distribution of that supply to minimize energy consumption. UPF supports the
specification of the power supply distribution network so the supply network can be automatically
implemented at a relatively abstract level.

To help manage the complexity of the supply network specification, power domains are defined to group
elements from the logic hierarchy that share common supply needs. By default, all logic elements in a power
domain use the same primary supply. Additional supplies may be defined to serve different uses in a power
domain. In addition to the primary supply, UPF provides well-defined semantics for other supplies for both
verification and implementation contexts.

The supply network consists of supply ports, switches, and supply nets. Supply network objects are defined
within the logical hierarchy relative to the context of a power domain. Supply ports provide the supply
interface to the logical hierarchy and the power domain’s elements. Supply ports also provide the supply
interface to switches. Switches control the supply distribution. Supply nets connect supply ports.

Although there is an obvious inference to the actual wires and ports in the implemented hardware, a UPF
supply network is an abstraction of the electrical network on the chip. UPF defines no routing or layout
information. As the supply network is specified apart from the logic design, the logic design specification
remains independent of a specific power supply network specification.

Figure 2 shows an example supply distribution network for a hypothetical chip, mySoC. A top-level power
domain, mySoC_PD defined at the U_top instance level in the logical hierarchy, is defined with three
supply ports, Pbat, Pwall, and GND. These ports represent the off-chip power sources. A single switch
(S1) controls whether the chip receives its supply from Pbat or Pwall. Supply nets connect the output
from S1 to each power domain defined within the top-level power domain. mySoC_PD does not contain
any logic elements other than the root of the design U_top; its purpose is to define the interface to the off-
chip power sources and provide the top-level supply network.
Copyright © 2009 IEEE. All rights reserved. 3

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

Figure 2—A supply distribution network

Four power domains are defined at the next level, ana_PD, camera_PD, core_PD, and mp3_pd.
camera_PD, mp3_PD, and ana_PD each have a similar supply network internal to them. The primary
supply is switched (S4, S3, and S2), which indicates power to the logic elements in the domains can be
turned off. Unswitched isolation supplies are provided for camera_PD and mp3_PD.

core_PD contains a nested domain sub_PD. core_PD’s primary supply xRegSup is switched and
regulated within the domain, as it is the output of a regulator that has a switch (S5) driving the regulator’s
input (R1). Besides being the primary supply for core_PD, xRegSup also provides a retention supply for
sub_PD. The regulated supply is also connected to the output supply port (pRegSup) and, ultimately, the
switch input (S2) whose output drives the primary supply for ana_PD. This indicates ana_PD is powered
on only when core_PD is powered on. Within sub_PD, the primary supply is switched (S6), indicating
sub_PD can be powered down separately from core_PD, but holding the relationship that if core_PD is
powered down, so is sub_PD. sub_PD also contains two additional supplies (ret and BU). The ret
supply (which is used as a retention supply) has the same source as core_PD’s primary supply (the output
from switch S5) and the BU supply has the same source as the input to switch S5; therefore, the retention
supply (ret) is valid only when core_PD is on (switch S5 in the core_PD power domain). The BU
supply is provided for any retention elements whose state needs to be saved when both sub_PD and
core_PD are powered down.

This example demonstrates a methodology of locating the switches for a power domain’s supplies within the
power domain. UPF also supports placing the switches that can be switched off outside the power domain. If
this methodology were being used, switches S2, S3, and S4 would be located in mySoC_PD and additional
supply nets to connect the outputs of the switches to the corresponding ports of the nested power domains’
logical hierarchies would be created. Similarly, the switch S5 and regulator R1 would be placed in
mySoC_PD and the switch S6 moved up to core_PD. Either methodology is valid and the supply networks
are equivalent.

 mySoC_PD

S1

 core_PD

S5

xRegSup

 sub_PD

S6

ret

GND

SW_in

BU

GND

Pbat

Pwall

 mp3_PD

S3

ISO

GND

SW_in

 camera_PD

S4

ISO

GND

SW_in

R1

MP3_PRI

u_PD_PRI

camera_PD_PRI

SW_in

ana_PD
S2

GND

SW_inana_PRI

GND

GND

GND

pRegSup

U_ana

U_mp3

U_core

 U_camera

U_sub

U_top
4 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

UPF provides the flexibility to specify the network in whatever way makes sense for a given design or
methodology, including what can be switched. In this example, only the power supplies are switched;
however, switches can also be placed on grounds, bias nets, and other named supply functions. This
provides complete flexibility in how the supply distribution is controlled.

A UPF supply network defines a directed acyclic graph (DAG) when inout supply ports are not used.
Limiting the supply network to a DAG representation simplifies the evaluation of the supply network state.
This simplification enables efficient verification of the logic design and supply network within a digital
simulation environment.

The state of the supply network is simply the state of each control element (switch) in the network and the
values of any root supply driver at any given point in time. Absolute relationships are easy to infer from the
supply network specification (e.g., core_PD is always on when sub_PD and ana_PD are on). To capture
situations that are never intended to occur, UPF can also define legal and illegal power states (see Clause 4).
The named power states and the legality of a named or unnamed power state can be used to optimize the
design implementation and to facilitate design verification.

1.5 Extending logic specification

UPF defines extensions of the logic design with power-specific capabilities and constraints without
modifying the original logic specification. UPF provides designers with the guarantee they intuitively
expect, i.e., by adding a UPF power specification to a logic design or by changing or replacing an existing
UPF specification for a logic design, designers do not need to touch the original logic specification or re-
verify the logic functionality independent of the power specification. The UPF standard also facilitates the
reuse of the logic specification in contexts where an explicit power-design intent is not required or where the
power-design intent can change from one implementation of the design to another. Figure 3 illustrates how
UPF extends the logic design by adding power functionality while leaving the original functionality
unmodified.

Figure 3 also demonstrates the addition of retention and isolation functionality to the logic design. Isolation
is required to ensure undefined outputs from powered-down design elements do not drain power from those
design elements that are not powered down. Isolation also ensures a specific logic value is driven from the
power domain’s outputs. Assuming the output CNT in Figure 3 can serve as an interrupt or reset indicator to
another logic element, if the isolation of CNT did not take into account the active level of the interrupt or
reset interpretation of its value, then powering down the domain containing this counter could result in
undesired side-effects, e.g., logic in another power domain entering and remaining in a reset or interrupt-
handling mode. UPF supports the specification of isolation strategies that provide information on the clamp
values and location of the isolation logic.
Copyright © 2009 IEEE. All rights reserved. 5

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

Figure 3—UPF extends the logic design

Retention is the ability to save the value of a sequential element in a power domain prior to switching off the
power to that element and then later restoring its value after power has been enabled for the element.
Behavioral and implementation retention semantics can be specified for sequential elements that require
save and restore capabilities.

Isolation and retention both demonstrate UPF’s concise specification characteristics and its flexibility in
specification. A general strategy can be defined for both isolation and retention. This strategy is then applied
to all ports or sequential elements governed by the scope of the strategy. Specific overriding of a general
strategy allows for the management of exceptional situations. Flexibility is realized through the recognition
that isolation and retention behavior, for any given design or implementation, may be more complex or
require a different connectivity than the predefined general behaviors supported by UPF. In these situations,
mapping of the isolation or retention to specific verification (functional behavior) and implementation
models is supported.

1.6 Conventions used

Each clause that details any UPF commands defines it own conventions and meta-syntax as needed (see also
Clause 6 through Clause 8).

UPF LEVEL SHIFTING

u2u3u4u5

x3x4x5

u1x2
x1

f(x1...xn)

UPF ISOLATION

u2
u3
u4u5

x3
x4x5

u1x2
x1

f(x1...xn)

RTL Module A

Volatile 
Memory

Volatile
Stateful
Logic

Volatile 
Combinatorial

Logic

UPF 
SHDW

MSFF

SET

CLR

QD

REST
SAVE

UPF 
SHDW

MSFF

SET

CLR

QD

REST
SAVE

UPF 
SHDW

MSFF

SET

CLR

QD

REST
SAVE

UPF 
SHDW

MSFF

SET

CLR

QD

REST
SAVE

CNT
6 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

1.7 Use of color in this standard

This standard uses a minimal amount of color to enhance readability. The coloring is not essential and does
not affect the accuracy of this standard when viewed in pure black and white. The places where color is used
are the following:

— Cross references that are hyperlinked to other portions of this standard are shown in underlined-blue
text (hyperlinking works when this standard is viewed interactively as a PDF file).

— Syntactic keywords and tokens in the formal language definitions are shown in boldface-red text.
— Command arguments that can be layered are shown in boldface-green text. See also 6.4.

1.8 Contents of this standard

The organization of the remainder of this standard is as follows:
— Clause 2 provides references to other applicable standards that are presumed or required for this

standard.
— Clause 3 defines terms and acronyms used throughout the different specifications contained in this

standard.
— Clause 4 describes power domains and specifies the conventions for naming objects, their name

space resolution, and conflict resolution.
— Clause 5 defines simulation semantics for various UPF commands.
— Clause 6 details the syntax and semantics for each UPF command.
— Clause 7 details the syntax and semantics for each UPF query and the find_objects command.
— Clause 8 describes the syntax and semantics of the Switching Activity Interchange Format (SAIF).
— Annexes. Following Clause 8 are a series of annexes.

NOTE—The normative portion of this document is organized in two major sections. The first, Clause 1 through
Clause 7, defines the UPF capabilities for capturing low power design intent. The second, Clause 8, defines a format for
capturing switching activity information, which can be used for analysis and estimating power consumption. While
designing electronics to minimize power would benefit from tools supporting both sets of capabilities, the two sections
hold no dependencies between one another.1

1Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard.
Copyright © 2009 IEEE. All rights reserved. 7

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



A
uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

2. Normative references

The following referenced documents are indispensable for the application of this document (i.e., they must
be understood and used, so each referenced document is cited in text and its relationship to this document is
explained). For dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments or corrigenda) applies.

IEC/IEEE 61691-1-1, Behavioural languages—Part 1: VHDL language reference manual.2, 3

IEEE Std 1800™, IEEE Standard for SystemVerilog Unified Hardware Design, Specification, and
Verification Language.4

3. Definitions, acronyms, and abbreviations

For the purposes of this document, the following terms and definitions apply. The Authoritative Dictionary
of IEEE Standards Terms [B1]5 should be referenced for terms not defined in this clause.

3.1 Definitions

3.1.1 anonymous object: An object that is not named in the context of UPF. Implementations may assign a
legal name, but such names are not visible in the UPF context.

3.1.2 active scope: The instance specified by the set_scope command (see 6.50).

3.1.3 activity: Any change of the inputs of an element, regardless of whether there are any changes on the
output.

3.1.4 ancestor: Any instance between the active scope in the logic hierarchy and its root, including the
root. However, when the active scope is the root, it does not have any ancestors.

3.1.5 automatic supply net connection: A supply net connection created as a result of the association of a
supply net of a supply set identified by the function the net performs for the set and the pg_type attribute
on a supply port. See also explicit supply net connection and implicit supply set connection.

3.1.6 command: A Tcl procedure [B5] defined to specify UPF power design intent with one or more design
objects as its target.

3.1.7 composite domain: A container comprising a set of power domains called subdomains. All
subdomains in the composite domain share the same primary supply set. Any operation performed on the
composite domain has the same effect as performing the operation on each of the subdomains.

3.1.8 connection: The attachment of a port to a net. See also HighConn and LowConn.

2IEC publications are available from the Sales Department of the International Electrotechnical Commission, Case Postale 131, 3, rue
de Varembé, CH-1211, Genève 20, Switzerland/Suisse (http://www.iec.ch/). IEC publications are also available in the United States
from the Sales Department, American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://
www.ansi.org/).
3IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854,
USA (http://standards.ieee.org/).
4The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
5The number in brackets correspond to those of the bibliography in Annex A.
Copyright © 2009 IEEE. All rights reserved. 9

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

3.1.9 corruption semantics: The rules defining the behavior of the logic in the context of the supply
network specification, which might remove support of normal logical operation from time to time, as
distinguished from the default always-on logical behavior.

3.1.10 design element: An instance of a SystemVerilog module (see IEEE Std 1800),6 VHDL entity (see
IEC/IEEE 61691-1-1), or library cell. The term design element is often abbreviated to element.

3.1.11 design object: A design object is any object that can be declared or created in the logic hierarchy.
Design objects include (but are not limited to) wires, registers, switches, ports, supply nets, and design
elements. The term design object is often abbreviated to object.

3.1.12 driver: Any design element that supplies a value to a net, either directly, or indirectly via a port.
Ports are not drivers.

3.1.13 explicit supply net connection: A supply net connection that is explicitly specified in a
connect_supply_net command (see 6.13). See also automatic supply net connection and implicit supply
net connection.

3.1.14 extent: The set of design elements that comprise a power domain.

3.1.15 HighConn: This indicates the hierarchically higher (closer to the root) port connection.

3.1.16 hierarchical separator character: A special character used in composing hierarchical port, pin, net,
or instance names from simple identifiers.

3.1.17 implicit supply set connection: The supply nets of a supply set are implicitly connected to those
elements in the extent of a power domain, or those elements targeted by an isolation, retention, or level-
shifter strategy, when no supply port exists on the element. See also automatic supply net connection and
explicit supply net connection.

3.1.18 instance: A particular occurrence of a design object.

3.1.19 isolation: Techniques used to provide defined behavior of logic signals associated with
independently switched supplies.

3.1.20 isolation cell: A design element that passes logic values during normal mode operation and clamps
its output to some specified logic value when the control signal is asserted.

3.1.21 level-shifter: A design element that translates signal values from an input voltage swing to a
different output voltage swing.

3.1.22 logic design: Design functionality defined using an HDL, such as SystemVerilog or VHDL.

3.1.23 logic hierarchy: The tree structure of design elements specified within a logic design.

3.1.24 LowConn: This indicates the lower (further from the root) port connection.

3.1.25 map: Substitute a specific model for an abstract behavior.

3.1.26 merged domain: A single power domain that is the union of the elements that were members of the
power domains being merged. The domains that are merged into the merged domain are no longer visible.

6For information on references, see Clause 2.
10 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

3.1.27 model: A SystemVerilog module, VHDL entity/architecture, or Liberty cell.

3.1.28 named power state: A power state defined using add_power_state for a supply set or power
domain, or the DEFAULT_NORMAL and DEFAULT_CORRUPT power states predefined for supply
sets. See also unnamed power state.

3.1.29 net: The collection of interconnections between a collection of ports. A net may be named or
anonymous. At a module boundary, a named net may be considered as having two parts, the HighConn and
LowConn portion of the net relative to a particular module or cell boundary.

3.1.30 parent: The immediate ancestor of a given instance.

3.1.31 pg_type: Supply ports on components can be labeled with a “Power/Ground Type” name; e.g., the
Liberty definition [B6] of pg_type.

3.1.32 port: A connection on the interface of a SystemVerilog module or VHDL entity.

3.1.33 power domain: A collection of design elements that share a primary supply set. A power domain
may also have additional supplies, including retention and isolation supplies.

3.1.34 power state: The state of a supply net, supply port, supply set, or power domain. The power state
of a supply net or supply port is the state and voltage values of that supply net or supply port. The
power state of a supply set is determined by the state of the supply nets in the set or by a logic expression if
the supply network has not yet been created. The power state of a power domain is determined by the state
of supply sets associated with the domain and supply sets or supply nets referenced in a named power
state’s -supply_expr defined for the domain. The term power state is often abbreviated to state.

3.1.35 power state table: A table that captures the legal combinations of power states for a set of supply
nets.

3.1.36 primary supply set: The supply net connections inferred for all elements in the power domain,
unless overridden elsewhere.

3.1.37 rail: See the Liberty definition [B6] of power_rail.

3.1.38 receiver: Any design element that uses the value of a net as an input, either directly, or indirectly via
a port. Ports are not receivers.

3.1.39 regular expressions: See the Tcl definition [B4] of regular expressions.

3.1.40 regulator: A design element that takes a set of input supply nets and provides the source for a set of
output supply nets. The output voltage is a function of combining the input voltage and the logical state of
any control signals.

3.1.41 retention: Enhanced functionality associated with selected sequential elements or a memory such
that memory values can be preserved during the power-down state of the primary supplies.

3.1.42 retention register: A register that extends the functionality of a sequential element with the ability
to retain its memory value during the power-down state following the application of a suitable save and
restore protocol sequence.

3.1.43 rooted name: The name of a design object in the active scope or one of its descendants. It may
include a hierarchical separator character, but may not start with the hierarchical separator character.
Copyright © 2009 IEEE. All rights reserved. 11

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

3.1.44 root supply driver: The origin of a supply, e.g., an on-system voltage regulator, bias generator
modeled in HDL, or an off-chip supply source. See also supply source.

3.1.45 scope: A particular design element in the logic hierarchy.

3.1.46 sequential element: An object containing latch or flip-flop functionality.

3.1.47 simple name: A name in the active scope. The name does not contain any hierarchical separator
characters.

3.1.48 simstate: The level of operational capability supported by the active state of a supply set.

3.1.49 source: The active device or port connection that propagates a value on a net.

3.1.50 state element: A storage device such as a flip-flop, latch, memory element, or stored value that
would infer a sequential element from HDL code.

3.1.51 subdomain: A member of the set of subdomains comprising a composite power domain; each
subdomain retains its original identity as well as the collective identity of the composite power domain (see
6.15).

3.1.52 supply function: The purpose of an individual net in a supply set (e.g., power, ground, etc.)

3.1.53 supply net: A net with power state semantics.

3.1.54 supply port: A port with power state semantics.

3.1.55 supply set: A collection of supply nets that provide a power source.

3.1.56 supply source: A supply port that propagates but does not originate a supply state and voltage value.

3.1.57 switch: A design element that conditionally connects one or more input supply nets to a single
output supply net according to the logical state of one or more control inputs.

3.1.58 unnamed power state: A power state that is not predefined nor defined by the add_power_state
command (see 6.8). See also named power state.

3.1.59 UPF simulation: A simulation run that depends on semantics described in this standard.

3.2 Acronyms and abbreviations

DAG directed acyclic graph

EDA electronic design automation

HDL hardware description language

IP intellectual property

PST power state table

RTL register transfer level
12 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

SAIF Switching Activity Interchange Format

UPF Unified Power Format

VCT value conversion table

VHDL VHSIC hardware description language
Copyright © 2009 IEEE. All rights reserved. 13

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



A
uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

4. Power domains, supply sets, name spaces, and precedence

This clause provides an overview of power domains, supply sets and names in UPF.

4.1 Power domains

From a top-down view of power design specification, the fundamental object is the power domain. A power
domain is a collection of design elements. Unless otherwise specified, elements of a power domain share a
common primary supply set (see 4.3). The association of a primary supply set to all elements in a domain
provides the fundamental semantics and automation opportunities in UPF as the primary supply set is
implicitly connected to all elements within the domain.

The design consists of a hierarchical tree of design elements (logic hierarchy). The logic hierarchy level
where a power domain is created is called the scope of the power domain. The set of design elements that
belong to a power domain are said to be the extent of that power domain. This distinction is
important—while a design element can be the scope of multiple power domains, it can be in the extent of
one and only one power domain. It shall be an error if any design element is not included in a power domain
and does not have supply nets connected to all supply ports of all elements after the application of UPF
commands.

Each power domain exists within a scope of the logic hierarchy. A design element is a member of the power
domain that includes the design element’s parent instance, unless the design element has been explicitly
included as an element of another power domain whose scope is the element or an ancestor of the element.

In addition to creating the power domains, UPF commands create and connect new objects that did not exist
in the HDL description—e.g., switches, supply nets, supply ports, isolation elements, and level shifting
elements. UPF provides the ability to specify the low power design intent. By tightly associating the power
domain and other UPF created objects and connections with the HDL design, designers can design, verify,
and implement complex chips complete with all power-related connections and functionality.

— For verification, every object in the power domain and its power distribution and control network
exists within the logic design. This allows the designer to see these objects within the context of the
design.

— For implementation, UPF provides a convenient way to manipulate and report information on
groups of cells that share common power, ground, and bias supply connections.

— UPF ensures that the implementation semantics have matching simulation semantics; the results of
the semantic interpretation of UPF are consistent across simulation and implementation.

A power domain can be either contiguous or non-contiguous. The power domain is contiguous if a
connection from any object in the extent of the power domain to any other object in the extent does not
require leaving that power domain; otherwise the domain is non-contiguous. All elements within the extent
of the domain shall be within the scope of the domain or its descendants.

A net that is not driven by design elements in a particular domain is not corrupted by that domain; input
ports and assignment statements are not considered drivers in this context.

Supply network objects (supply nets, supply ports, supply sets, and switches) are created within the logic
hierarchy independent of the power domain definitions. This allows sharing of common components of the
supply distribution network across multiple power domains independent of the power domain the object is
within. Logic nets and ports created in UPF are created within the logic hierarchy independent of the power
domain definitions. This allows the power control network to be created and distributed across power
domains. All other UPF objects are created within the context of a power domain.
Copyright © 2009 IEEE. All rights reserved. 15

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

4.2 Supply nets and ports

Supply nets transport an electrical current. Supply ports provide the ability to connect a supply net to a
design element (including switches). Supply nets and ports may be created in UPF or in the HDL design. If
created in the HDL, the net or port shall be of the supply net type defined in the UPF SystemVerilog or
VHDL package (see Annex B). When created in UPF, the supply net is created within the scope of a design
element of the logic hierarchy. When created in UPF, a supply port is created on the interface of an element
in the logic hierarchy. The name of the supply net or port cannot conflict with the name of an existing net or
port (logic or supply) defined for that element.

Supply ports provide the ability for a design element to use a supply net that exists external to it. Supply
ports consist of two halves. The first half is the HighConn side, which is visible to the parent of the design
element whose interface contains the port. The second half is the LowConn side, which is visible internal to
the design element whose interface contains the port.

When a supply or logic net in the active scope is connected to a supply or logic port on a child instance, the
connection is made to the HighConn side of the port. When a supply or logic net in the active scope is
connected to a port defined on the interface of the design element that is the active scope, the connection is
made to the LowConn side of the port. If there is no net connected to a port referenced by a UPF command
in a context requiring a net name, a net with the same name as the port is implicitly created in the active
scope and implicitly connected to the port. If a port is referenced by a UPF command in a context requiring
a net, an existing net that is already connected to the port shall be used. However, if no net has been
connected to the port, a net with the same name as the port is implicitly created in the active scope and
implicitly connected to the port.

A supply or logic net in the active scope can be connected to a port only if the port is directly visible in the
same scope as the net or within the descendent tree of that scope. If the port is not directly visible in the same
scope as the net, additional ports and nets shall be implicitly created to establish the connection from the net
to the port. The implicitly created ports and nets shall have the same simple name as the net being connected
unless that name conflicts with the name of an existing port or net; in which case, to avoid a name conflict,
the tool shall create a name that is unique for that scope. See 6.35.

NOTE—Nets are propagated as necessary through the descendant tree and may be renamed to avoid name collision;
therefore, the same simple name in different scopes may refer to nets that are independent and unconnected.

The electric current transported by a supply net is originated by a root supply driver. A root supply driver is
the origin of a supply, e.g., an on-system voltage regulator, bias generator modeled in HDL, or an off-chip
supply source. A root supply driver may be conditionally propagated by a switch (modeled in HDL or
created in UPF, see 6.20). A supply net may be connected to one or more power switches or supply ports,
which may be connected to one or more root supply drivers (see 6.22.1).

4.3 Supply sets

Because a single supply net by itself has no meaning relative to the power being supplied to any design
element, UPF provides the ability to create supply sets. UPF predefines the following supply set handles for
a domain: primary, default_retention, and default_isolation.

A supply set relates multiple supply nets as a complete power source for one or more design elements.

Each supply net in a supply set provides a function. UPF predefines the following supply net functions:
power, ground, pwell, nwell, deeppwell, and deepnwell. A pre-defined supply set may be referenced
through a supply set handle. Additional supply net functions may also be defined for a predefined supply set.
16 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

Once created, a supply set can be associated with a domain, retention strategy, or isolation strategy for a
specific purpose. The supply nets of a set are implicitly “routed” to all elements that require them. Implicit
“routing” includes the implicit creation of supply ports and nets required to propagate the supply net to each
element where it is required.

UPF defines implicit and automatic connection semantics for the supply nets of a supply set based on the
purpose of the supply set in a given domain or strategy context and the function that a supply net performs in
the context of the supply set.

NOTE—A supply net may be included in more than one supply set. The function the supply net performs in one supply
set is unrelated to the function it may perform in any other supply set in which it is included.

Supply nets can be connected in one of the following ways: explicitly, automatically, or implicitly.

4.3.1 Explicit connection of supply nets

A supply net may be explicitly connected to a port via a connect_supply_net command (see 6.13).

4.3.2 Automatic connection of supply nets

There are three ways supply nets can be automatically connected. They are as follows:
a) Supply nets are automatically connected to supply ports of design elements in a power domain

based on pg_type specification (see 6.10).
b) Individual supply nets may be automatically connected to a port using a connect_supply_net

command (see 6.13) with pg_type attributes defined.
c) The supply nets of a supply set may be automatically connected to a port using a

connect_supply_set command (see 6.14), where the pg_type attribute of the supply function for a
net in the supply set is matched to a design element port with a corresponding pg_type attribute.
The supply nets of a supply set are automatically connected to the supply ports of elements under the
following conditions:
1) The element has a port with a pg_type attribute (a string-typed HDL attribute named pg_type

or an implementation library model with a pg_type attribute).
AND

2) If the value of the pg_type attribute of the port matches a value specified via the -connect
option of the connect_supply_set command (see 6.14), the supply net providing the function
specified in the -connect option is automatically connected to the port.

The UPF specification is erroneous when it results in an incomplete set of connections for a design element.

The following precedence rules apply, from higher to lower precedence, for automatic and explicit
connections of a supply net to a supply port.

connect_supply_net
connect_supply_set with -elements and -connect
connect_supply_set -connect

4.3.3 Implicit connection of supply nets

The supply nets of a supply set may be implicitly connected to design elements based on information in the
power specification associating a supply set with a design element that is instantiated in the HDL code or
implied by the power specification.

— Implicit connections provide the mechanism by which the supply nets of a supply set are connected
to elements that do not have supply ports.
Copyright © 2009 IEEE. All rights reserved. 17

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

— The simstate simulation semantics for a supply set are applied to design elements implicitly
connected to a supply set unless the set_simstate_behavior has been disabled (see 6.51).

The supply nets of a supply set are implicitly connected as the power source for an element when that
element has no supply ports. Implicit connections define additional simulation semantic behavior (see
Clause 5). Implicit connections are made under the following conditions:

a) Primary supply set
The supply nets of a domain’s primary supply set are implicitly connected to any design element
from the logic hierarchy that is within the extent of the domain if the element has no supply ports
defined on its interface.

b) Retention supply set
The supply nets of a retention strategy’s supply set are implicitly connected to the retention (i.e.,
balloon latch or shadow register) functionality that is implied for any register in the design to which
the strategy applies.

c) Isolation supply set
The supply nets of a supply set for an isolation strategy are implicitly connected to the
corresponding isolation functionality implied by the application of the strategy.

d) Level-shifter supply sets
The supply nets of a supply set for a level-shifting strategy are implicitly connected to the level-
shifters implied by the application of the strategy.

4.3.4 Predefined supply set functions

The following names are reserved for predefined functions and may be used in any supply set definition:
a) power is the supply net that provides the power function of the supply set and by default shall be

connected to ports having the pg_type primary_power.
b) ground is the supply net that provides the ground function of the supply set and by default shall be

connected to ports having the pg_type primary_ground.
c) pwell is the supply net that provides the pwell bias of the supply set and by default shall be

connected to ports having the pg_type pwell.
d) nwell is the supply net that provides the nwell bias of the supply set and by default shall be

connected to ports having the pg_type nwell.
e) deeppwell is the supply net that provides the deeppwell bias of the supply set and by default shall be

connected to ports having the pg_type deeppwell.
f) deepnwell is the supply net that provides the deepnwell bias of the supply set and by default shall be

connected to ports having the pg_type deepnwell.

If a supply set is used within a domain, then a supply net shall be defined for each function required by that
supply set for implementation. However, a simulator may support pre-implementation verification with only
the specification that a supply set exists for the domain. A supply set that does not have supply nets defined
for each of its required functions is incompletely specified. A reference to a supply net by its symbolic name
is an indirect reference.

4.4 Naming rules

Names (identifiers) adhere to the following rules:
a) The first character of a name shall be alphabetic.
b) All other characters of a name shall be alphanumeric or the underscore character (_).
c) Names in UPF are case-sensitive.
18 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

4.5 Name space semantics

Names also need to adhere to the following name space semantics:
a) Objects created by a UPF command exist in the design; therefore, the names of those objects shall

not conflict with a name that is visible within the same scope.
b) Some UPF objects are implicitly created. Implicitly created objects result from implied or inferred

semantics and are not the direct result of creating a named UPF object. For example, supply nets are
routed throughout the extent of a power domain as needed to implement the implicit and automatic
connection semantics. This routing results in the creation of implicit supply ports and supply nets.
UPF automatically names implicitly created objects to avoid creating a name conflict. The
name_format command (see 6.35) can be used to provide a template for some implicitly created
objects (such as isolation). Supply nets may be implicitly created and connected to supply ports and
logic nets may be implicitly created and connected to logic ports (see 4.2).

c) Many command arguments require the specification of object names, such as instance names, ports,
registers, nets, etc. Unless otherwise specified or unambiguous from the context, a name reference
can be a simple name or the hierarchical name of an object. The names are relative to the active UPF
scope. If the name is a hierarchical name, it shall be in the descendant tree of the active scope. See
also 6.50.

d) Unless otherwise specified or unambiguous from the context, the terms scope and UPF scope are
synonymous.

e) UPF objects may have record fields. These records comprise a name and a set of zero or more
values. Record field names are in a local name space of the UPF object, e.g., a power domain may
have strategies and supply set handles. Strategies themselves may also have supply set handles.

f) The following record field names are reserved in the specified context and cannot be redefined:
1) Domain record field space

i) primary
ii) default_retention
iii) default_isolation

2) Switch record field space
supply

3) Level-shifter strategy record field name space
i) input_supply_set
ii) output_supply_set
iii) internal_supply_set

4) Isolation strategy record field name space
i) isolation_supply_set
ii) isolation_signal

5) Retention strategy record field name space (see 6.33)
i) retention_ref
ii) primary_ref
iii) save_signal
iv) restore_signal
v) UPF_GENERIC_CLOCK
vi) UPF_GENERIC_DATA
vii) UPF_GENERIC_ASYNC_LOAD
viii) UPF_GENERIC_OUTPUT
Copyright © 2009 IEEE. All rights reserved. 19

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

g) The . character is the delimiter for the hierarchy of UPF record fields, e.g., top/a/
PDa.MY_SUPPLY_SET refers to the supply set MY_SUPPLY_SET in power domain PDa in the
logical scope top/a.

h) Name references include the refinements of complex objects such as: part-select or slice, bit-select,
index-select, or field-select name (see IEEE Std 1800).

4.6 Attributes and HDLs

Hardware description languages include a mechanism for specifying properties of objects. These properties
are called attributes. Certain UPF properties can be annotated directly in HDL source descriptions using
attributes. The semantic for properties specified using HDL attributes is the same as the corresponding
behavior defined by the UPF command alternative (see Clause 6). Table 1 enumerates the HDL attributes
defined for UPF-compliant implementations. 

It shall be an error if a UPF command conflicts with an attribute defined in an HDL file.

Table 1—Attribute and command correspondencea

aWhere two HDL attribute names are listed in the same table row, they are aliases for each other; where two UPF 
command arguments are listed in the same table row, they correspond to the same attribute.

HDL attribute name Attribute value 
specification Equivalent UPF command arguments See

UPF_clamp_value <"0" | "1" | "Z" 
| "latch" | "any" 
| "value">

set_isolation -clamp_value
set_port_attributes -clamp_value

6.40
6.45

UPF_sink_off_clamp_value <"0" | "1" | "Z" 
| "latch" | "any" 
| "value">

set_isolation -sink_off_clamp_value
set_port_attributes -sink_off_clamp_value

6.40
6.45

UPF_source_off_clamp_value <"0" | "1" | "Z" 
| "latch" | "any" 
| "value">

set_isolation -source_off_clamp_value
set_port_attributes -source_off_clamp_value

6.40
6.45

UPF_pg_type pg_type_value
(see 4.3.4)

set_port_attributes -pg_type 6.45

UPF_related_power_pin port_name set_pin_related_supply -related_power_pin
set_port_attributes -related_power_port

6.44
6.45

UPF_related_ground_pin port_name set_pin_related_supply -related_ground_pin
set_port_attributes -related_ground_port

6.44
6.45

UPF_related_bias_pin port_name_list set_port_attributes -related_bias_ports 6.45

UPF_retention <"required" | 
"optional">

set_retention_elements -retention required
set_retention_elements -retention optional

6.49

UPF_simstate_behavior <"ENABLE" | 
"DISABLE">

set_simstate_behavior 6.51

UPF_is_leaf_cell <"TRUE" | 
"FALSE">

set_design_attributes -is_leaf_cell 6.37
20 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

4.7 Precedence

To support concise, easily written low power specifications, UPF supports default and generic application of
low power design intent. A UPF command specification can apply to a design object when specified directly
on the object or an ancestor of the object. A command that applies to an element shall also apply to the
descendents that match the constraints of the command. Application of multiple low power design intent
specifications may result in overlapping UPF command effects.

When there is more than one power intent specification for a design object, the following precedence applies
(ordered from highest to lowest priority):

a) Direct UPF commands.

The power intent is applied through an explicit UPF command reference to a design object.

b) Power intent applied to a parent is inherited by each child and transitively applied to descendents,
except when a direct UPF command applies.

c) Strategies specified with both the -source and -sink options.

d) Strategies specified with a -source or -sink.

The precedence of a command is independent of the active scope during the command processing.

It shall be an error if the precedence rules fail to uniquely identify the power intent that applies to an object.

NOTE—When list arguments to command options are created using find_objects (see 7.1), the level of precedence is
based on the expanded value used as the argument, not as the pattern or regular expression used in find_objects.

4.8 Lexical elements

Special lexical elements (see Table 2) can be used to delimit tokens in the syntax. 

4.9 Units

The units for voltage values in UPF specifications shall be volts.

Table 2—Special characters

Type Character

logic hierarchy delimiter /

escape character \ (Only escapes the next character.)

bus delimiter, index operator, 
or within a regex

[]

range separator (for bus 
ranges)

:

record field delimiter .
Copyright © 2009 IEEE. All rights reserved. 21

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

4.10 Boolean expressions

UPF expressions that are SystemVerilog Boolean expressions shall comply with the following restrictions:
— Control port names shall not conflict with any SystemVerilog keyword (see IEEE Std 1800).
— The Boolean expression syntax is limited to the tokens shown in Table 3. 

Table 3—Boolean expression syntax tokens

Token Meaning

( ) Parentheses

~ & | ^ Bit-wise negation, AND, OR, XOR

! && || Logical negation, AND, OR
22 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

5. Simulation semantics

This clause details the simulation semantics for the UPF commands (see also Clause 6).

5.1 Supply network creation

UPF supply network creation commands define the power supply network that connects power supplies to
the design elements in a design. After these commands are applied, every design element in a design is
connected to the power supply network. The supply network is a set of supply nets, supply ports, switches,
and, potentially, regulators and generators. Supply sets are defined in terms of supply nets and conveniently
define a complete power circuit for design elements. Supply sets simplify the management of related supply
nets and facilitate connections based on the role the supply set provides for a power domain and the
functions the supply nets provide within the set (see 4.3). The supply network defines how power sources
are distributed to the design elements and how that distribution is controlled.

A supply port that originates a supply state and voltage value defines a root supply driver. Drivers may be
created via the create_root_supply_driver function in the UPF packages (see Annex B). This
allows models of regulators, switches, bias generators, etc. to be created in HDLs for connection to a supply
network that may be defined in UPF.

A supply port that propagates but does not originate a supply state and voltage value defines a supply source.
At any given time, a supply source can be traced through the supply network connectivity to a single root
supply driver. The output port of a switch is not a root supply driver when the supply source can be traced
through the switch to an input supply port (and the net connected to it) that is currently switched to the
output port. HDL switch models should use the assign_supply2supply function to propagate the
input supply to the output supply. assign_supply2supply propagates or maintains the trace back of
the root supply driver information. Bias generators, voltage regulators, and switches modeled in HDL
should create a root supply driver when the supply source originates from within the model.

Determination of the root supply driver is required for certain supply network resolution functions (see
6.22).

NOTE—Since the supply net type is defined in the UPF packages, it is possible to create the supply network entirely in
HDL source.

5.2 Supply network simulation semantics

5.2.1 Supply network initialization

Simulation initialization semantics are defined by the corresponding HDL. Existing models rely on the HDL
initialization semantics for operations such as initializing ROMs, etc. Therefore, UPF does not change the
existing initialization semantics of HDLs. To model design power-up behavior, it is recommended that
verification environments allow the simulation to initialize according to normal HDL semantics (as though
the design is powered-on prior to the simulation initialization sequence). The verification environment can,
after initialization, power down the design and then take the design through the power-up sequence.

The initial state of supply ports and supply nets is UNDETERMINED with an unspecified voltage value.
The state of a supply set is DEFAULT_CORRUPT when at least one of the functions defined for the supply
set is not associated with a supply net. To modify these states, see Annex B.

To facilitate modeling of non-inferable behavior in HDLs that can be used in both a UPF simulation and a
traditional non-UPF simulation, the following are provided:
Copyright © 2009 IEEE. All rights reserved. 23

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

— Predefined constant of Boolean type: UPF_POWER_AWARE.
The value of this constant is TRUE in a UPF simulation, otherwise it is FALSE. This constant value
is globally static only in a UPF simulation; i.e., its value is known at the time that SystemVerilog
and VHDL generate statements are evaluated allowing the ability to specify logic that is
conditionally generated only in a UPF simulation.

— In VHDL, a signal and, in SystemVerilog, a variable of type power_state_simstate can be
declared within an architecture or module. 
The name of this signal/variable shall be upf_simstate. upf_simstate can be used in a process’s
sensitivity list. It shall be an error if upf_simstate is assigned or connected to a port—it can only be
used locally and in a read-only context. In a UPF simulation, upf_simstate shall represent the active
simstate of the supply set that is implicitly, automatically, or explicitly connected to the design
element when simstate behavior has been enabled for that element. If simstate behavior is disabled
for the element, then upf_simstate shall remain the constant value CORRUPT.

5.2.2 Supply network update and evaluation

During simulation, each supply port and net maintains two pieces of information: a supply state and a
voltage value. The supply state itself consists of two pieces of information: an on/off state and a full/partial
state. The supply state values are FULL_ON, OFF, PARTIAL_ON, and UNDETERMINED.
PARTIAL_ON typically represents a resolved supply net state when some switches, but not all, are
FULL_ON or any switch is PARTIAL_ON (see also 6.22.2).

The state of a supply port and net is FULL_ON when it is connected to a root supply driver that is
FULL_ON; the state is UNDETERMINED when there is no connected path to a root supply driver; the
state is OFF when the root supply driver is OFF. By default, root supply drivers are UNDETERMINED;
however, they may be turned OFF, FULL_ON or PARTIAL_ON to model the behavior and state of the
root supply driver. The full/partial state represents the conductance of a switch along the supply path. The
voltage value of a supply net is valid only when it is FULL_ON or PARTIAL_ON. A simulator may model
the IR drop over the supply network. However, the semantics defined in this standard, such as the supply net
resolution functions, presume an idealized supply network with no IR drop; the semantics for supply
network resolution with modeled-IR drop are outside the scope of this standard.

The supply network is evaluated in the same step of the simulation cycle as the logic network. New root
supply driver values are propagated along the connected supply nets in the same manner that logic values are
propagated along the logic network.

NOTE—As no material distinction between PARTIAL_ON and PARTIAL_OFF exists, only PARTIAL_ON is
defined.

5.3 Power switch modeling

During simulation, a power switch created with create_power_switch corresponds to a process that is
sensitive to changes in its input port (net state and voltage value), as well as its control ports. [A general
introduction to power switch behavior is described here (see 6.20 for the complete power switch
semantics).] Whenever the signals on the control ports change, the corresponding on-state Boolean functions
are evaluated. If an on-state function evaluates True, the switch is closed, which causes the state of its input
port to propagate to the output port (or for a multiplexed switch, the corresponding input is switched to the
output), otherwise the switch is opened—the output supply port is assigned the state OFF and the voltage
value is unspecified. If: any of the control signals is X or Z, the input supply port is UNDETERMINED, the
control signals match one of the error-state Boolean functions, or more than one on-state function evaluates
True, then: the behavior of the output supply port is assigned the state UNDETERMINED, the voltage level
shall be unspecified, and the acknowledge ports shall be driven X; in this case, implementations may issue a
warning or an error.
24 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

Example:

Using the following create_power_switch command (see 6.20):

create_power_switch kb
-output_supply_port {outp pda_vdd}
-input_supply_port {inp1 yt}
-input_supply_port {inp2 db}
-control_port {cp1 eh}
-control_port (cp2 as}
-on_state {yt_on_kb inp1 {(cp1 && !cp2)}}
-on_state {db_on_kb inp2 {(!cp1 && cp2)}}
-off_state {kb_off {((cp1 && cp2) || (!cp1 && !cp2))}
-ack_port {ap yack {(cp1 ^ cp2)}}

creates an instance of an anonymous switch model that is functionally equivalent to the following
SystemVerilog module definition:

import UPF::*;
module <anon> (
  output supply_net_type outp,
  output logic ap,
  input supply_net_type inp1, inp2,
input logic cp1, cp2 );

upf_object_handle in1H, in2H, outH;

initial begin
in1H = get_object( “inp1” );
in2H = get_object( “inp2” );
outH = get_object( “outp” );
if (!is_valid_handle( in1H ) || !is_supply_kind( in1H ) ||
   !is_valid_handle( in2H ) || !is_supply_kind( in2H ) ||
   !is_valid_handle( outH ) || !is_supply_kind( outH ))
 $display( “Invalid supply port connection on switch port” );
end

always@(cp1, cp2, inp1, inp2)
  case ({cp1, cp2})
    01 : begin
           assign_supply2supply( outp, inp2  );
           ap <= 1;
         end
    10 : begin
           assign_supply2supply( outp, inp1 );
           ap <= 1;
         end
    00 :
    11 :
         begin
           assign_supply_state( outp, OFF );
           ap <= 0;
         end
    default : begin

                assign_supply_state( outp, UNDETERMINED );
                ap <= X;
Copyright © 2009 IEEE. All rights reserved. 25

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

                $stop
              end
endmodule

The instance of the anon module is:

<anon> kb (.outp(pda_vdd), .inp1(yt), .inp2(db), .ap(yack), .cp1(eh),
.cp2(as));

5.4 Power states

Supply nets, supply ports, supply sets, and power domains have power states. The definition of the power
state of each object is different.

5.4.1 Power states of supply nets and ports

Supply nets and ports form the foundation of the power distribution network specification. Each supply port
and net maintains two pieces of information: a supply state and a voltage value, which together constitute
the power state of the supply net or port. The power state information for supply nets and ports is defined by
the supply_net_type; the state of being FULL_ON, OFF, PARTIAL_ON, or UNDETERMINED and the
voltage level (which is relevant only for the FULL_ON and PARTIAL_ON states). A supply net may be
included in a supply set. Each supply set has a reference supply. The default reference supply for a supply
set is an implicit reference supply, defined to be 0 volts. The default reference supply can be explicitly
overridden by specifying a supply net that is used as the reference supply for every supply net in the set. The
voltage value of each supply net in a supply set is relative to the reference supply, which, in turn, may be at
any voltage relative to the 0-volt implicit reference supply.

5.4.2 Power states of supply sets

Continuing up from the foundation of supply nets, the next step in defining the supply network is the supply
set—a collection of supply nets that together define a complete power supply. The supply set is composed of
two or more supply nets. Therefore, the power state for a supply set is specified in terms of the supply nets
that compose the set. It is the combined states of the constituent supply nets that determine the following:

— If there is current available to power an element, and 
— The voltage level of the supply.

Supply set simulation semantics are applied to the elements connected to the supply set when the simstate
behavior is enabled (see 6.51). The simulation behavior semantics (simstate) can be specified for a power
state. The simstate specifies the level of operational capability supported by a supply set state. UPF defines
several simstates that can be associated with supply set states. The simstates defined in UPF are an
abstraction suitable for digital simulation. The following simstates are defined (from highest to lowest
precedence):

a) CORRUPT—The power level of the supply set is either off (one or more supply nets in the set are
switched off, terminating the flow of current) or at such a low level that it cannot support switching
and the retention of the state of logic nets cannot be guaranteed to be maintained even in the absence
of changes or activity in the elements powered by the supply.

b) CORRUPT_ON_ACTIVITY—The power level of the supply set is insufficient to support activity.
However, the power level is sufficient that logic nets retain their state as long as there is no activity
within the elements connected to the supply.

c) CORRUPT_STATE_ON_ACTIVITY—The power level of the supply set is sufficient to support
combinational logic, but it is not sufficient to support activity inside state elements, whether that
activity would result in any state change or not.
26 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

d) CORRUPT_STATE_ON_CHANGE—The power level of the supply set is sufficient to support
combinational logic, but it is not sufficient to support a change of state for state elements.

e) NORMAL—The power level of the supply set is sufficient to support full and complete operational
(switching) capabilities with characterized timing.

The simstate specification provides digital-simulation tools sufficient information for approximating the
power-related behavior of logic implicitly connected to the supply set with sufficient accuracy.

NOTE 1—When greater accuracy is desired or required, a mixed signal or full analog simulation shall be used. Since
analog simulations already incorporate power, this format provides no additional semantics for analog verification.

Simulation results reflect the implemented hardware results only to the extent the UPF simstate specification
for a given power state of a supply set is correctly specified. For example, if verification is performed with
simulation of a supply set in a power state specified as having a CORRUPT_ON_ACTIVITY simstate, but
the implementation is more accurately classified as CORRUPT_STATE_ON_CHANGE, the simulation
results will differ.

NOTE 2—In this example, the inaccuracy in simstate specification is conservative relative to the implemented hardware
behavior. However, in other situations, inaccurate specifications can be optimistic resulting in errors in the implemented
hardware that simulation failed to expose.

5.4.2.1 Predefined supply set power states

Every supply set has two predefined power states: DEFAULT_NORMAL and DEFAULT_CORRUPT.
These power states are identical to explicitly defined power states except: It is an error if
DEFAULT_NORMAL and DEFAULT_CORRUPT are used as the object_name in an add_power_state
command (see 6.8). A supply set is in the DEFAULT_NORMAL state when all supply nets of the set are
FULL_ON (see Table 4). 

The simstate for DEFAULT_NORMAL is NORMAL. The supply set is in the DEFAULT_CORRUPT
power state when the states of its supply nets do not match any defined power state, including the
DEFAULT_NORMAL predefined state, for the supply set.   The simstate for DEFAULT_CORRUPT is
CORRUPT.

5.4.2.2 Specification of min, nom, max voltage levels

Since the power state of a supply net or port is the active supply net value, specification of the min, nom, and
max voltage levels cannot be made at the supply net- or port-level. The appropriate place to specify the min,
nom, and max voltage levels is in a supply set’s power state specification (see 6.8).

5.4.3 Power states of power domains

The power state of a domain is determined by the state of supply sets associated with the domain. For
example, the definition of a domain’s MY_DOMAIN_IS_ON power state would logically require that the
primary supply set be in a power state that is a NORMAL simstate (all supply nets of the primary supply set
are on and the current delivered by the power circuit sufficient to support normal operation. Similarly, a

Table 4—Default supply set state with simstate == NORMAL

simstate power ground pwell nwell deeppwell deepnwell All others

NORMAL FULL_ON, 
any voltage

FULL_ON, 
any voltage

FULL_ON, 
any voltage

FULL_ON, 
any voltage

FULL_ON, 
any voltage

FULL_ON, 
any voltage

FULL_ON, 
any voltage
Copyright © 2009 IEEE. All rights reserved. 27

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

SLEEP mode for the domain may require the primary supply set to be in power state whose simstate is
NOT_NORMAL, perhaps CORRUPT state, while appropriate retention and isolation supplies are
NORMAL.

The state of logic elements may be a relevant aspect to the specification of a domain’s power state, e.g., for
a user-defined power domain called DSP_PD,

a) DSP_PD is in the state my_on_pd_state when:
1) The logic signal that controls the switch for the domain’s primary supply set is active. Early in

the design phase, it may not be known if the power or ground net (or both) of the primary
supply will be switched.

2) The logic signal(s) enabling isolation or triggering retention save or restore are inactive.
b) DSP_PD is in the state my_off_pd_state when:

1) The logic signal that controls the switch for the primary supply is inactive.
2) If the isolation or retention supplies are switched, the control signals for those supplies are

active (the power switch is on).
3) Clock gating enable signals for the domain are inactive.
4) The isolation enable(s) are active.

c) The power domain’s power state may also be dependent on the clock period or similar signal
interval constraint. For example, a domain in an operational bias mode needs to scale its clock
frequency to a slower level to match the slower switching performance supported by the state of the
primary supply set. The primary supply set’s power state can include in the -logic_expr
specification a constraint on the clock period or duty cycle interval. See 6.8.

A domain’s power state can be defined directly in terms of supply nets using -supply_expr in addition to the
-logic_expr.

— If a domain’s power state -logic_expr specification includes comparison of another domain’s active
state to a power state defined on that domain, it is equivalent to including the -logic_expr and
-supply_expr specifications for that power state of the referenced domain in the definition of the
power state.

— If a domain’s power state -logic_expr specification includes comparison of a supply set’s active
state to a power state defined on that supply set, it is equivalent to including the -logic_expr and
-supply_expr specifications for that power state of the referenced supply set in the definition of the
power state.

5.4.3.1 Incompletely specified supply sets

Prior to having the golden source (the HDL and UPF source used as input to implementation tools), the
supply network may not be defined or may be partially defined. The design may have a power management
block and associated power control signals that turn power switches on/off or control bias generators and
voltage regulators once the supply network is fully specified. At this stage of design specification, the power
domain’s power states might only be defined in terms of the state of logic elements. The state of the
domain’s supply sets is added later and is necessary for a complete supply network specification. Through
support of incremental refinement of the power state specification, early UPF simulations can be performed
with only the logic net expressions defining the states. The power state definitions can be updated with
add_power_state to incorporate supply network expressions (-supply_expr) or additional logic
expressions (-logic_expr).

5.4.3.2 Simulation of power states

Each power domain and supply set is in a power state at any given point in time. A power state may be
described and named via the add_power_state command (see 6.8). These are the named power states.
28 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

Unnamed power states may be legal or illegal (see 6.8). The power state of a supply set is determined by the
state of each of the supply nets in the set. The power state of a domain is determined by the state of each of
the supply sets associated with the domain and any supply nets or supply sets directly or indirectly
referenced in the -supply_expr for any named power state for the domain.

Implementations may allow the choice of an overall mode: min, nom, or max. If not specified otherwise,
the default shall be the nominal mode. If min or max is specified, but only a single (nominal) value has been
specified in the -supply_expr (see 6.8), that single value shall be used as the min or max value. The mode
specification shall be used to determine if the -supply_expr of a power state evaluates True.

The power state of a supply set is determined as follows:
a) After the signal network is updated, including the supply network (see 5.2.2) and prior to evaluation

of the power state of power domains:
1) If any named power state of the supply set has a non-empty -supply_expr, then

i) The -supply_expr for all named power states is evaluated.
ii) The supply set is in a named power state if the -supply_expr for that named power state

evaluates True. Zero, one, or more named power states may match (its -supply_expr
evaluates True). (The predefined DEFAULT_NORMAL and DEFAULT_CORRUPT
power states are named power states.)

iii) In simulation, it shall be an error if any named power state matches and the matching state
is defined as an illegal power state.
Implementation tools may presume illegal power states do not occur.

iv) In simulation, it shall be an error if the -logic_expr for any matching named power state
does not evaluate True, see 5.4.3.3.
Implementation tools may presume -logic_expr evaluates True for any matching named
power state.

v) In simulation, it shall be an error if the -logic_expr evaluates True for a non-matching
power state (i.e., a power state for which -supply_expr does not evaluate True).
Implementation tools may presume -supply_expr evaluates True for any non-matching
named power state.

2) Otherwise, the supply set is in a named power state if its -logic_expr evaluates True. Zero, one
or more named power states may match.

b) The simstate semantics for all matching named power states are applied; the highest precedence
corruption semantic prevails (see 5.4.2).

c) If zero named power states match, the supply set is in an unnamed power state. The legality of the
unnamed power state is determined as specified in 6.8.

The power state of a power domain is determined as follows:
d) After the power state of supply sets is evaluated and prior to the evaluation of user-defined processes

and always blocks, the power state of supply sets is evaluated.
1) If any named power state of the domain has a non-empty -supply_expr, then

i) The -supply_expr for all named power states is evaluated.
ii) The domain is in a named power state if the -supply_expr for that named power state

evaluates True. Zero, one, or more named power states may match.
iii) In simulation, it shall be an error if any named power state matches and the matching state

is defined as an illegal power state.
Implementation tools may presume illegal power states do not occur.

iv) In simulation, it shall be an error if the -logic_expr for any matching named power state
does not evaluate True, see 5.4.3.3.
Copyright © 2009 IEEE. All rights reserved. 29

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

Implementation tools may presume -logic_expr evaluates True for any matching named
power state.

v) In simulation, it shall be an error if the -logic_expr evaluates True for a non-matching
power state (i.e., a power state for which -supply_expr does not evaluate True).
Implementation tools may presume -supply_expr evaluates True for any non-matching
named power state.

2) Otherwise, the domain is in a named power state if its -logic_expr evaluates True. Zero, one, or
more named power states may match.

e) If zero named power states matches, the domain is in an unnamed power state. The legality of the
unnamed power state is determined as specified in 6.8.

5.4.3.3 Evaluation of the power state -supply_expr and -logic_expr expressions and 
reporting of mismatches

As evaluation-ordering dependencies between the update of the power control network (e.g., logic nets
controlling the sources of supply nets, such as switches and bias generators) and the update of the supply
network are likely, the reporting of mismatches when one expression evaluates True and the other does not
is performed in a manner that avoids false error reporting due to any simulation-ordering dependencies
within the same simulation time step.

— If a power state’s -supply_expr or -logic_expr expressions do not match (one evaluates True when
the other does not) and an error is not already scheduled for that power state, an error shall be
scheduled to be reported at the end of the simulation time step (after all other activity has been
completed for the time step and prior to the simulator advancing the simulation time).

— If the -supply_expr or -logic_expr is evaluated due to changes in the nets or power states
referenced in the expression and both expressions evaluate True, the scheduled error message, if
any, shall be deleted.

— At the end of the simulation time step, if a power state -supply_expr and -logic_expr expression
mismatch error is scheduled, that error shall be reported.

NOTE—In SystemVerilog, the end of the simulation time step when the power state error for a -supply_expr and
-logic_expr mismatch occurs is called the reactive region.

5.4.3.4 Incomplete supply network verification semantics

For any function of a supply set that is not associated with a supply net, an implicit supply net is created and
associated with the function. Implicitly created supply nets are initialized the same as explicitly created
supply nets (see 5.2.1).

Tools may provide mechanisms to change the power state of the supply set or power domain. Such
mechanisms are outside the scope of this standard.

The power state of a supply set or power domain may also be changed from an HDL test bench in simulation
using the set_power_state function defined in the UPF packages (see Annex B). 

a) When a supply set’s power state is changed through set_power_state (directly or indirectly):
1) An error is issued if the -logic_expr for the power state does not hold for the new state. There is

no -logic_expr for the default supply set states: DEFAULT_NORMAL and
DEFAULT_CORRUPT.

2) Any supply nets referenced in the -supply_expr for the new state are forced into the state
specified in the -supply_expr specification of the new state. Any state that satisfies the
-supply_expr is permitted. The forcing of a supply port shall result in an event on the supply
net. Therefore, any change in supply nets resulting from the execution of the
set_power_state function shall be deferred until the start of the next supply network
30 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

evaluation cycle. Forcing of a supply port is equivalent to forcing any supply net connected to
the output side of the port.

NOTE—Implicitly created supply nets may be referenced through symbolic names (e.g.,
primary.power).

3) The implicitly created supply nets of the set that are not referenced in the -supply_expr
through their symbolic names (e.g., primary.power), shall have their state set as follows:
i) If the simstate of the state is CORRUPT: the state shall be set to OFF and the voltage

value is unspecified.
ii) For any other simstate: the state shall be set to FULL_ON and the voltage value is

unspecified.
b) When a domain’s power state is changed through set_power_state (directly or indirectly):

1) It shall be an error if the -logic_expr for the power state does not hold for the new state. During
this check, any sub-expressions that reference the power state of an object are assumed to hold.

2) Any supply net referenced in the -supply_expr is forced as described in a.2) for supply sets.
3) For each domain or supply set referenced in -logic_expr, a recursive call to

set_power_state shall be made to ensure the power states of those objects are set to the
state required by the new state.

5.4.4 Power states of systems and subsystems

What constitutes a system is contextual. In one context, a system may be considered as complete by itself,
e.g., one chip of a multi-chip or multi-board low power system. Although it might seem reasonable to define
a “system” as that which is automatically implemented, UPF is not limited to that context and the
verification of an entire system composed of multiple chips each with its own power design specification, as
well as an overall power design specification for the board on which the chips are placed, is supported. The
power states of a system or subsystem are attributed on a power domain. The use of the term system includes
the term subsystem.

As all elements of a design shall be in a power domain, specification of power states for a system or
subsystem are attributed to the power domain(s) that are defined for the (sub)system. As a system power
state may depend on the state of more than one power domain, the power state specification for a power
domain may include references to the states of domains defined on scopes in the logic hierarchy that are
descendents of the “higher-level” power domain. (Here, “higher-level” refers to the location of the power
domain’s scope being closer to the design’s top-level root design element relative to the scope of another
power domain.) Therefore, UPF allows the power state for a power domain to reference the power state of
any power domain, supply set, supply net or supply port that is visible in the descendent tree of the scope of
the domain.

For example, assume the domain CORE_PD is defined on the root scope of a processor design, the power
states of CORE_PD can reference lower-level power domains such as CACHE_PD, ALU_PD, and FP_PD in
the specification of its power states. Thus, an example power state of FULL_OP for CORE_PD would
reasonably require that its primary supply set is in a NORMAL simstate (all supply nets of the primary
supply set are on and the voltage of the supply is sufficient for normal operations) and that the CACHE_PD,
ALU_PD, and FP_PD are all in an equivalent fully operational mode. In contrast, a NON_FP_OP mode for
the CORE_PD may be defined identically to FULL_OP, except the FP_PD may be in a SLEEP mode. By
allowing a higher level domain to reference lower level domain’s power states in the specification of its own
power states, subsystem and system power states can be defined in UPF.

NOTE—Although the top-down specification of power states suggests a power domain’s power states are defined in
terms of the power states of supply sets and lower-level power domains, the power state of a domain can be specified
entirely in terms of the state of supply sets and/or supply nets and supply ports; i.e., the hierarchical specification can be
collapsed into a (relatively) flat power state specification. Top-down, hierarchical power state specification is convenient
when the power design starts prior to the existence of the complete supply network and is refined into an
Copyright © 2009 IEEE. All rights reserved. 31

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

implementation. The flat specification of power states of domains in terms of direct references to supply nets may be
faster and more concise when the power state specification is not captured until after the supply network is specified.
However, flat power state specifications may be less flexible and more difficult to maintain over time and require
visibility into and understanding of all aspects of the design.

5.5 Power state name spaces

Power states are attributed to specific objects in the design. The power states can be referenced by
specifying the object_name, where object_name can be a hierarchical name denoting a power domain,
supply set, or supply net. Power states are attributes of the object. Specifically, power states of a domain are
attributes of the domain and not attributes of the scope of the domain. Thus, a design element may be the
scope for multiple domains, each domain containing states with the same name (e.g., sleep) without
incurring a name space collision.

The following objects may have power states attributed to them:
— Power domains
— Supply sets
— Supply nets
— Supply ports

The add_power_state command (see 6.8) is used to define the legal and illegal power states of power
domains and supply sets. The set_power_state function in the UPF packages is used to set the power
state of an object during simulation.

The range of possible states for supply nets and ports is defined by the type supply_net_type in the
UPF packages. The state of supply nets and ports can be set through the assign_supply2supply or
assign_supply_state functions in the UPF packages. assign_supply2supply propagates the
association of the source supply net’s root supply driver as well as the source’s state and voltage values to
the destination. assign_supply_state is used to assign a supply port that is a root supply driver.

A power state shall be defined before it can be referenced. Semantically, the transition of an object from one
power state to another is a power state event for the object. The state of a supply net is referenced as a
Boolean expression (see 4.10) in the same manner that the state of a logic net is referenced. The power state
of a supply set or power domain can be referenced in an expression simply through the supply set or power
domain name.

Examples

supply_set_li == SLEEP
-- Returns TRUE if supply_set_li is in a state consistent with state SLEEP

ALU_PD != FULL_OP
-- Returns TRUE if the ALU_PD is in a state inconsistent with FULL_OP

5.6 Simstate simulation semantics

Each simstate has well-defined simulation semantics, as specified in the following subclauses. Multiple
power states may be defined with the same simstate specification. The simstate semantics are applied to all
elements that have the supply set connected to it (including no supply net connections except those implied
by the supply set connection to the element) and that have the simstate semantics implicitly or explicitly
enabled. The use of the term elements in the rest of this subclause refers only to the elements related to the
supply set as described in this paragraph.
32 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

Elements implicitly connected to a particular supply set have simstate semantics enabled by default.
Elements automatically or explicitly connected to a particular supply set have simstate semantics disabled
by default. Use set_simstate_behavior to override the default enablement of simstate semantics (see 6.51).

The supply set powering a state element or the driver for a net may be in a state that the supply is not
adequate to support normal operational behavior. Under specified circumstances while in these states, the
logic value of the state element or net becomes unknown. A corrupt value for a state element or net indicates
the logic state of the state element or net is unknown due to the state of the supply powering the state
element or driver of the net. The corrupt value of a state element or net shall be the HDL’s default initial
value for that object’s type, except VHDL std_ulogic and std_logic typed-objects shall use X as the
corruption value (not U).

NOTE—An object may be declared with an explicit initial value. This explicit initial value has no relationship to the
corrupt value for the object. For example, in VHDL, the objects of Integer type have the default initial value of
Integer’Left (-2147483648 for a system using 32-bits to represent Integer types). A process variable
inferring a state element may be declared to be of type Integer with an initial value of 0. The corrupt value for the
variable is Integer’Left, not 0.

The following subclauses define the simulation semantics for simstates. These semantics are applied to the
elements connected to the supply set with simstate behavior ENABLED.

5.6.1 NORMAL

This state is a normal, power-on functional state. The simulator executes the design behavior of the elements
consistent with the HDL or UPF specification that defines the element. 

5.6.2 CORRUPT

This state is a non-functional state. For example, this state can be used to represent a power-gated/power-off
supply set state. In this power state, state elements powered by the supply set and the logic nets driven by
elements powered by the supply set are corrupted. The element is disabled from evaluation while this state
applies.

As long as the supply set remains in a CORRUPT simstate, no additional activity shall take place within the
elements, i.e., all processes modeling the behavior of the element become inactive, regardless of their
original sensitivity list. Events that were scheduled for elements supplied by the supply set before entering
this simstate shall have no effect.

5.6.3 CORRUPT_ON_ACTIVITY

This state is a power-on state that is not dynamically functional. For example, this state can be used to
represent a high-voltage threshold, (body-bias) state that does not have characterized (defined) switching
performance. In this simstate, the logic state of the elements is maintained unless there is activity on any of
the element’s inputs. Upon activity on any input, then all state elements and logic nets driven by the element
are corrupted. 

5.6.4 CORRUPT_STATE_ON_CHANGE

This state is a power-on state that represents a power level sufficient to power normal functionality for
combinational functionality but insufficient for powering the normal operation of a state element if the state
element is written with a new value. The simulator executes the design behavior of the elements consistent
with the HDL or UPF specification that defines the element, except that any change to the stored value in a
state element results in the writing of a corrupt value to the state element.
Copyright © 2009 IEEE. All rights reserved. 33

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

5.6.5 CORRUPT_STATE_ON_ACTIVITY

This state is a power-on state that represents a power level sufficient to power normal functionality for
combinational functionality but insufficient for powering the normal operation of a state element if there is
any write activity on the state element. The simulator executes the design behavior of the elements
consistent with the HDL or UPF specification that defines the element, except that any activity inside state
elements, whether that activity would result in any state change or not, results in the writing of a corrupt
value to the state element.

5.6.6 NOT_NORMAL

This is a special, placeholder state. It allows early specification of a non-operational power state while
deferring the detail of whether the supply set is in the CORRUPT, CORRUPT_ON_ACTIVITY,
CORRUPT_STATE_ON_CHANGE, or CORRUPT_STATE_ON_ACTIVITY simstate. If the supply
set matches a power state specified with simstate NOT_NORMAL, the semantics of CORRUPT shall be
applied, unless overridden by a tool-specific option. NOT_NORMAL semantics shall never be interpreted
as NORMAL.

NOTE 1—Using the default interpretation of CORRUPT for NOT_NORMAL provides a conservative—the broadest
corruption semantics—for simulation of the design for functional verification. However, a conservative interpretation of
NOT_NORMAL for other tools, such as power estimation tools, might be to use a bias or lowered voltage level
interpretation such as CORRUPT_ON_ACTIVITY.

NOTE 2—As it is possible for two or more power states of a supply set to match the state of the supply set’s nets and for
multiple simstate specifications to apply simultaneously, the effective result is that the simstate with the broadest
corruption semantics shall apply. For example, a supply set that matches power states with simstates of
CORRUPT_STATE_ON_CHANGE and CORRUPT_STATE_ON_ACTIVITY shall result in the application of
CORRUPT_STATE_ON_ACTIVITY simstate semantics being applied.

5.7 Transitioning from one simstate state to another

The following subclauses define the simulation semantics for transitions from one simstate to another. These
semantics are applied to the elements connected to the supply set with simstate behavior ENABLED.

5.7.1 Any state transition to CORRUPT

In this case, the nets and state elements driven by the elements connected the supply set in this simstate shall
be corrupted. The elements connected to this supply set are inactive as long as the supply set is in the
CORRUPT simstate.

5.7.2 Any state transition to CORRUPT_ON_ACTIVITY

In this case, the active state of nets and state elements driven by the element shall remain unchanged at the
transition. The processes modeling the behavior of the element shall remain enabled for activation
(evaluation). Any net or state element that is actively driven after transitioning to this state shall be
corrupted.

Any attempt to restore a retention register’s retained value while in the CORRUPT_ON_ACTIVITY state
shall result in corruption of the register’s value.

5.7.3 Any state transition to CORRUPT_STATE_ON_CHANGE

In this case, the active state of nets and state elements driven by the element shall remain unchanged at the
transition. The processes modeling the behavior of the element shall be enabled for activation (evaluation).
34 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

5.7.4 Any state transition to CORRUPT_STATE_ON_ACTIVITY

In this case, the active state of nets and state elements driven by the element shall remain unchanged at the
transition. The processes modeling the behavior of the element shall be enabled for activation (evaluation).

5.7.5 Any state transition to NORMAL

The corruption, if any, of all state elements and nets driven by the element concludes. Continuous
assignments become sensitive to changes to their right-hand side expressions and other combinational
processes (e.g., always_comb block in SystemVerilog) resume their normal sensitivity list operation. All
continuous assignments and other combinational processes are evaluated on the transition to NORMAL,
regardless of their sensitivity list activity, to ensure constant values and current input values are properly
propagated. Level-sensitive functionality of sequential logic within the element shall be evaluated. Edge-
sensitive functionality of sequential logic within the element shall not be evaluated at this transition.

5.7.6 Any state transition to NOT_NORMAL

NOT_NORMAL is simulated according to the interpretation of this placeholder simstate (see 5.6.6).
Copyright © 2009 IEEE. All rights reserved. 35

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



A
uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

6. Commands

This clause documents the syntax for each UPF command. For details concerning the simstate semantics,
see Clause 5.

6.1 Conventions used

Each command in this clause consists of a command keyword followed by one or more parameters. All
parameters begin with a hyphen (-). The meta-syntax for the description of the syntax rules uses the
conventions shown in Table 5. 

Table 5—Document conventions

Visual cue Represents

courier The courier font indicates UPF or HDL code. For example, the following line indicates 
UPF code:

create_power_domain PD1

bold The bold font is used to indicate key terms, text that shall be typed exactly as it appears. 
For example, in the following command, the keywords “create_power_domain” shall be 
typed as it appears:

create_power_domain domain_name

italic The italic font represents user-defined UPF variables. For example, a supply net needs to 
be specified in the following line (after the “connect_supply_net” key term):

connect_supply_net net_name

list list (or xxx_list) indicates a Tcl list, which are denoted with curly braces {….} or as a 
double-quoted string of elements “….”.

time_literal time_literal indicates the SystemVerilog time_literal.

[ ] square brackets Square brackets indicate optional parameters. For example, the following parameter is 
optional:

[-elements element_list]

[ ] bold square 
brackets

Bold square brackets are required. For example, in the following parameter, the bold 
square brackets (surrounding the 0) need to be typed as they appear:

domain_name.isolation_name.[0]

{ } curly braces Curly braces ({ }) indicate a parameter list, which usually can be repeated. For example, 
the following shows one or more control ports can be specified for this command:

{-control_port {port_name}}*

{ } bold curly braces Bold curly braces are required. For example, in the following parameter, the bold (inner) 
curly braces need to be typed as they appear:

{-state {name <nom | min max | <min nom max> | off >}}*

* asterisk An asterisk (*) signifies that parameter can be repeated. For example, the following line 
means multiple acknowledge delays can be specified for this command:

[-ack_delay {port_name delay}]*
Copyright © 2009 IEEE. All rights reserved. 37

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

6.2 Generic UPF command semantics

— All commands are executed in the active UPF scope, except as specifically noted.

— / or .. shall not be used as the first character of any name token in a command, except in the
set_scope command.

— All map_* commands specify the elements to be used in implementation. These specifications
override the elements that may be inferred through a strategy. The behavior of this manual mapping
may lead to an implementation that is different from the RTL specification. Therefore, it may not be
possible for logical equivalence checking tools to verify the equivalence of the mapped element to
its RTL specification.

6.3 effective_element_list semantics

The effective_element_list is the set of elements to which a command applies. The effective_element_list is
constructed from the arguments provided to the command. The terms used in the description of this
construction include: element_list, exclude_list, aggregate_element_list, aggregate_exclude_list,
prefilter_element_list, and effective_element_list. The element_list and exclude_list are lists that contain the
elements specified by an instance of the command. The effective_element_list, aggregate_element_list, and
aggregate_exclude_list are associated with the named object of the command.

The following arguments can determine the effective_element_list:

a) -elements element_list adds the rooted names in element_list to the aggregate_element_list. It is not
an error for an element to be included more than once.

b) -exclude_elements exclude_list adds the rooted names in exclude_list to the
aggregate_exclude_list. It is not an error for an element to be included more than once. It is not an
error for an element in the exclude list to not be in the aggregate_element_list.

c) When -transitive is TRUE elements (see 6.3.1) in aggregate_element_list that are not leaf cells are
processed to include the child elements (see 6.3.2).

d) The prefilter_element_list comprises the aggregate_element_list with any matching elements from
the aggregate_exclude_list removed (see 6.3.2).

e) The command arguments identified as filters are predicates that shall be satisfied by elements in the
effective_element_list. The prefilter_element_list is filtered by the predicates to produce the
effective_element_list (see 6.3.2).

f) The range of legal element types is command dependant for each command that uses -elements.
Each command specifies the effect of an empty aggregate_element_list. An explicitly empty list
may be specified with {}.

< > angle brackets Angle brackets (< >) indicates a grouping, usually of alternative parameters. For example, 
the following line shows the “power” or “ground” key terms are possible values for the 
“-type” parameter:

-type <power | ground>

| separator bar The separator bar (|) character indicates alternative choices. For example, the following 
line shows the “in” or “out” key terms are possible values for the “-direction” parameter:

-direction <in | out>

Table 5—Document conventions (continued)

Visual cue Represents
38 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

6.3.1 Transitive TRUE

The detailed semantics of transitive TRUE are described using Figure 4, Figure 5, and Figure 6. The figures
are exemplary, the text provides a semantic for the validation of the result.

a) Given a design as shown in Figure 4 with a design element A in the active scope, where A has child
elements B, C, and D; B has child elements E and F, C has child elements G and H, and D has child
elements I and J.

Figure 4—Element processing example design fragment
b) If the specification:

-elements {A A/C/H} -exclude_elements {A/C A/D} -transitive TRUE

is applied to the design fragment shown in Figure 4, then Figure 5 shows the four specified elements
by indicating them as boxed; those specified with exclude are shown with strike-through text.

Figure 5—Element processing specification
c) Figure 6 shows the results of the effective_element_list. The list includes 

{A A/B A/B/E A/B/F A/C/H}

The elements included or excluded by transitivity are shown as dashed-boxes or with strike-through
text, respectively.

A

B C D

E F G H I J

(Active scope)

A

B C D

E F G H I J

(Active scope)

A

B C D

E F G H I J

(Active scope)

A

B C D

E F G H I J

(Active scope)
Copyright © 2009 IEEE. All rights reserved. 39

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

Figure 6—Element processing result

6.3.2 Result

The required result is derived as follows:

Begin // at the root of the active scope.
Initialize by traversing the hierarchy and set element.mark := exclude
For each element in the aggregate_element_list do

set element.mark := includeP
if (transitive = TRUE AND element NOT Leaf_Cell) then

foreach child in element call mark_child(child, include)
end if

done
For each element in the aggregate_exclude_list do

set element.mark := excludeP
if (transitive = TRUE AND element NOT Leaf_Cell) then

foreach child in element call mark_child(child, exclude)
end if

done
For each element in the aggregate_element_list call check_and_add(element)

done

proc mark_child(element, value) 
if (element.mark != excludeP AND element.mark != includeP ) then

element.mark := value
if (element NOT Leaf_Cell) then

foreach child in element call mark_child(child, value)
end if

end if
end proc

proc check_and_add(element) 
if (element.mark = includeP OR element.mark = include) then

if (for all filters filter(element) = TRUE) then
add element to effective_element_list
element.mark := processed
if (transitive = TRUE AND element NOT Leaf_Cell) then

foreach child in element call check_and_add(child)
end if

A

B C D

E F G H I J

(Active scope)

A

B C D

E F G H I J

(Active scope)
40 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

end if
end if

end proc

NOTE—Implementations may use any data structure or algorithm that produces the same results as the method above.

6.4 Command refinement

Some UPF commands support progressive refinement. Refinable command arguments are shown in
boldface-green text and labeled with an R in their respective Arguments listings. (See: 6.8, 6.15, 6.19, 6.24,
6.40, 6.42, and 6.47.) Refinable commands may be called on a particular named object multiple times. The
first instance of the command defines the object; all mandatory arguments shall be declared in this call and
any other arguments may also be included. Subsequent instances of the command for the same object shall
include the -update option, all mandatory arguments, and any desired refinable arguments (e.g., using
-simstate in add_power_state to add/refine the simstate for a particular power state [see 6.8]). The end
result will be as if all of the arguments had been included in the initial instance.

Except as noted in the following list or in the command descriptions, it shall be an error to specify arguments
(or HDL attributes) that contradict the power intent of previous declarations.

— -elements element_list provided to commands on successive invocations for the same object add to
the aggregate_element_list associated with that object.

— -exclude_elements exclude_list provided to commands on successive invocations for the same
object add to the aggregate_exclude_list associated with that object.

— The resulting effective_element_list is determined using the aggregate_element_list and
aggregate_exclude_list associated with that object.

— UPF commands re-invoked on the same object shall use -update to refine the object and shall not
contradict previously specified power intent.

— It shall be an error if -update is specified on the first invocation of any command applying to a
named object.

The consequence of a set of UPF commands being applied to a particular named object is the same as if the
first of the commands were modified to comprise the union of all arguments contained in all commands of
the set.

Example:

This shows a multiple-part refinement for a usage of set_isolation (see 6.40).
a) Constraining specification
set_isolation demo_strategy -domain pda 

-elements {a b c d}
-clamp_value 0

b) Logical configuration
set_isolation demo_strategy -update -domain pda

-isolation_signal {iso_en}
-isolation_sense {LOW}

c) Adding elements to the strategy
set_isolation demo_strategy -update

-elements {e f g}

d) Supply set connection
set_isolation demo_strategy -update -domain pda

-isolation_supply_set pda_isolation_supply
Copyright © 2009 IEEE. All rights reserved. 41

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

The implementation-independent part of the low power intent [see a)] could also be declared in the HDL
using the following attributes:

(* UPF_clamp_value = "0" *) out a;
(* UPF_clamp_value = "0" *) out b;
(* UPF_clamp_value = "0" *) out c;
(* UPF_clamp_value = "0" *) out d;

In this case, the declaration shall have identical semantics to the equivalent UPF command.

6.5 Error handling

If an error condition occurs, e.g., an incorrect command-line option is specified, then a TCL_ERROR
exception shall be raised. This exception can be caught using the Tcl catch command, so these errors can
be prevented from aborting the active load_upf command (see 6.28). These errors shall have no impact on
further commands. Processing may continue after the error is caught. Sequencing of the error catch and
the choice of continuation is tool-dependent. The state of the design after an error is not defined.
Specifically, a command that raises an error may partially complete before aborting.

In general, all commands that fail shall raise a TCL_ERROR. As described in the Tcl documentation, the
global variables accessible after an error occurs include errorCode and errorInfo.

NOTE—The message string returned by the Tcl catch command is not specified in this standard.

6.5.1 errorCode

After an error has occurred, this variable contains additional information about the error in a form that is
easy to process with programs. errorCode consists of a Tcl list with one or more elements. The first element
of the list identifies a general class of errors and determines the format of the rest of the list. There are
several formats for errorCode used by the Tcl code; see also the Tcl command reference [B5].

Errors defined in this standard are prefixed with UPF_, as shown in the following definitions. Individual
applications that implement this standard may define and use additional error codes that do not start with
UPF_. Implementations need to use errors appropriate to their application.
a) UPF_RETURN_NOT_VISIBLE error_data

This error code indicates the objects referenced in the response of a query are not in the active scope.
Queries return object names rooted in the active scope. Because they are called from an active scope
that may be different from the scope in which all objects to be returned are visible, it shall be an
error if the query cannot represent the objects to be returned as a rooted name.
The UPF_RETURN_NOT_VISIBLE error may be raised in these cases where there are no other
errors. When this code is returned, the error_data is defined to be the same as the query would
have returned, but with fully qualified names for the objects not visible in the active scope.

b) UPF_QUERY_OBJECT_NOT_DEFINED error_data

This error code indicates a query is called with a specific name argument and the named object is not
defined in the active scope.

c) UPF_UPDATE_CONFLICT error_data

This error code indicates a command has been called with arguments that conflict with previously
specified values.

d) UPF_UPDATE_MISSING error_data

This error code indicates a command has been called without the -update argument and the named
object has already been defined.
42 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

e) UPF_UPDATE_OBJECT_NOT_FOUND error_data

This error code indicates a command has been called with the -update argument and the named
object has not been previously defined.

f) UPF_MERGE_FAILURE error_data

This error code indicates a merge_power_domains command failed.
g) UPF_OBJECT_NOT_FOUND error_data

This error code indicates a object referenced in a command is not defined in the active scope.

6.5.2 errorInfo

See the Tcl command reference [B5].

6.6 add_domain_elements

The add_domain_elements command provides the ability to separate the creation of a power domain from
the specification of the elements contained within it. This is similar to only specifying the elements using the 
-elements option in the create_power_domain command (see 6.19). The effect of add_domain_elements
is additive, i.e., a power domain consists of any elements specified in the create_power_domain command
and those elements specified in any add_domain_elements commands.

It shall be an error if domain_name does not indicate a previously created power domain.

This command is semantically equivalent to

proc add_domain_elements {dn elements el} {
if { string equal $elements "-elements" }{

create_power_domain $dn -update -elements $el
return 1

} else {
 return -code TCL_ERROR \

            -errorcode $ecode \
            -errorinfo $einfo \
            $resulttext

}
}

where any italicized arguments are implementation-defined.

Purpose Add design elements to a power domain

Syntax add_domain_elements domain_name
-elements element_list

Arguments

domain_name The power domain to modify.

-elements element_list The list of design elements to add. The elements shall be referenced relative 
to the active scope and are the descendents of the scope of the specified 
power domain.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
Copyright © 2009 IEEE. All rights reserved. 43

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

Syntax example:

add_domain_elements U1/PD1 -elements {U1/U2/foo1 U1/U2/foo2}

6.7 add_port_state 

The add_port_state command adds state information to a supply port. If the voltage values are specified,
the supply net state is FULL_ON and the voltage value is the single nominal value or within the range of
min to max; otherwise, if off is specified the voltage value is OFF.

It shall be an error if port_name does not already exist.

N.B. The simulation semantics differ from UPF 1.0—the first invocation of the command for a specific
supply port no longer defines the default state of the port, see Clause 5.

It shall be an error if nom < min or max < nom.

Syntax example:

add_port_state VN1
-state {active_state 0.88 0.90 0.92}
-state {off_state off}

Purpose Add states to a port

Syntax add_port_state port_name
{-state {name <nom | min max | min nom max | off>}}*

Arguments

port_name The name of the supply port. Hierarchical names are allowed.

-state {name <nom |
| min max| min nom max 
| off>}

The name and value for a state of the supply port. The value can be a nomi-
nal voltage; a pair specifying the minimum and maximum voltage; a triplet 
of values specifying the minimum, nominal, and maximum voltages; or off.

Return 
value

Return the fully qualified name (from the active scope) of the created port or raise a TCL_ERROR if 
any of the port states are not added.
44 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

6.8 add_power_state 

add_power_state attributes an object with a power state definition. A state name is simply an identifier; it
has no semantic meaning. A power state specification is independent of any other power state specification.
As a consequence there can be states with intersecting or overlapping -supply_expr and -logic_expr
expressions. These states may have different legalities. A power domain or a supply set may be in a state that
matches more than one power state. The refinable object for this command is state_name.

Multiple power states can be defined and attributed on an object in a single call to this command. simstate
and legality can be defined on a per state basis (when specified within -state). If -simstate or legality are
specified external to a -state definition then they are applied to any state listed in the command that does not
otherwise specify -simstate or legality.

If the state has already been defined for this object, and -update is specified with either -supply_expr or
-logic_expr then the boolean_function of -supply_expr or -logic_expr is concatenated with the existing
state definition via a logical ANDing of this expression with the existing definition:

logic_expr’ = (previous logic_expr) && (logic_expr)

supply_expr’ = (previous supply_expr) && (supply_expr)

Purpose Attribute power state(s) to a power domain or supply set

Syntax

add_power_state object_name
{-state state_name {[-supply_expr {boolean_function}] [-logic_expr {boolean_function}] 

[-simstate simstate] [-legal | -illegal] [-update]}}*
[-simstate simstate][-legal | -illegal]
[-update]

Arguments

object_name Simple name of a power domain or supply set.

-state state_name state_name is the simple name of the state being defined or refined.

-supply_expr 
{boolean_function}

-supply_expr specifies a Boolean expression defined in terms of 
supply nets that evaluates to True when the object is in the state being 
defined.

R

-logic_expr 
{boolean_function}

-logic_expr  specifies a Boolean expression defined in terms of logic 
nets and supply nets that evaluates to True when the object is in the 
state being defined.

R

-simstate simstate -simstate specifies a simstate for the power states associated with a 
supply set, valid values are NORMAL, 
CORRUPT_STATE_ON_CHANGE, 
CORRUPT_STATE_ON_ACTIVITY, 
CORRUPT_ON_ACTIVITY, CORRUPT, and NOT_NORMAL. 
See 5.4.2.
If a state_name has not been defined with a specific simstate, the 
-simstate can be used to set the simstate. 

R

-legal | -illegal The legality of the state as either legal or illegal, the default is -legal.

-update  Use -update if the state_name has already been defined in the 
object_name.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
Copyright © 2009 IEEE. All rights reserved. 45

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

A logical contradiction exists when a logic or supply net is specified to be exactly more than one value for
the state, e.g., (enable == ‘1’) and (enable == ‘0’). A power state specification is erroneous if
it contains logical contradiction(s).

The -logic_expr boolean_function shall be a SystemVerilog Boolean expression (see 4.10). A supply set or
power domain name may be referenced as one operand with the name of a power state attributed on the
supply set or power domain as the other operand in an equality or inequality subexpression of -logic_expr.
For example:

-logic_expr {core_pd == turbo && ram_pd != sleep}

The -logic_expr boolean_function expression may contain a reference to an interval(signal_name [edge
edge]). The interval function returns the time difference between two edges of signal_name. edge shall be
one of posedge or negedge. If the edges are not specified, posedge is the default for both. If the second edge
specification is identical to the first edge specification, the interval is the time measured between the
occurrence to two successive identical edges. The value returned by interval shall be compared against a
SystemVerilog time literal value. At the beginning of simulation prior to the occurrence of the edges, the
interval function shall return a value larger than any time literal that can be compared with it.

The -supply_expr boolean shall be a SystemVerilog expression referencing supply nets and supply ports.
The supply net type value can be expressed as an aggregate value in the following ways:

— supply_net == state
This syntactic form is not standard SystemVerilog, but it allows a convenient way to specify the
condition is true when supply_net.state = state. (supply_net.voltage can be any value.)

— supply_net == ‘{state, ‘{voltage_1 [, voltage_2 [, voltage_3]]}}
This syntactic form is not standard SystemVerilog, but it allows a single method (see 5.4.3.2) to
specify either a single voltage value, a voltage range when two values are specified, or a min-nom-
max tuple when three values are specified. When only voltage_1 is specified, min, nom, and max are
set to that value. If both voltage_1 and voltage_2 are specified, min is set to voltage_1, max is set to
voltage_2, and nom is set to (voltage_1 + voltage_2)/2. When all three values are specified, min is
set to voltage_1, nom is set to voltage_2, and max is set to voltage_3. The -supply_expr boolean
evaluates True when the supply_net.state = state and voltage_1 <= supply_net.voltage <= voltage_3.

It shall be an error if voltage_2 < voltage_1 or voltage_3 < voltage_2.

NOTE 1—Simulation and timing verification can differentiate power states based on differences in voltage. It is
unknown if implementation and formal verification tools can differentiate power states based on voltage differences.

-simstate shall only be specified for power states attributed on a supply set. It shall be an error if the power
state is associated with any other type of object (see 6.51). See also 5.6.

When -simstate:

— Is declared for a named state the first time, any of the arguments are legal.

— Is declared NOT_NORMAL, the effect shall be the same as if CORRUPT had been declared.

— Has previously been declared NOT_NORMAL, the definition may be subsequently refined to any
simstate other than NORMAL.

— Has previously been declared NORMAL, CORRUPT, CORRUPT_ON_ACTIVITY,
CORRUPT_STATE_ON_CHANGE, or CORRUPT_STATE_ON_ACTIVITY, it shall be an
error to specify any state other than that originally declared (e.g., once CORRUPT has been
declared for a particular state, it needs to remain as CORRUPT in any subsequent declarations for
that state).
46 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

Legality specifies if it is permissible for the object to be in that state. Undefined states are illegal unless
specified otherwise.   Undefined states of a particular object are legal if add_power_state is invoked for that
object without specification of -illegal or -state. Defined states are legal unless -illegal is specified.

If neither -legal or -illegal are specified in an add_power_state command, the default is -legal.

a) -legal means this state is legal and the object may be in that state.

b) -illegal means the object shall never be in that state. 

Verification tools shall emit an error when an illegal state occurs.

NOTE 2—The choice of state name has no simstate implications.

NOTE 3—Implementation tools may optimize a design based on the presumption illegal states never occur.

Syntax examples:

add_power_state PdA.primary

-state GO_MODE {–logic_expr SW_ON –simstate NORMAL
-supply_expr {{power == ‘{FULL_ON, 0.8}} 
&& {ground == ‘{FULL_ON, 0}} 
&& {nwell == ‘{FULL_ON,0.8}}}

-state OFF_MODE {–logic_expr !SW_ON 
-supply_expr {power == ‘{OFF}}
–simstate CORRUPT}

-state SLEEP_MODE {–logic_expr {SW_ON && interval(clk_dyn posedge negedge) 
>= 100ns} 
-supply_expr {{power == ‘{FULL_ON, 0.8}} 
&& {ground == ‘{FULL_ON, 0}} 
&& {nwell == ‘{FULL_ON,0.6}}}
–simstate CORRUPT_STATE_ON_CHANGE}

-legal

add_power_state PdTOP -legal
-state GOGO {-logic_expr {u1/PdA == GO_MODE}}

add_power_state GARY -legal

6.9 add_pst_state 

Purpose Define the states of each of the supply nets for one possible state of the design

Syntax
add_pst_state state_name

-pst table_name
-state supply_states

Arguments

state_name The simple name of the state being defined.

-pst pst_name The power state table (PST) to which this state applies.

-state supply_states The list of supply net state names (see 6.22), listed in the corresponding 
order of the -supplies listing in the create_pst command (see 6.21).
A * in place of a state name indicates this is a “don’t care” for that supply.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
Copyright © 2009 IEEE. All rights reserved. 47

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

The add_pst_state command defines the name for a specific state of the supply nets defined for the PST
table_name.

It shall be an error if
— The number of supply_states is different than the number of supply nets within the PST.
— A state_name is defined more than once for the same PST.

Syntax example:

create_pst            pt -supplies { PN1   PN2   SOC/OTC/PN3 }
add_pst_state s1 –pst pt –state { s08   s08   s08         }
add_pst_state s2 –pst pt –state { s08   s08   off         }
add_pst_state s3 –pst pt –state { s08   s09   off         }

6.10 associate_supply_set 

The associate_supply_set command associates a supply set with a domain or strategy. The supply set
includes the specific nets for each of the supplies (power, ground, etc.), see 6.24. See also 6.14.

A supply set handle is constructed from a domain name or a strategy name. Handles are names rooted in the
active scope. This allows the association of a power domain supply set with a supply set defined in a
different scope by first setting the active scope to one in which both the supply set and the domain or
strategy are visible.

Predefined supply_set_handles for the power domain [domain_name (see 6.19)] include:
domain_name.primary, domain_name.default_retention, and domain_name.default_isolation. If
default_retention or default_isolation are specified on a domain, this sets the default retention or isolation
supply set, respectively, to use in the retention or isolation strategies of that domain when no other supply set
is specified.

a) The predefined supply_set_handles for a level-shifter strategy [level_shifter_name (see 6.42)] are
domain_name.level_shifter_name.input and domain_name.level_shifter_name.output.

b) The predefined supply_set_handle for a power switch [switch_name (see 6.20)] is
switch_name.supply, e.g., 
create_power_switch purple_people_eater_ps

-supply_set yellow_meanie

which is equivalent to 
create_power_switch purple_people_eater_ps
associate_supply_set yellow_meanie

-handle purple_people_eater_ps.supply

Purpose Associate a supply set or supply_set_ref to a power domain, power switch, or strategy 
supply_set_handle

Syntax associate_supply_set supply_set_ref
-handle supply_set_handle

Arguments

 supply_set_ref The rooted name of the supply set or a supply_set_handle to associate.

-handle 
supply_set_handle

The supply_set_handle.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
48 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

This power switch’s supply set handle is 
purple_people_eater_ps.supply

which references yellow_meanie, i.e.,
purple_people_eater_ps.yellow_meanie

c) The predefined supply_set_handle for a retention strategy [retention_name (see 6.47)] is
switch_name.retention_name.supply.

d) User-specified names for supply_set_handle are also permitted. The supply_set_handle is created in
the scope of the domain, switch, or strategy and the supply_set_ref is associated with the
supply_set_handle.

e) For predefined supply_set_handles, the supply_set_ref is associated with the predefined
supply_set_handle.

f) The form of supply_set_handles for the isolation cell strategies (domain_name.isolation_name.
isolation_supply_set[index] (see 6.20 and 6.40), where index starts at 0) are
domain_name.isolation_name.isolation_supply_set[0], domain_name.isolation_name.
isolation_supply_set[1], and so on. A name may be associated with a vector positions using the
associate_supply_set command, e.g.,
associate_supply_set U1/PD1.my_iso.isolation_supply_set\[1\] 

-handle U1/PD1.my_iso.clamp

g) When specifying a supply net in a supply set, a handle of the form
switch_name.strategy.supply.function may be used. The names are defined in the scope of the
domain, switch, or strategy.

It shall be an error if
— A supply_set_handle is already associated with a supply_set.
— The associations of handles to supply sets form a loop of associations.

Syntax example:

associate_supply_set some_supply_set 
-handle U1/PD1.rolf_mem_ss
Copyright © 2009 IEEE. All rights reserved. 49

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

6.11 bind_checker 

The bind_checker command inserts checker modules into a design without modifying the design code or
introducing functional changes. The mechanism for binding the checkers to design elements relies on the
SystemVerilog bind directive. The bind directive causes one module to be instantiated within another,
without having to explicitly alter the code of either. This facilitates the complete separation between the
design implementation and any associated verification code.

Signals in the target instance are bound by position to inputs in the bound checker module through the port
list. Thus, the bound module has access to any and all signals in the scope of the target instance, by simply
adding them to the port list, which facilitates sampling of arbitrary design signals.

If -bind_to is specified, an instance of checker is created in every instance of the module. Otherwise, an
instance of the checker is only created within the active scope. 

port_name is a port defined on the interface of checker_name and net_name is a name of a net relative to the
scope where checker_name is being instantiated.

It shall be an error if instance_name already exists in -bind_to module.

This command is for verification only; implementation tools shall ignore it.

Syntax example:

bind_checker chk_p_clks

-module assert_partial_clk

-bind_to aars

-ports {{prt1 clknet2} {port3 net4}}

Purpose Insert checker modules and bind them to design elements

Syntax

bind_checker instance_name
-module checker_name
[-elements element_list]
[-bind_to module [-arch name]]
[-ports {{port_name net_name}*}]

Arguments

instance_name The name used to instance the checker module in each design element.

-module checker_name The name of a SystemVerilog module containing the verification code. The 
verification code itself shall be written in SystemVerilog, but it can be 
bound to either a SystemVerilog or VHDL instance.

-elements element_list The list of design elements.

-bind_to module [-arch 
name]

The SystemVerilog module or VHDL entity/architecture for which all 
instances are the target of this command.

-ports {{port_name 
net_name}*}

The association of signals to the checker’s ports.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
50 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

6.12 connect_logic_net 

The connect_logic_net command connects a logic net to the specified ports. The net is propagated through
implicitly created ports and nets throughout the logic hierarchy in the descendant tree of the active UPF
scope as required (see 4.2). The connection from net_name in the active UPF scope to any element in
port_list shall not cross any power-domain boundaries.

The net and ports shall be of a compatible type. The following HDL types are compatible with each other:
— SystemVerilog logic
— VHDL std_ulogic
— SystemC sc_bit

It shall be an error if net_name does not already exist.

NOTE 1—Use create_logic_port (see 6.18) to create new logic ports on power domain boundaries.

NOTE 2—This command exists to allow for the propagation of signals from a power-management block. Using this
command to provide non-power control connections may cause the logic function to diverge from the HDL and is
strongly discouraged.

Syntax example:

connect_logic_net sab_chair
  -ports {s b}

Purpose Connect a logic net to logic ports

Syntax connect_logic_net net_name
-ports port_list

Arguments

net_name A simple name.

-ports port_list A list of ports on the interface of the active scope and/or on design elements 
that are located in the active scope and its descendants.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
Copyright © 2009 IEEE. All rights reserved. 51

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

6.13 connect_supply_net 

The connect_supply_net command connects a supply net to the specified ports. The net is propagated
through implicitly created ports and nets throughout the logic hierarchy in the descendant tree of the active
UPF scope as required (see 4.2) This explicit connection overrides (has higher precedence than) the implicit
and automatic connection semantics (see 4.2) that might otherwise apply. -domain or -cells is required when
the -rail_connection or -pg_type options are specified.

Use:

-ports to connect to supply ports;

-pins to connect to pins on library cells;

-cells to connect to all pins of the appropriate type (power or ground) on the specified cells;

-rail_connection to connect to pins having this (rail) type; only use this if the -cells or -domain
options are specified;

-pg_type to connect to ports on the design elements that have the specified pg_type;

-vct to indicate for every HDL port to which the port is connected, the supply net state shall be
converted if it is being propagated into the HDL port (see 6.25) or the HDL port value shall be
converted if it is being propagated onto the supply net (6.16). -vct is ignored for any connections of
the supply net to supply ports defined in UPF.

Purpose Connect a supply net to supply ports

Syntax

connect_supply_net net_name
[-ports list] 
[-pg_type {pg_type_list element_list}]*
[-vct vct_name]
[-pins list]
[-cells list]
[-domain domain_name]
[-rail_connection rail_type]

Arguments

net_name A simple name.

-ports list A list of rooted port names.

-pg_type {pg_type_list 
element_list}

An indirect connection specification via the pg_type on the 
design_element’s ports.

-vct vct_name A value conversion table (VCT) defining how values are mapped from UPF 
to an HDL model or from the HDL model to UPF.

-pins list A list of pins on cells to connect.

-cells list A list of cells to use for -rail_connection or -pg_type.

-domain domain_name The domain indicates the scope to use for -rail_connection or -pg_type.

-rail_connection 
rail_type

The rail type (for older libraries).

Return 
value

Return the fully qualified name of the supply net or raise a TCL_ERROR if the supply net is not 
created.
52 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

The following also apply:
— It shall be an error if any cell, domain, port, supply net, or design element specified in this command

does not exist.
— It shall be an error if the value conversions specified in the VCT do not match the type of the HDL

port.
— If shall be an error if at least one of -ports, -pins, -rail_connection, or -pg_type is not specified in a

connect_supply_net command.
— The -ports and -pins options are mutually exclusive with the -cells, -domain, -rail_connection, and

-pg_type options.
— The -rail_connection and -pg_type options are mutually exclusive with each other.
— Automatic propagation of a supply net throughout the extent of a power domain is determined by its

usage within the domain, such as primary supply, retention supply, etc.
— It shall be an error if net_name has not been previously created; in this case, a 0 shall be returned.
— If -pg_type is specified, it shall be an error if a design element does not exist or the specified

attribute does not exist on any port of the design element.

Syntax examples:

connect_supply_net fb
  -ports {jk jb}

connect_supply_net mc
  -ports {rl}
  -vct SV_TIED_HI

6.14 connect_supply_set 

The connect_supply_set command connects a supply set to the specified elements. The nets of the set are
propagated through implicitly created ports and nets throughout the logic hierarchy in the descendant tree of

Purpose Connect a supply set to particular elements

Syntax

connect_supply_set supply_set_ref
{-connect {supply_function {pg_type_list}}}*
[-elements element_list]
[-exclude_elements exclude_list]
[-transitive <TRUE | FALSE>]

Arguments

 supply_set_ref The rooted name of the supply set or a supply_set_handle.

-connect 
{supply_function 
{pg_type_list}}

Define automatic connectivity for a supply_function of the supply_set_ref 
as ports having the specified pg_type_list attributes (see 6.13).

-elements element_list The list of design element names to add.

-exclude_elements 
exclude_list

The list of design elements to exclude from the effective_element_list.

-transitive 
<TRUE | FALSE>

When -transitive is TRUE (the default), the command applies to the 
descendants of the elements.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
Copyright © 2009 IEEE. All rights reserved. 53

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

the active UPF scope as required (see 4.2) This explicit connection overrides (has higher precedence than)
the implicit and automatic connection semantics (see 4.2) that might otherwise apply.

This command applies to elements in the effective_element_list (see 6.3).
a) When supply_set_ref refers to a handle associated with a domain, the prefiltered_element_list is

filtered to only include elements within the extent of the domain.
b) When supply_set_ref refers to a handle associated with a strategy, the prefiltered_element_list is

filtered to only include all elements connected to the strategy’s supply.
c) When supply_set_ref refers to a handle associated with a domain and the aggregate_element_list is

empty, all elements in the extent of the domain are added to the aggregate_element_list.
d) When supply_set_ref refers to a handle associated with a strategy and the aggregate_element_list is

empty, all elements connected to the respective strategy supply are added to the
aggregate_element_list.

-connect is additive, i.e., on a particular supply function, a subsequent invocation setting pg_type_list adds
the additional pg_type_list.

NOTE—The exclude_list in -exclude_elements can specify elements that have not already been explicitly or implicitly
specified via an explicit or implied element_list.

It shall be an error if 
— A particular pg_type_list is associated with more than one supply net for any given design element

in -connect;
— More than one supply net is connected to the same port in a design element, even if the connection is

the result of more than one command that connects supply nets, e.g, connect_supply_set,
connect_supply_net, etc.

— Any element of element_list or exclude_list is not in a specified domain or strategy referenced in the
supply_set_handle.

Syntax example:

connect_supply_set some_supply_set 
-elements {U1/U_minh_mem}
-connect {mem_array_power {rolf_pg_type minh_pg_type}}
-connect {power {primary_power}}
-connect {ground {primary_ground}}
54 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

6.15 create_composite_domain 

A composite power domain is a simple container for a set of power domains. Operations performed on the
composite domain are transitively applied to each subdomain, e.g., creating a supply_set_handle, associating
a supply set to the domain, or defining a strategy.

A composite domain has no attributes except power states and the primary supply_set_handle. A command
applied to a composite domain is transitively applied to each subdomain if and only if the application of that
command does not result in an error in any subdomain. It is valid to refer to the primary supply of a
composite domain because there is exactly one primary supply common to all subdomains. It is not valid to
refer to other supply_set_handles or strategies in the composite domain because they are not necessarily
common to all sub domains.

a) Composite power domains can be used as a subdomain of other composite power domains.

b) Since a composite domain is simply a container, commands can still be applied to subdomains after
merging.

c) For each subdomain before merging: If a supply set is associated with the primary
supply_set_handle of a subdomain, that supply set shall be the same as the supply set of the
composite domain.

d) The following restrictions apply to the composite domain and subdomains after the merge has been
completed:

1) It shall be an error to associate a supply set to the primary supply_set_handle of a subdomain.

2) Commands applied to a subdomain do not affect any other subdomain or the composite
domain.

e) Subdomains of a composite domain can still be referenced after merging, in the sense their elements
lists are valid after merging, and all aspects of the subdomain (e.g., strategies defined on them) can
be referenced.

Purpose Define a composite domain comprised of one or more subdomains

Syntax

create_composite_domain composite_domain_name 
[-subdomains subdomain_list]
[-supply {supply_set_handle [supply_set_ref]}]*
[-update]

Arguments

composite_domain_
name

The name of the composite domain; this shall be a simple name.

-subdomains 
subdomain_list

The -subdomains option specifies a list of rooted domain names, 
including any previously created composite domains.

R

-supply 
{supply_set_handle 
[supply_set_ref]}

The -supply option specifies the supply_set_handle for 
composite_domain_name. If supply_set_ref is also specified, the 
domain supply_set_handle is associated with the specified 
supply_set_ref. The supply_set_ref may be any supply set or 
supply_set_handle visible in the active scope. The predefined 
supply_set_handles are: primary, default_retention, and 
default_isolation. See also 6.10.

R

-update  Use -update if the composite_domain_name has already been defined.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
Copyright © 2009 IEEE. All rights reserved. 55

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

A domain supply_set_handle may be defined without an association to a supply_set_ref (see 6.19). The
association can be completed separately (see 6.10).

When a supply_set_handle and a supply_set_ref are specified in -supply, it is equivalent to the following:

associate_supply_set supply_set_ref
-handle composite_domain_name.supply_set_handle

If default_retention or default_isolation are specified on -supply, this specifies the default retention or
isolation supply set, respectively, to use in the retention or isolation strategies of that domain when no other
supply set is specified. User-defined supply_set_handles are also permitted.

Syntax example:

create_composite_domain my_combo_domain_name
-subdomains {a/pd1 b/pd2}
-supply {default_isolation could_be_on_ss}

6.16 create_hdl2upf_vct 

The create_hdl2upf_vct command defines a value conversion table from an HDL logic type to the state
type of the supply net value (see Annex B) when that value is propagated from HDL port to a UPF supply
net. It shall provide a conversion for each possible logic value that the HDL port can have.
create_upf2hdl_vct does not check that the set of HDL values are complete or compatible with any HDL
port type.

vct_name provides a name for the value conversion table for later use with the connect_supply_net
command (see 6.13). There is a single global name space for vct_names. The predefined VCTs are shown in
Annex C.

-hdl_type specifies the HDL type for which the value conversions are defined. This information allows a
tool to provide completeness and compatibility checks. If the typename is not one of the language’s
predefined types or one of the types specified in the next paragraph, then it shall be of the form
library.pkg.type.

Purpose Define a value conversion table that can be used in converting HDL logic values into state type 
values

Syntax
create_hdl2upf_vct vct_name

-hdl_type {<vhdl | sv> [typename]}
-table {{from_value to_value}*}

Arguments

vct_name The value conversion table (VCT) name.

-hdl_type {<vhdl | sv> 
[typename]}

The HDL type for which the value conversions are defined.

-table {{from_value 
to_value}*}

A list of the values of the HDL type to map to UPF state type values.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
56 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

The following HDL types shall be the minimum set of types supported. An implementation tool may support
additional HDL types:

a) VHDL

1) Bit, std_[u]logic, Boolean

2) Subtypes of std_[u]logic

b) SystemVerilog

reg/wire, Bit, Logic

-table defines the 1:1 conversion from HDL logic value to the UPF partially on and on/off states. The values
are consistent with the HDL type values.

For example:

— When converting from SystemVerilog logic type, the legal values are 0, 1, X, and Z.

— When converting from SystemVerilog or VHDL bit, the legal values are 0 or 1.

— When converting from VHDL std_[u]logic, the legal values are U, X, 0, 1, Z, W, L, H, and -.

The conversion values have no semantic meaning in UPF. The meaning of the conversion value is relevant
to the HDL model to which the supply net is connected.

It shall be an error if vct_name already exists in the active UPF scope.

Syntax examples:

create_hdl2upf_vct

vlog2upf_vss

-hdl_type {sv reg}

-table {{X OFF} {0 FULL_ON} {1 OFF} {Z PARTIAL_ON}}

create_hdl2upf_vct

stdlogic2upf_vss

-hdl_type {vhdl std_logic}

-table {{‘U’ OFF}

 {‘X’ OFF}

 {‘0’ OFF}

 {‘1’ FULL_ON}

 {‘Z’ PARTIAL_ON}

 {‘W’ OFF}

 {‘L’ OFF}

 {‘H’ FULL_ON}

 {‘-’ OFF}}
Copyright © 2009 IEEE. All rights reserved. 57

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

6.17 create_logic_net 

The create_logic_net command creates a logic net in the active scope.

The net’s type is determined by the language of the scope where it is created. If the scope is
— SystemVerilog, the type is logic
— VHDL, the type is std_ulogic
— SystemC, the type is sc_bit

It shall be an error if net_name already exists in the active scope.

Syntax example:

create_logic_net sab_chair

6.18 create_logic_port 

The create_logic_port command creates a logic port on the active scope. This logic port is not included in
any existing strategies for isolation or level-shifting. However, any isolation or level-shifting strategy
defined after the logic port is created shall apply to the port if it otherwise matches other criteria specified in
the strategy.

The port’s type is determined by the language of the scope where it is created. If the scope is
— SystemVerilog, the type is logic
— VHDL, the type is std_ulogic
— SystemC, the type is sc_bit

This command can be applied once to a logic port.

Purpose Define a logic net

Syntax create_logic_net net_name

Arguments net_name A simple name.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.

Purpose Define a logic port

Syntax create_logic_port port_name
[-direction <in | out | inout>]

Arguments

port_name A simple name.

-direction <in | out | 
inout>

The direction of the port. The default is in.

Return 
value

Return the fully qualified name (from the active scope) of the created port or raise a TCL_ERROR if the 
port is not created.
58 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

Syntax example:

create_logic_port jd_writer

-direction out

6.19 create_power_domain 

In addition to defining a set of design elements that share a common primary supply set,
create_power_domain can be used to specify additional supply sets (see 6.10) used within the domain, and
any isolation, level-shifting, or retention strategies. Elements and supplies may be added incrementally.

-elements specifies a set of rooted design elements contained within the power domain. This command
presumes -transitive is always TRUE (see 6.3.1). The following also apply:

— element_list is specified respective to the active scope; it is not influenced by the -scope argument.

Purpose Define a set of design elements that generally have the same primary supply set

Syntax

create_power_domain domain_name 
[-simulation_only]
[-elements element_list]
[-exclude_elements exclude_list]
[-include_scope]
[-supply {supply_set_handle [supply_set_ref]}*]
[-scope instance_name]
[-define_func_type {supply_function {pg_type_list}}]*
[-update]

Arguments

domain_name The name of the power domain; this shall be a simple (non-hierarchical) 
name. This simple name is rooted in the active scope. 

-simulation_only Define a power domain for simulation purposes only.

-elements element_list The list of design elements to add. R

-exclude_elements 
exclude_list

The list of design elements to exclude from the effective_element_list. R

-include_scope Define the extent of the domain to include the active scope and, by default, 
all of its descendant scopes. See also 4.7. 

-supply 
{supply_set_handle 
[supply_set_ref]}

The -supply option specifies the supply_set_handle for domain_name. 
If supply_set_ref is also specified, the domain supply_set_handle is 
associated with the specified supply_set_ref. The supply_set_ref may 
be any supply set or supply_set_handle visible in the active scope. The 
predefined supply_set_handles are: primary, default_retention, and 
default_isolation. See also 6.10.

R

-scope instance_name Create the power domain within this scope.

-define_func_type 
{supply_function 
{pg_type_list}}

Define automatic connectivity for a supply_function of 
domain_name.primary (see 6.10) having the specified attributes in 
pg_type_list.

R

-update Use -update if the domain_name has already been defined.

Return 
value

Return the fully qualified name (from the active scope) of the created domain or raise a TCL_ERROR if 
the domain is not created.
Copyright © 2009 IEEE. All rights reserved. 59

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

— If -include_scope is specified, the elements in the active scope are included as a rooted design
element in the aggregate_element_list.

— When -elements and -update are not specified, the active scope is included as a rooted design
element in the aggregate_element_list.

— A design element can be a member of only one power domain.
— When -simulation_only is specified, signal names and process labels may also be specified in list.

-simulation_only specifies the domain is intended for use with behavioral non-synthesizing
elements.

NOTE—When -elements is specified with an empty list, no elements are added to the effective_element_list.

A domain supply_set_handle may be defined without an association to a supply_set_ref. The association can
be completed separately (see 6.10).

When a supply_set_handle and a supply_set_ref are specified in -supply, it is equivalent to the following:

associate_supply_set supply_set_ref
-handle domain_name.supply_set_handle

If default_retention or default_isolation is specified as the supply_set_handle with -supply, this specifies
the default retention or isolation supply set, respectively, to use in the retention or isolation strategies of that
domain when no other supply set is specified. User-defined supply_set_handles are also permitted.

The primary supply set is implicitly connected to design elements and logic inferred from the design
elements in the power domain. However, the primary supply set shall not be implicitly connected when any
of the following apply: 

a) A design element has at least one supply net explicitly or automatically connected and
set_simstate_behavior (see 6.51) has not been enabled.

b) A design element has set_simstate_behavior disabled.
c) A design element is created as a result of a UPF command, e.g., isolation cells, level-shifters, power

switches, and the retention portion of a retention register.

Implicit connections imply simulation semantics as specified in 5.4.2.

-scope specifies the scope, i.e., the instance, where the domain shall be created. This scope is the active
scope for this command; it defines the domain boundary within the logic design. If -scope is not specified,
the power domain shall be created within the active scope.

-update may be used to add elements and supplies to a previously created domain. It shall be an error if
-update is used during the initial creation of domain_name.

It shall be an error if an implementation tool encounters a -simulation_only power domain.

Syntax example:

create_power_domain PD1 -elements {top/U1}

-supply {primary PD1_Primary}

-supply {isolation PD1_ret}

-supply {retention PD1_ret}

-supply {mem_array PD1_ma}

set_scope /top/U1

create_power_domain PD2 -elements {}
60 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

6.20 create_power_switch 

Purpose Define a switch

Syntax

create_power_switch switch_name
-output_supply_port {port_name [supply_net_name]}
{-input_supply_port {port_name [supply_net_name]}}*
{-control_port {port_name [net_name]}}*
{-on_state {state_name input_supply_port {boolean_function}}}*
[-off_state {state_name {boolean_function}}]*
[-supply_set supply_set_name]
[-on_partial_state {state_name input_supply_port {boolean_function}}]*
[-ack_port {port_name net_name [{boolean_function}]}]*
[-ack_delay {port_name delay}]*
[-error_state {state_name {boolean_function}}]*
[-domain domain_name]

Arguments

switch_name The name of the switch instance to create; this shall be a simple name.

-output_supply_port 
{port_name 
[supply_net_name]}

The output supply port of the switch and, optionally, the net where this port 
connects.

-input_supply_port 
{port_name 
[supply_net_name]}

An input supply port of the switch and, optionally, the net where this port is 
connected.

-control_port 
{port_name [net_name]}

A control port on the switch and, optionally, the net where this control port 
connects.

-on_state {state_name 
input_supply_port 
{boolean_function}}

A named state, the input_supply_port for which this is defined, and its 
corresponding Boolean function.

-off_state {state_name 
{boolean_function}}

A named state and its corresponding Boolean function.

-supply_set 
supply_set_name

Associate a supply set with a switch. 

-on_partial_state 
{state_name 
input_supply_port 
{boolean_function}}

A named state, the input_supply_port for which this is defined, and its 
corresponding Boolean function where the switch is in a current-limited 
state.

-ack_port {port_name 
net_name 
[{boolean_function}]}

The acknowledge port on the switch and the logic net where this port con-
nects. A Boolean function can also be specified. If a null string is used as 
the net_name for -ack_port, the port and its output function are defined, 
but the port itself is unconnected.

-ack_delay {port_name 
delay}

The acknowledge port and delay on the switch where this port connects.

-error_state 
{state_name 
{boolean_function}}

Any error states, which if defined on the switch can be flagged during 
simulation or analysis.

-domain domain_name If specified, the scope of the domain is the scope of the switch instance.

Return 
value

Return the fully qualified name of the created switch or raise a TCL_ERROR if the switch is not 
created.
Copyright © 2009 IEEE. All rights reserved. 61

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

The create_power_switch command defines an instance of a power switch in the active scope or the scope
of the -domain argument when provided.

An input supply port without a connected supply net has the value UNDETERMINED.

The switch’s -on_state, -on_partial_state, -off_state, and -error_state are evaluated in the following order
to determine the state of the output port: 

a) When any -error_state evaluates to True, the state of the switch’s output port is set to
UNDETERMINED and the value of the voltage is unspecified.

b) When any -off_state evaluates to True, and any -on_state or -on_partial_state evaluates to True,
the state of the switch’s output port is set to UNDETERMINED and the value of the voltage is
unspecified.

c) When more than one -on_state evaluates to True and the root supply drivers of the respective 
-input_supply_ports are not all the same: the state of the switch’s output port is set to
UNDETERMINED, the value of the voltage is unspecified, and it shall be an error.

d) When more than one -on_state evaluates to True and the root supply drivers of the respective 
-input_supply_ports are the same, the voltage of the output supply port is set to the voltage of the
root supply driver and if any input supply port corresponding to an -on_state that evaluates to True
is PARTIAL_ON, the output supply port’s state is set to PARTIAL_ON; otherwise, the root supply
driver is propagated to the output supply port.

e) When an -on_state evaluates to True, the value on the input supply port for that -on_state is
propagated to the output supply port.

f) When -off_state has a null Boolean expression, it can not evaluate True; therefore, when no -on_state
or -on_partial_state evaluates True, the state of the switch’s output port is set to UNDETERMINED.

g) When any -off_state evaluate to True, the supply port’s state is set to OFF and the value of the
voltage is unspecified.

h) When more than one -on_partial_state evaluates to True and the root supply drivers of the
respective -input_supply_ports are not all the same: the state of the switch’s output port is set to
UNDETERMINED, the value of the voltage is unspecified, and it shall be an error.

i) When more than one -on_partial_state evaluates to True and the root supply drivers of the
respective -input_supply_ports are the same, the value of the root supply driver is propagated to
the output supply port and degraded to PARTIAL_ON if it is FULL_ON.

j) When an -on_partial_state evaluates to True, the value on the input supply port for that
-on_partial_state is propagated to the output supply port and degraded to PARTIAL_ON if the
input is FULL_ON.

k) When all -on_states and all -on_partial_states evaluate to False and no -off_state is defined, the
output supply port’s state is set to OFF.

l) When all -on_states, -on_partial_states, -off_states, and -error_states evaluate to False and the
state of all input supply ports are OFF, the output supply port’s state is set to UNDETERMINED.

m) Otherwise; the state of the switch’s output port is set to UNDETERMINED and the value of the
voltage is unspecified.

An anonymous root supply driver originates the state of the output supply port when the state of the output
supply port is set to UNDETERMINED or OFF as a result of the evaluating of the switch’s -control_port
[see a), b), c), f), g), h), k), l), and m)].

If a boolean_function is specified for -ack_port, the result of boolean_function is driven on -ack_port’s
port_name delay time units after a control port transition. Otherwise, a logic 1 shall be driven on the
port_name delay time units after an -on_state evaluates to True and a logic 0 shall be driven delay time
units after an -off_state evaluates to True. delay (the default is 0) may be specified as a unit-less natural
62 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

integer or as a SystemVerilog time unit. If specified as a natural integer, the time unit shall be the same as
the simulation precision.

Any -ack_port, -on_state, -on_partial_state, -off_state, or -error_state boolean_function shall be a
SystemVerilog Boolean expression (see 4.10).

If -supply_set is specified for a switch, it powers logic or timing control circuitry within the switch and
powers any specified -ack_ports. When the supply set simstate is anything other than NORMAL, the state
of the output supply port of a switch is UNDETERMINED and the acknowledge ports are corrupted. If a
supply set is not associated with a switch, the output of the supply port implicitly operates in a NORMAL
simstate and it shall be an error if any acknowledge ports are specified.

The following also apply:

— It shall be an error if switch_name already exists in the active scope.

— It shall be an error if -on_state has a null Boolean function.

— Any name in a boolean_function needs to refer to a control port of the switch.

— All states not covered by the states on, off, and error are anonymous error states.

— If the implementation of a switch can not be inferred, map_power_switch (see 6.32) can be used to
specify it.

— If net_name is not specified for any of the switch’s port definitions, connect_logic_net (see 6.12) or
connect_supply_net (see 6.13) can be used to create the port connections.

— Each state name shall be unique for a particular switch.

— Any port_names specified in this command are user-defined (e.g., my_dogs_name).

NOTE 1—create_power_switch can be used to define an abstract power switch that implementation tools may expand
into multiple switches. create_power_switch can also be used to specify the need for a specific switch that can then be
mapped to a specific switch implementation using map_power_switch. It is not meant to be used as a single definition
representing multiple physical switches to be mapped with map_power_switch.

NOTE 2—create_power_switch provides relatively simple, general abstract functionality. HDLs can be used to model
switch functionality that cannot be captured with create_power_switch.

Syntax example:

create_power_switch sw1

-output_supply_port {vout VN3}

-input_supply_port {vin1 VN1}

-input_supply_port {vin2 VN2}

-control_port {ctrl_small ON1}

-control_port {ctrl_large ON2}

-control_port {ss SUPPLY_SELECT}

-on_partial_state {partial_s1 vin1 {ctrl_small & !ctrl_large & ss}}

-on_state {full_s1 vin1 {ctrl_small & ctrl_large & ss}}

-on_partial_state {partial_s2 vin2 {ctrl_small & !ctrl_large & !ss}}

-on_state {full_s2 vin2 {ctrl_small & ctrl_large & !ss}}

-off_state {not_required {!ctrl_small & !ctrl_large}}

-error_state {no_small {!ctrl_small & ctrl_large}}
Copyright © 2009 IEEE. All rights reserved. 63

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

6.21 create_pst 

The create_pst command defines a PST name and a set of supply nets for use in add_pst_state commands
(see 6.9). The PST table_name is defined in the namespace of the active scope.

A power state table is used for implementation—specifically for synthesis, analysis, and optimization. It
defines the legal combinations of states, i.e., those combinations of states that can exist at the same time
during operation of the design.

create_pst can only be used with add_pst_state (and vice-versa). This combination and using
add_power_state (see 6.8) are two methods for specifying power state information. Power state
specifications and default state definitions form an exhaustive specification of all of the legal power states of
the system.

It shall be an error if 
— table_name conflicts with any existing name in the namespace of the active scope.
— a specified supply net or supply port specified in supply_list does not exist.

Syntax example:

create_pst MyPowerStateTable -supplies {PN1 PN2 SOC/OTC/PN3}

Purpose Create a power state table

Syntax create_pst table_name
-supplies supply_list

Arguments

table_name The power state table name (PST). table_name is a simple name in the 
active scope.

-supplies supply_list The list of supply nets or ports to include in each power state of the design. 
The supplies are listed as rooted names in the active scope.

Return 
value

Return the name of the created PST or raise a TCL_ERROR if the PST is not created.
Copyright © 2009 IEEE. All rights reserved. 64

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

6.22 create_supply_net 

The create_supply_net command creates a supply net. If -domain is specified, the net is created in the logic
hierarchy in the same scope as domain_name. Otherwise, the net is created in the active scope. The net is
propagated through implicitly created ports and nets throughout the logic hierarchy in the descendant tree of
the scope in which the net is created as required by implicit and automatic connections of supply sets (see
6.19). This command can only be used once per net unless -reuse is specified.

The following also apply:

— It shall be an error if domain_name does not indicate a previously created power domain.

— When -reuse is specified, it shall be an error if net_name does not already exist.

— When the parameter for -resolve is unresolved, the supply net shall have only one source (see
6.22.1). For all other parameters to -resolve, the requirements on the drivers and sources of the net
are as defined in 6.22.2.

NOTE—Use set_scope (see 6.50) to change the scope prior to calling this command to set the active scope to the correct
scope for the net.

Syntax example:

create_supply_net local_vdd_3

-resolve one_hot

6.22.1 Supply net resolution

Supply nets are often connected to the output of a single switch. However, certain applications, such as on-
chip voltage scaling, may require the outputs of multiple switches or other supply drivers to be connected to
the same supply net (either directly or via supply port connections). In these cases, a resolution mechanism
is needed to determine the state and voltage of the supply net from the state and voltage values supplied by
each of the supply drivers to which the net is connected.

A supply net that specifies an unresolved resolution cannot be connected to more than one supply source.

Purpose Create a supply net

Syntax
create_supply_net net_name

[-domain domain_name][-reuse]
[-resolve <unresolved | one_hot | parallel | parallel_one_hot>]

Arguments

net_name A simple name.

-domain domain_name The domain in whose scope the supply net is to be created.

-reuse Extend net_name as a supply net within domain_name. No new nets are 
created.

-resolve <unresolved | 
one_hot | parallel | 
parallel_one_hot>

A resolution mechanism that determines the state and voltage of the supply 
net when the net has multiple supply sources (see 6.22.2). If no option is 
specified, the behavior for resolution is the same as for unresolved.

Return 
value

Return the fully qualified name (from the scope in which the net is created) of the created net or raise a 
TCL_ERROR if the net is not created.
Copyright © 2009 IEEE. All rights reserved. 65

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

6.22.2 Resolutions methods

The following resolution methods shall be provided in the create_supply_net command (see 6.22):
a) unresolved

The supply net may only be connected to a single supply source (this is the default).
If the supply net has multiple sources, the net shall be resolved to UNDETERMINED and the
voltage value is unspecified.

b) one_hot
Multiple supply sources, each having a unique driver, may be connected to the supply net.
A supply net with one_hot resolution has a deterministic state only when no more than one source
drives the net at any particular point in time. If at any point in time more than one supply source
driving the net is anything other than OFF, the state of the supply net shall be UNDETERMINED,
the voltage value of the supply net shall be unspecified, and implementations may issue a warning or
an error.
1) If all supply sources are OFF, the state of the supply net shall be OFF, and the voltage value of

the supply net shall be unspecified.
2) If only one supply source is FULL_ON and all other sources are OFF, the state of the supply

net shall be FULL_ON, and the voltage value of the corresponding source shall be assigned to
the supply net.

3) If only one supply source is PARTIAL_ON and all other sources are OFF, the state of the
supply net shall be PARTIAL_ON and the voltage value of the corresponding source shall be
assigned to the supply net.

4) If any source is UNDETERMINED, the state of the supply net shall be UNDETERMINED,
and the voltage value of the supply net shall be unspecified.

c) parallel
Multiple supply sources, sharing a common root supply driver, may be connected to the supply net.
The parallel resolution allows more than one potentially conducting path to the same root supply
driver, as if the switches had been connected in parallel. It shall be an error if any of these potentially
conducting paths can be traced to more than one root supply driver.
1) If all of the supply sources are FULL_ON, then the supply net state is FULL_ON and the

voltage value is the value of the root supply driver.
2) If all the supply sources driving the supply net are OFF, the state of the supply net shall be

OFF and the voltage is unspecified.
3) If any of the sources is UNDETERMINED, the resolution is UNDETERMINED; otherwise,

i) If there is at least one PARTIAL_ON source, the supply net shall be PARTIAL_ON and
the voltage value is the value of the root supply driver.

ii) If there is at least one source that is OFF and at least one that is FULL_ON or
PARTIAL_ON, the supply net shall be PARTIAL_ON and the voltage value is the value
of the root supply driver. The voltage value of the PARTIAL_ON supply net shall be the
voltage value of the root supply driver.

d) parallel_one_hot
Multiple supply sources may be connected to the supply net. A source may share a common root
supply driver with one or more other sources. At most, one root supply driver is FULL_ON at any
particular time with all sources sharing that driver resolved using parallel resolution.
The parallel_one_hot resolution allows resolution of a supply net that has multiple root supply
drivers where each driver may have more than one path through supply sources to the supply net.
Each unique root supply driver is identified and one_hot resolution is applied to the drivers. parallel
Copyright © 2009 IEEE. All rights reserved. 66

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

resolution is then applied to each supply source connecting the one_hot root supply driver to the
supply net.

6.22.3 Supply nets defined in HDL

The declaration of any VHDL signal or SystemVerilog wire or reg as a supply_net_type from
the UPF package (see Annex B) is equivalent to calling create_supply_net for every instance of that
declaration, where the net_name is the name of the VHDL signal or SystemVerilog wire or reg, and
the scope is the instance.

6.23 create_supply_port 

The create_supply_port command defines a supply port at the scope of the power domain when -domain is
specified or at the active scope if -domain is not specified.

-direction defines how state information is propagated through the supply network as it is connected to the
port. If the port is an input port, the state information of the external supply net (see 6.22) connected to the
port shall be propagated into the design element. Likewise, for an output port, the state information of the
internal supply net connected to the port shall be propagated outside the design element.

Supply ports connected to a net shall be inout for supply nets that have both loads and sources within that
module. Supply ports are loads, sources, or both.

a) The LowConn of an input port is a source.
b) The HighConn of an input port is a load.
c) The LowConn of an output port is a load.
d) The HighConn of an output port is a source.
e) The LowConn of an inout port is both a load and a source.
f) The HighConn of an inout port is both a load and a source.

Supply ports may be defined in HDL. If a VHDL or SystemVerilog port is declared as a
supply_net_type from the UPF package (see Annex B); this is equivalent to calling
create_supply_port for every instance of that declaration, where the port_name is the name of the VHDL
or SystemVerilog port, and the scope is the instance.

For a uni-directional supply port, it shall be an error if there is a driver on the receiving side and a receiver
on the driving side; i.e., for an input port, it shall be an error if there is a receiver on the HighConn interface

Purpose Create a supply port on a design element

Syntax
create_supply_port port_name

[-domain domain_name]
[-direction <in | out | inout>]

Arguments

port_name A simple name.

-domain domain_name The domain where this port defines a supply net connection point.

-direction <in | out | 
inout>

The direction of the port. The default is in.

Return 
value

Return the fully qualified name (from the active scope) of the created port or raise a TCL_ERROR if the 
port is not created.
Copyright © 2009 IEEE. All rights reserved. 67

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

and a driver on the LowConn interface; for an output port, it shall be an error if there is a driver on the
HighConn interface and a receiver on the LowConn interface.

Syntax example:

create_supply_port VN1

-direction inout

6.24 create_supply_set 

create_supply_set creates the supply set name within the active scope in the UPF name space. The
reference ground can be specified in any invocation of this command. This command defines a supply set as
a collection of supply nets each of which serve a specific function for the set.

-update is used to signify that this create_supply_set call refers to a supply set that was previously defined.
Referencing a previously created supply set without the -update argument shall be an error. Using the
-update argument for a supply set that has not been previously defined shall be an error.

When -function is specified, func_name may be a reserved function name (see 6.24.1): power, ground,
nwell, pwell, deepnwell, and deeppwell; or a user-defined string. If func_name has not been previously
specified for this supply set, then func_name shall be defined for this supply set. If a func_name has
previously been associated with a supply_net_name, it shall be an error if supply_net_name does not denote
the already associated net or a net connected to the already associated net via one or more ports and/or
supply nets. net_name may reference a supply net in the descendant hierarchy of the active scope using a
supply_net_handle (see 6.24.2).

The command can be called multiple times. If func_name has been previously defined, but no supply net has
been associated with the function, this maps the function name to a supply net and is not a re-declaration of

Purpose Create a supply set

Syntax

create_supply_set set_name
[-function {func_name [net_name]}]* 
[-reference_gnd supply_net_name]
[-update]

Arguments

set_name The name of the supply set; this shall be a simple (non-hierarchical) name. 
This simple name exists in the active scope. 

-function {func_name 
[net_name]}

The -function option defines the function (func_name) a supply net 
provides for this supply set. net_name is a rooted name of a supply net 
or supply port or a supply_net_handle. It shall be an error if the 
net_name is not defined in the active scope.

R

-reference_gnd 
supply_net_name

The -reference_gnd option defines the rooted name of a supply_net 
that serves as the reference ground for the supply set. A 
supply_net_handle may be used.
Default: if not specified, the voltages in this supply set shall be evalu-
ated with no offset from the assumed default reference supply, which is 
by definition 0 volts.

R

-update  Use -update if the set_name has already been defined.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
Copyright © 2009 IEEE. All rights reserved. 68

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

the function. Otherwise, each instance of -function shall define a unique func_name for the set or a unique
mapping of the function to a supply net.

If a supply set is created and no functions are defined for the set, a tool may implictly define the power and
ground functions when it is used as a power domain primary, a retention strategy supply, isolation strategy
supply, level-shifter strategy supply, or a power switch supply.

When -reference_gnd is specified, supply_net_name is the name of a supply net that serves as the reference
ground for the supply set. The voltage value for each supply net in the supply set is interpreted in reference
to this supply net. If this parameter is not specified, the voltages shall be evaluated with no offset or scaling.
If -reference_gnd has previously had a supply_net_name specified, then it shall be an error if a specified
supply_net_name is not an equivalent net.

To avoid early over-specification and to enable incremental refinement of the supply set specification, any
supply set name may be referenced with or without any explicitly defined functions. The supply set shall be
referenced with one of its handles.

Syntax example:

create_supply_set relative_always_on_ss
  -function {power vdd}
  -function {ground vss}
  -reference_gnd {earth_ground}

6.24.1 Predefined supply set functions

Predefined functions are available for use in any supply set definition (see 4.3.4).

6.24.2 Referencing supply set functions

The supply set function may also be referenced using a supply_net_handle as a member of the supply set
(whether or not a supply net has been associated with the function name), as follows:

supply_set_name.function

If no supply net is associated with a supply set’s function and that function is used in the design, an implicit
supply net with an anonymous name shall be created for use in verification and analysis. When the UPF
specification is used for implementation, a supply net shall not be implicitly created for a supply set function
that has no associated supply net. A tool may issue a warning or an error if a supply set’s function does not
have an explicit supply net association.
Copyright © 2009 IEEE. All rights reserved. 69

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

6.25 create_upf2hdl_vct 

The create_upf2hdl_vct command defines a value conversion table for the two LSBs of the
supply_state_type.state value (see Annex B) when that value is propagated from a UPF supply
net into a logic port defined in an HDL. It provides a 1:1 conversion for each possible combination of the
partially on and on/off states. create_upf2hdl_vct does not check that the values are compatible with any
HDL port type.

vct_name provides a name for the value conversion table for later use with the connect_supply_net
command (see 6.13). The predefined VCTs are shown in Annex C.

-hdl_type specifies the HDL type for which the value conversions are defined. This information allows a
tool to provide completeness and compatibility checks. If the typename is not one of the language's
predefined types or one of the types specified in the next paragraph, then it shall be of the form
library.pkg.type.

The following HDL types shall be the minimum set of types supported. An implementation tool may support
additional HDL types.

a) VHDL
1) Bit, std_[u]logic, Boolean
2) Subtypes of std_[u]logic

b) SystemVerilog
reg/wire, Bit, Logic

-table defines the 1:1 conversions from UPF supply net states to an HDL logic value. The values shall be
consistent with the HDL type values. For example:

— When converting to SystemVerilog logic type, the set of legal values is 0, 1, X, and Z.
— When converting to SystemVerilog or VHDL bit, the legal values are 0 or 1.
— When converting to VHDL std_[u]logic, the legal values are U, X, 0, 1, Z, W, L, H, and -.

The conversion values have no semantic meaning in UPF. The meaning of the conversion value is relevant
to the HDL model to which the supply net is connected.

Purpose Define value conversion table that can be used in converting UPF 
supply_net_type.state(1:0) values into HDL logic values

Syntax
create_upf2hdl_vct vct_name

-hdl_type {<vhdl | sv> [typename]}
-table {{from_value to_value}*}

Arguments

vct_name The value conversion table name.

-hdl_type {<vhdl | sv> 
[typename]}

The HDL type for which the value conversions are defined.

-table {{from_value 
to_value}*}

A list of UPF state type values to map to the values of the HDL type.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
70 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

Syntax examples:

create_upf2hdl_vct upf2vlog_vdd

  -hdl_type {sv}

-table {{OFF X} {FULL_ON 1} {PARTIAL_ON 0}}

create_upf2hdl_vct upf2vhdl_vss

  -hdl_type {vhdl std_logic}

-table {{OFF ‘X’} {FULL_ON ‘1’} {PARTIAL_ON ‘H’}}

6.26 describe_state_transition 

describe_state_transition specifies the legality of a transition from one object’s named power state to
another. The occurrence of an unnamed state during the transition from one state to another is ignored.

-from and -to specify many-to-many transitions. -paired specifies one or more one-to-one transitions.

If an empty list is specified in either the -from or -to list, it shall be expanded to all named power states for
the specified object_name.

Verification tools shall emit an error when an illegal state transition occurs.

It shall be an error if the state name in a list refers to a supply net state.

Syntax example:

describe_state_transition turn_on -object PdA -from {SLEEP_MODE} 
-to {HIGH_SPEED_MODE} -illegal

Purpose Describe a state transition's legality

Syntax

describe_state_transition transition_name
-object object_name
{-from {from_list} -to {to_list} | -paired {{from_state to_state}*} | 
-from {from_list} -to {to_list} -paired {{from_state to_state}*}}

[-legal | -illegal]

Arguments

transition_name Simple name.

-object object_name Simple name of a power domain or supply set.

-from {from_list} -to 
{to_list}

from_list is an unordered list of power state names active prior to a state 
transition and to_list is an unordered list of power state names active 
afterwards.

-paired {{from_state 
to_state}*}

A list of from-state name and to-state name pairs.

-legal | -illegal Define the state transition as legal or illegal, the default is -legal.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
Copyright © 2009 IEEE. All rights reserved. 71

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

6.27 load_simstate_behavior 

Loads a upf file that only contains set_simstate_behavior commands and applies these to the models in the
library lib_name.

It shall be an error if
— lib_name cannot be resolved
— file does not exist
— a model specified in file cannot be found
— the set_simstate_behavior commands in file use the -lib argument
— file contains UPF commands other than set_simstate_behavior

Syntax example:

load_simstate_behavior library1 -file simstate_file.upf

6.28 load_upf 

The load_upf command sets the scope to the specified instance and executes the set of UPF commands in
the file upf_file_name. Upon return, the active scope is restored to what it was prior to invocation.

load_upf does not create a new name space for the loaded UPF file. The loaded UPF file is responsible for
ensuring the integrity of both its own and the caller's name space as needed using existing Tcl name space
management capabilities. load_upf is a short-hand for the following sequence of commands:

Purpose Load the simstate behavior defaults for a library

Syntax load_simstate_behavior lib_name
-file {file}*

Arguments

lib_name The tool specific library name for which the simstate behavior file is to be 
loaded.

-file {file}* The file name containing the set_simstate_behavior commands.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.

Purpose Set the scope to the specified instance and execute the specified UPF commands

Syntax
load_upf upf_file_name

[-scope instance_name]
[-version upf_version]

Arguments

upf_file_name The UPF file to execute.

-scope instance_name The scope where the UPF commands contained in upf_file_name are 
executed.

-version upf_version The version of upf_file_name. See also 6.52.

Return 
value

Return a 1 if all commands in the loaded UPF file completed successfully, or raise a TCL_ERROR if 
the command fails or any command in the loaded UPF file fails.
72 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

system_scope_save_var = set_scope
upf-command-to-read/source-file upf_file
set_scope system_scope_save_var

-version can be used to specify the UPF version number according to which the UPF file is interpreted.
When -version is not specified, the loaded UPF file shall be interpreted based on the active UPF version in
the tool.

If the tool implementation does not support the specified version, the command fails.

See also 6.29.

Syntax example:

load_upf my.upf -version 1.0

6.29 load_upf_protected 

load_upf_protected relies on any local variables prefixed with load_protected_ not being corrupted
in the sourced file. It calls the following UPF commands:

set_scope
set_upf_version

Purpose Load a UPF file in a protected environment that prevents corruption of existing variables

Syntax
load_upf_protected upf_file_name

[-hide_globals] [-scope scope_name]
[-version upf_version] [-params param_list]

Arguments

upf_file_name The UPF file to be sourced.

-hide_globals Save all globals before sourcing upf_file_name and restore them after-
wards. Globals named in the param_list retain any modified values 
resulting from sourcing the file. Any globals not in the param_list shall be 
unset before upf_file_name is loaded. Any globals created in the sourced 
file, other than the ones named in param_list, are unset at the end of 
loading.

-scope scope_name Set the scope for sourcing the file.

-version upf_version The version of upf_file_name. See also 6.52.

-params param_list A list of variables to be made available while sourcing the file. In 
param_list, each element has one of the following formats.

a) param_name — declared as "global $paramName". Any
changes made to this variable are visible at the calling level once
this command completes.

b) {param_name param_value} — a local variable param_name is
created and its initial value is set to param_nalue.

The tcl variable errorInfo shall behave as if it has been specified in this 
list.

Return 
value

Return a 1 if all commands in the loaded UPF file completed successfully, or raise a TCL_ERROR if 
the command fails or any command in the loaded UPF file fails.
Copyright © 2009 IEEE. All rights reserved. 73

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

and calls the following local commands (see Annex D): 
load_protected_save_globals
load_protected_restore_globals

-version can be used to specify the UPF version number according to which the UPF file is interpreted.
When -version is not specified, the loaded UPF file shall be interpreted based on the active UPF version in
the tool.

If the tool implementation does not support the specified version, the command fails.

Syntax example:

load_upf_protected my.upf -hide_globals -version 2.0

6.30 map_isolation_cell 

The map_isolation_cell command provides a mechanism for further constraining implementation choices.
See also use_interface_cell (6.53).

-elements specifies the ports (directly or indirectly) within the domain to which the mapping command is
applied. If -elements is not specified, all ports inferred from the isolation_name strategy shall have the
mapping applied.

For -lib_cells and -lib_model_name, the following apply:

Purpose Map a particular isolation strategy to a library cell or range of library cells

Syntax

map_isolation_cell isolation_name
-domain domain_name
[-elements element_list]
[-lib_cells lib_cells_list]
[-lib_cell_type lib_cell_type]
[-lib_model_name model_name {-port {port_name net_name}}*]

Arguments

isolation_name Identify the isolation strategy specified in a set_isolation command (see 
6.40) for the specified domain.

-domain domain_name The domain to which this strategy applies.

-elements element_list A list of ports to use for this strategy.

-lib_cells lib_cells_list The list of library cells to use.

-lib_cell_type 
lib_cell_type

Raise an error.

-lib_model_name 
model_name {-port 
{port_name 
net_name}}*

The name of the behavioral model and port connectivity for this strategy.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
74 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

a) If -lib_cells is specified
1) A cell from lib_cell_list shall be used for implementation; it shall be an error if an acceptable

cell is not available in lib_cell_list.
2) The verification semantic is that of the inferred RTL behavior prescribed by the isolation

strategy isolation_name; verification semantics are unchanged by the presence or absence of
the -lib_cells option.

3) It shall be an error if -lib_model_name is also specified.
b) If -lib_model_name is specified

1) model_name shall be used as the verification and implementation model.
2) Logic and supply ports shall be connected as specified by -port options.
3) Neither implicit nor automatic supply net connections apply.
4) All supply net connections shall be specified with -port.
5) Automatic corruption verification semantics do not apply to a model_name.
6) It shall be an error if -lib_cells is also specified.

It shall be an error if 
— domain_name does not indicate a previously created power domain
— an element in the -elements element_list is not covered by a set_isolation command
— isolation_name is not specified
— neither -lib_cells nor -lib_model_name is specified

NOTE—All map_* commands specify the elements to be used rather than inferred through a strategy. The behavior of
this manual mapping may lead to an implementation that is different from the RTL specification. Therefore, it may not
be possible for logical equivalence checking tools to verify the equivalence of the mapped element to its RTL
specification.

Syntax example:

map_isolation_cell test_PD1 -domain PD1 -lib_cell_type jason_iso_fast
Copyright © 2009 IEEE. All rights reserved. 75

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

6.31 map_level_shifter_cell 

The map_level_shifter_cell command can be used to map a particular level-shifter strategy to a simulation
or implementation model. The level-shifter supply sets are automatically connected to the model ports if the
ports are attributed as required to support automatic connections. See also 6.53.

If -elements is specified, it identifies the subset of elements defined with the level_shifter_strategy strategy
to which this command applies. When -elements is not specified, this strategy applies to all elements
requiring level-shifters from the strategy within the power domain.

It shall be an error if 
— domain_name is not defined
— an element in the elements list is not covered by a set_level_shifter command that defines the

level_shifter_strategy strategy
— level_shifter_strategy is not defined (for domain_name)

NOTE—All map_* commands specify the elements to be used rather than inferred through a strategy. The behavior of
this manual mapping may lead to an implementation that is different from the RTL specification. Therefore, it may not
be possible for logical equivalence checking tools to verify the equivalence of the mapped element to its RTL
specification.

Syntax example:

map_level_shifter_cell shift_up -domain PwrDomZ
-lib_cells {/library2/LS_LH /library2/LS_HL}

Purpose Map a particular level-shifter strategy to a simulation or implementation model

Syntax

map_level_shifter_cell level_shifter_strategy
-domain domain_name
-lib_cells list
[-elements element_list]

Arguments

level_shifter_strategy Identify the level-shifter strategy specified in a set_level_shifter command 
(see 6.42) for the specified domain.

-domain domain_name The domain to which this strategy applies.

-lib_cells list The list of library cells to use.

-elements element_list A list of ports to use from the level_shifter_strategy strategy.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
76 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

6.32 map_power_switch 

The map_power_switch command can be used to explicitly specify which power switch model is to be
used for the corresponding switch instance.

-lib_cells specifies the set of library cells to which an implementation can be mapped.

If -port_map is not specified, the ports of the switch instance are associated to library cell ports by matching
the respective port names, this is named association. It shall be an error if any ports on either the switch
instance or the library cell are not mapped when named association is used.

It shall be an error if switch_name is not specified.

NOTE 1—All map_* commands specify the elements to be used rather than inferred through a strategy. The behavior of
this manual mapping may lead to an implementation that is different from the RTL specification. Therefore, logical
equivalence checking tools may not be able to verify the equivalence of the mapped element to its RTL specification.

NOTE 2—create_power_switch can be used to define an abstract power switch that implementation tools may expand
into multiple switches. create_power_switch can also be used to specify the need for a specific switch that can then be
mapped to a specific switch implementation using map_power_switch. It is not meant to be used as a single definition
representing multiple physical switches to be mapped with map_power_switch.

Syntax example:

map_power_switch switch_sw1

-domain test_suite

-lib_cells {}

-port_map {{inp1 vin1} {inp2 vin2} {outp vout} 
{c1 ctrl_small} {c2 ctrl_large}}

Purpose Specify which power switch model is to be used for the implementation of the corresponding switch 
instance

Syntax

map_power_switch {switch_name}
-domain domain_name
-lib_cells {list}
[-port_map {{mapped_model_port switch_port_or_supply_net_ref}*}]

Arguments

{switch_name} A list of switches [as defined by create_power_switch (see 6.20)] to map.

-domain domain_name This argument is ignored and provided for syntactic backward 
compatibility only.

-lib_cells {list} A list of library cells.

-port_map 
{{mapped_model_port 
switch_port_or_supply_
net_ref}*}

mapped_model_port is a port on the model being mapped. 
switch_port_or_supply_net_ref indicates a supply or logic port on a switch: 
an input supply port, output supply port, control port, or acknowledge port; 
or it references a supply net from a supply set associated with the switch.
See also create_power_switch (6.20) or set_power_switch (6.46).

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
Copyright © 2009 IEEE. All rights reserved. 77

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

6.33 map_retention_cell 

The map_retention_cell command constrains retention strategy implementation choices and may also
specify functional retention behavior for verification.

-elements identifies elements from the effective_element_list (see 6.3) from a retention strategy in
retention_name_list. If -elements is not specified, the aggregate_element_list for this command contains all
elements from the effective_element_list of the retention_name_list.

It shall be an error if at least one of -lib_cells, -lib_cell_type, or -lib_model_name is not specified.

— If -lib_cells is specified, a retention cell from lib_cell_list shall be used; if -lib_cell_type is
specified, a retention cell that has the attribute lib_cell_type on the implementation model shall be
used to implement the functionality specified by the corresponding retention strategy; 
if -lib_cells and -lib_cell_type are both specified, a retention cell from lib_cell_list that also has the
attribute lib_cell_type on the implementation model shall be used. 
Verification semantics are unchanged by the presence or absence of -lib_cells or -lib_cell_type.

— If -lib_model_name is specified, model_name shall be used as the verification model and supply
and logic ports shall be connected as specified by -port options; automatic corruption and retention
verification semantics do not apply to a -lib_model_name model.

Purpose Constrain implementation alternatives, or specify a functional model, for retention strategies

Syntax

map_retention_cell retention_name_list
-domain domain_name
[-elements element_list]
[-exclude_elements exclude_list]
[-lib_cells lib_cell_list]
[-lib_cell_type lib_cell_type]
[-lib_model_name name {-port port_name net_ref}*]

Arguments

retention_name_list A list of target retention strategy names defined in domain_name using 
set_retention commands (see 6.47).

-domain domain_name The domain in which the strategies are defined.

-elements element_list A list of design elements, named processes, or sequential reg or signal 
names whose respective sequential elements shall be mapped as specified.

-exclude_elements 
exclude_list

A list of design elements, named processes, or sequential reg or signal 
names whose respective sequential elements shall be excluded from 
mapping.

-lib_cells lib_cell_list A list of library cell names. Each cell in the list has retention behavior and 
is otherwise identical to the inferred RTL behavior of the underlying 
sequential element.

-lib_cell_type 
lib_cell_type

The attribute of the library cells used to identify cells that have retention 
behavior and are otherwise identical to the inferred RTL behavior of the 
underlying sequential element.

-lib_model_name 
model_name {-port 
port_name net_ref}*

The name of the library cell or behavioral model and associated port 
connectivity.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
78 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

— If -lib_model_name is not specified, the verification semantic is that of the inferred RTL behavior
of the underlying sequential element modified by the retention behavior prescribed by the applicable
set_retention strategy.

Table 6 summarizes the semantics for combinations of -lib_cells, -lib_cell_type, and -lib_model_name. 

For verification, an inferred register is assumed to have the following generic canonical interface:
— CLOCK - The signal whose rising edge triggers the register to load data.
— DATA - The signal whose value represents the next state of the register.
— ASYNC_LOAD - The signal that causes the register to load data when its value is one.
— OUTPUT - The signal that propagates the register output to the receivers of the register.

-port connects the specified net_ref to a port of the model. A net_ref may be one of the following:
a) A logic net name
b) A supply net name
c) One of the following symbolic references

1) retention_ref.function_name
This names a retention supply set function, where function_name refers to the supply net
corresponding to the function it provides to the retention ret_supply_set (see 6.47).

2) primary_ref.function_name
This names a primary supply set function, where function_name refers to the supply net
corresponding to the function it provides to the primary supply set of the domain.

3) save_signal
i) Refers to the save signal specified in the corresponding retention strategy.
ii) To invert the sense of the save signal, the Verilog bit-wise negation operator ~ can be

specified before the net_ref. The logic inferred by the negation shall be implicitly
connected to the ret_supply_set from the corresponding set_retention command (see
6.47).

Table 6—map_retention_cell option combinations

-lib_cells -lib_cell_type -lib_model_name Verification 
semantic

Implementation cell 
constrained to

N N N ERROR ERROR

N N Y model_name model_name

N Y N RTL with retention lib_cell_type

N Y Y model_name lib_cell_type

Y N N RTL with retention lib_cell_list

Y N Y model_name lib_cell_list

Y Y N RTL with retention a cell from lib_cell_list 
that also has lib_cell_type

Y Y Y model_name a cell from lib_cell_list 
that also has lib_cell_type
Copyright © 2009 IEEE. All rights reserved. 79

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

4) restore_signal
i) Refers to the restore signal specified in the corresponding retention strategy.
ii) To invert the sense of the restore signal, the Verilog bit-wise negation operator ~ can be

specified before the net_ref. The logic inferred by the negation shall be implicitly
connected to the ret_supply_set from the corresponding set_retention command (see
6.47).

5) UPF_GENERIC_CLOCK
i) Refers to the canonical CLOCK.
ii) To invert the sense of the clock signal, the Verilog bit-wise negation operator ~ can be

specified before the net_ref. The logic inferred by the negation shall be implicitly
connected to the primary_supply_set.

6) UPF_GENERIC_DATA
i) Refers to the canonical DATA.
ii) To invert the sense of the data signal, the Verilog bit-wise negation operator ~ can be

specified before the net_ref. The logic inferred by the negation shall be implicitly
connected to the primary_supply_set.

7) UPF_GENERIC_ASYNC_LOAD
i) Refers to the canonical ASYNC_LOAD.
ii) To invert the sense of the asynchronous load signal, the Verilog bit-wise negation operator

~ can be specified before the net_ref. The logic inferred by the negation shall be implicitly
connected to the primary_supply_set.

8) UPF_GENERIC_OUTPUT
i) Refers to the canonical OUTPUT.
ii) To invert the sense of the output signal, the Verilog bit-wise negation operator ~ can be

specified before the net_ref. The logic inferred by the negation shall be implicitly
connected to the primary_supply_set.

If UPF_GENERIC_OUTPUT is not explicitly mapped and the model has exactly one output port, that
output port shall automatically be connected to the net that propagates the register output to the receivers of
the register.

NOTE—All map_* commands specify the elements to be used rather than inferred through a strategy. The behavior of
this manual mapping may lead to an implementation that is different from the RTL specification. Therefore, it may not
be possible for logical equivalence checking tools to verify the equivalence of the mapped element to its RTL
specification.

It shall be an error if
— retention_name_list is not specified
— domain_name does not indicate a previously created power domain
— A retention strategy in retention_name_list does not indicate a previously defined retention strategy
— An element in element_list is not included in the element list of a targeted retention strategy
— Any retention strategy in retention_name_list does not specify signals needed to provide connection

of the mapped functions
— After completing the port and net_ref connections, any input port is unconnected, or no output port

is connected to the net that propagates the register output to the receivers of the register
— In implementation, none of the specified models in lib_cell_list implements the functionality

specified by a targeted retention strategy
— In implementation, none of the specified models having a lib_cell_type attribute implements the

functionality specified by a targeted retention strategy
80 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

— In implementation, none of the specified models in lib_cell_list that have a lib_cell_type attribute,
when both are specified, implements the functionality specified by a targeted retention strategy.

Syntax example:

map_retention_cell {my_PDA_ret_strat_1 my_PDA_ret_strat_2 my_PDA_ret_strat_3}
-domain PowerDomainA
-elements {foo/U1 foo/U2}

   -lib_cells {RETFFIMP1 RETFFIMP2}
   -lib_cell_type FF_CKLO

-lib_model_name RETFFVER {
      -port CP       UPF_GENERIC_CLOCK
      -port D        UPF_GENERIC_DATA
      -port SET      UPF_GENERIC_ASYNC_LOAD
      -port SAVE     save_signal
      -port RESTORE  restore_signal
      -port VDDC     primary_supply_set.power
      -port VDDRET   ret_supply_set.power
      -port VSS      primary_supply_set.ground }

6.34 merge_power_domains 

The merge_power_domains command merges two or more existing power domains into a single, new
power domain. The merged domains can no longer be referenced separately. See also 6.15.

The merged power domain's scope in the logic hierarchy is specified by the -scope option (default is the
active scope). The merged power domain extent is the union of the design elements contained in the list of
power domains that are to be merged. Design elements may be added only to the merged power domain after
the list of power domains have been merged. (The domains are merged upon return of this command.) The
merged power domain contains all supply nets, ports, and switches created in each of the constituent power
domains and those objects all exist within the same scope as they had prior to the merge.

All strategies and mappings defined for the list of power domains shall be applied prior to the merge to avoid
ambiguity in applying the strategies. Any strategies and mappings defined after the merge command shall
only refer to the merged power domain. Any power state tables defined for the list of power domains are
ignored.

Purpose Merge two or more existing power domains into a single, new power domain

Syntax

merge_power_domains new_domain_name
-power_domains list
[-scope instance_name]
[-all_equivalent]

Arguments

new_domain_name The new, merged power domain.

-power_domain list The list of existing power domains to merge.

-scope instance_name The scope, i.e., the instance, where the new domain is created.

-all_equivalent All other power domains equivalent to the specified power domains shall 
be merged.

Return 
value

Return the number of power domains merged or raise a TCL_ERROR if the merge is unsuccessful.
Copyright © 2009 IEEE. All rights reserved. 81

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

A shared primary supply is a supply net or supply port that is shared and used as the same supply type
(including power, ground, bias, and other specified supply functions of the supply set) between two or more
power domains. Identifying a shared primary supply requires tracing the supply network connectivity for
each power domain, as follows:

a) The active supply is set to a power domain’s primary supply net (either power or ground depending
on which supply type network is being traced).

b) The active supply is pushed onto a queue for the power domain.
c) If the active supply is a net that is not connected to a source supply port, then the trace back

terminates. Otherwise, the active supply is set to the source supply port connected to the net; loop
back to b).

d) If the active supply is a port that is an output port of a switch or a supply port on the design top, the
trace back is terminated. Otherwise, the active supply is set to the supply net connected as a source
to the supply port; loop back to b).

e) Any supply port or supply net that exists in the queue of each power domain is a shared primary
supply for that power domain. The merge_power_domains command shall use the first shared
primary supply that is popped from the queues.

For two or more power domains to be merged, the following conditions need to be met:
— The primary power nets for both domains need to be sourced from a shared primary supply.
— The primary ground nets for both domains need to be sourced from a shared primary supply.
— New primary power and ground nets are created for the power domain with implicit supply ports

created on the instance in the logic hierarchy corresponding to the merged power domain’s scope.
These ports are connected to the shared primary power and shared primary ground supplies external
to the merged power domain (supply nets are implicitly created and connected if necessary) and to
the primary power and ground nets defined within the power domain. The primary power and
ground nets are connected to the design elements of the power domain normally.

If -scope is not specified, the power domain is created within the active scope.

Power domains that have shared primary power and shared primary ground supplies are equivalent.

Syntax example:

merge_power_domains PD9 -power_domains {PD9A PD9B PD9C}
82 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

6.35 name_format 

Inferred objects have names in the logic design. The name for these objects is constructed as follows:

a) The base name of implicitly created objects is the name of the port or net being isolated or level-
shifted, or the supply net, logic net, or port implicitly created to facilitate the connection of a net
across hierarchy boundaries.

b) Any specified prefix is then prepended to the base name.

c) Any specified suffix is also appended to the base name.

d) If multiple prefixes or suffixes apply to the same object, they shall be added in the alphabetical order
of the option name, e.g., isolation_prefix followed by level_shift_prefix.

If the generated name conflicts with another previously defined name in the same name space, the generated
name is further extended by an underscore (_) followed by a positive integer. The value of the integer is the
smallest number that makes the name unique in its name space. An empty string (“”) is a valid value for any
prefix or suffix option. When the prefix and suffix are both NULL, only the underscore (_) and number
string combination are used as a suffix to disambiguate the name.

Purpose Define the format for constructing names of implicitly created objects

Syntax

name_format
[-isolation_prefix string] [-isolation_suffix string]
[-level_shift_prefix string] [-level_shift_suffix string]
[- implicit_supply_suffix string]
[- implicit_logic_prefix string] [- implicit_logic_suffix string]

Arguments

-isolation_prefix string The string prepended in front of an existing signal or port name to create a 
new name used during the introduction of a new isolation cell. The default 
value is the empty string “” or NULL.

-isolation_suffix string The string appended to the end of an existing signal or port name to create a 
new name used during the introduction of a new isolation cell. The default 
value is the string _UPF_ISO.

-level_shift_prefix 
string

The string prepended in front of an existing signal or port name to create a 
new name used during the introduction of a new level-shifter cell. The 
default value is the empty string “” or NULL.

-level_shift_suffix 
string

The string appended to the end of an existing signal or port name to create a 
new name used during the introduction of a new isolation cell. The default 
value is the string _UPF_LS.

-implicit_supply_suffix 
string

The string appended to an existing supply net or port name to create a 
unique name for an implicitly created supply net or port. The default value 
is the string _UPF_IS.

-implicit_logic_prefix 
string

The string prepended in front of an existing logic net or port name to create 
a unique name for an implicitly created logic net or port. The default value 
is NULL.

-implicit_logic_suffix 
string

The string appended to an existing logic net or port name to create a unique 
name for an implicitly created logic net or port.The default value is the 
string _UPF_IL.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
Copyright © 2009 IEEE. All rights reserved. 83

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

Different prefixes and suffixes may be specified in multiple calls to name_format (using different
arguments). When name_format is specified with no options, the name format is reset to the default values
shown in the Arguments list.

It shall be an error to specify an affix more than once.

Syntax example:

name_format –isolation_prefix “MY_ISO_” –isolation_suffix “”

A signal, MY_ISO_FOO, is created and connected to a new cell’s output (to isolate the existing net FOO).

6.36 save_upf 

The save_upf command creates a UPF file relative to the active or specified scope. It writes the commands
required to describe the power design intent of the scope to the file upf_file_name. Upon return, the active
scope is restored to what it was prior to invocation.

If the implementation does not support the specified version, the command fails.

Syntax example:

save_upf test_suite1_Jan14

Purpose Create a UPF file of the structures in the relative to the active scope

Syntax
save_upf upf_file_name

[-scope instance_name]
[-version string]

Arguments

upf_file_name The UPF file to write.

-scope instance_name The scope relative to which the UPF commands are written.

-version string The UPF version of upf_file_name. See also 6.52.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
84 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

6.37 set_design_attributes 

This command sets the specified attributes for models or design elements.

A UPF_is_leaf_cell attribute value of "TRUE" on a model or design element prevents the -transitive
processing for the descendants of the attributed model or design element for the following commands.

— connect_supply_set (see 6.14).
— set_isolation (see 6.40)
— set_level_shifter (see 6.42)
— set_port_attributes (see 6.45)
— set_retention (see 6.47)
— set_retention_elements (see 6.49)
— find_objects (see 7.1)

The UPF leaf cell treatment of a model or design element can be annotated in HDL using the following
attributes.

Attribute name: UPF_is_leaf_cell
Attribute value: <"TRUE" | "FALSE">

SystemVerilog or Verilog-2005 example:
(* UPF_is_leaf_cell=“TRUE” *) module steve (<port list>);

VHDL example:
attribute UPF_is_leaf_cell of steve : entity is “TRUE”;

When any register (specified or implied) with the UPF_retention attribute value set to "required" is
included in a power domain that has at least one retention strategy, the register shall be included in a
retention strategy defined for the domain.

Purpose Apply attributes to models or design elements

Syntax

set_design_attributes
< -elements element_list |

-models model_list |
-elements element_list -models model_list 
-exclude_elements exclude_list | 
-exclude_elements exclude_list -models model_list >

[-attribute name value]*

Arguments

-elements element_list A list of rooted names: design elements, named processes, sequential regs, 
or signal names.

-exclude_elements 
element_list

A list of rooted names: design elements, named processes, sequential regs, 
or signal names to exclude from the effective_element_list (see 6.3).

-models model_list A list of models to be attributed.

-attribute name value For the enumerated design element or model, associate the attribute name 
with the value of value. See Table 1.

Return 
value

Return 1 if successful or raise a TCL_ERROR if not.
Copyright © 2009 IEEE. All rights reserved. 85

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

Elements requiring retention can be attributed in HDL as follows:
Attribute name: UPF_retention
Attribute value: <"required" | "optional">

SystemVerilog or Verilog-2005 example:
(* UPF_retention = "required" *) module my_mod;

VHDL example:
attribute UPF_retention of my_flip : variable is "required";

Syntax example:

set_design_attributes -elements lock_cache[0] -attribute UPF_is_leaf TRUE

6.38 set_design_top 

The set_design_top command specifies the root of the design. See also 6.50.

Syntax example:

set_design_top ALU07

6.39 set_domain_supply_net 

The set_domain_supply_net command associates the power and ground supply nets with the primary
supply set for the domain.

Purpose Specify the design’s root

Syntax set_design_top root

Arguments root The root of the design.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.

Purpose Set the default power and ground supply nets for a power domain

Syntax
set_domain_supply_net domain_name 

-primary_power_net supply_net_name
-primary_ground_net supply_net_name

Arguments

domain_name The domain where the default supply nets are to applied.

-primary_power_net 
supply_net_name

The primary power supply net.

-primary_ground_net 
supply_net_name

The primary ground net.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
86 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

The primary supply set’s power and ground functions for the specified domain are associated with the
corresponding power and ground supply net. 

It shall be an error if
— domain_name does not indicate a previously created power domain.
— The primary supply set for domain_name already has a primary power or ground function

association.

This command is semantically equivalent to

proc set_domain_supply_net {dn pp sn1 pg sn2} {
if { string equal $pp “-primary_power_net” \

&& string equal $pg “-primary_ground_net”}{
create_supply_set set_name -function {power $sn1} 

-function {ground $sn2}
associate_supply_set set_name -handle $dn.primary
return 1

} else {
 return -code TCL_ERROR \

            -errorcode $ecode \
            -errorinfo $einfo \
            $resulttext

}
}

where any italicized arguments are implementation-defined.

Syntax example:

set_domain_supply_net PD1
-primary_power_net PG1
-primary_ground_net PG0
Copyright © 2009 IEEE. All rights reserved. 87

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

6.40 set_isolation 

Purpose Define an isolation strategy

Syntax

set_isolation isolation_name
-domain ref_domain_name 
[-elements element_list] 
[-source source_supply_ref | -sink sink_supply_ref 
| -source source_supply_ref -sink sink_supply_ref 
| -applies_to <inputs | outputs | both>]
[-applies_to_clamp <0 | 1 | any | Z | latch | value>]
[-applies_to_sink_off_clamp <0 | 1 | any | Z | latch | value>]
[-applies_to_source_off_clamp <0 | 1 | any | Z | latch | value>]
[-isolation_power_net net_name] [-isolation_ground_net net_name] 
[-no_isolation]
[-isolation_supply_set supply_set_list]
[-isolation_signal signal_list [-isolation_sense {<high | low>*}]]
[-name_prefix string] [-name_suffix string]
[-clamp_value {< 0 | 1 | any | Z | latch | value>*}]
[-sink_off_clamp <0 | 1 | any | Z | latch | value> [simstate_list]]
[-source_off_clamp <0 | 1 | any | Z | latch | value> [simstate_list]]
[-location <automatic | self | other | fanout | fanin | faninout | parent | sibling>]
[-force_isolation] 
[-instance {{instance_name port_name}*}]
[-diff_supply_only <TRUE | FALSE>]
[-transitive <TRUE | FALSE>]
[-update]

Arguments

isolation_name The isolation strategy name exists in the attribute name space of the domain.

-domain 
ref_domain_name

The domain for which this strategy is applied.

-elements element_list The -elements option defines a list of design elements or ports. R

-source 
source_supply_ref

The -source option defines a rooted name of a supply set reference. R

-sink sink_supply_ref The -sink option defines a rooted name of a supply set reference. R

-applies_to <inputs | 
outputs | both>

The -applies_to option defines whether the domain’s input ports, 
output ports, or both are isolated. The default is outputs.

R

-applies_to_clamp <0 | 
1 | any | Z | latch | 
value> 

The -applies_to_clamp option specifies only ports that have the 
specified clamp value are mapped.

R

-applies_to_sink_off_
clamp <0 | 1 | any | Z | 
latch | value> 

The -applies_to_sink_off_clamp option specifies only ports that have 
the specified sink_off_clamp value are mapped.

R

-applies_to_source_off
_clamp <0 | 1 | any | Z | 
latch | value> 

The -applies_to_source_off_clamp option specifies only ports that 
have the specified source_off_clamp value are mapped.

R

88 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

The set_isolation command specifies the ports on the ref_domain_name to isolate using the specified
strategy. The interface of a domain is defined as:

The LowConn side of ports defined on the top-level design elements in the extent of the domain.

The HighConn side of ports defined on design elements in other power domains, but instanced
within design elements in the extent of the domain.

Arguments

-isolation_power_net 
net_name

This option defines the supply net used as the power for the isolation 
logic inferred by this strategy.

R

-isolation_ground_net 
net_name

This option defines the supply net used as the power for the isolation 
logic inferred by this strategy.

R

-no_isolation Prohibits isolation according to isolation_name. R

 -isolation_supply_set 
supply_set_list

This option defines the supply_set_list used to power the logic inferred 
by the isolation_name strategy.

R

-isolation_signal 
signal_list

The -isolation_signal option defines the signal_list that causes the 
specified element to drive its clamp value.

R

-isolation_sense {<high 
| low>*}

The -isolation_sense option defines the active level of each corre-
sponding isolation signal in the signal_list. The default is high.

R

-name_prefix string
-name_suffix string

The name format (prefix & suffix) for generated isolation instances or nets 
related to implementation of the isolation strategy.

-clamp_value {<0 | 1 | 
any | Z | latch | 
value>*}

The -clamp_value option defines the value of an isolated port for the 
corresponding isolation signal in signal_list. The default is any.

R

-sink_off_clamp <0 | 1 
| any | Z | latch | value> 
[simstate_list]

The -sink_off_clamp option specifies the clamp requirement when the 
sink domain is off.

R

-source_off_clamp <0 | 
1 | any | Z | latch | 
value> [simstate_list]

The -source_off_clamp  option specifies the clamp requirement when 
the source domain is off.

R

-location <automatic | 
self | other | fanout | 
fanin | faninout | par-
ent | sibling>

The -location option defines where the isolation cells are placed in the 
logic hierarchy. The default is automatic.

R

-force_isolation Implements the isolation strategy regardless of any analysis of its 
necessity based on the design specification.

R

-instance {{instance_
name port_name}*}

instance_name is a hierarchical name. port_name is a hierarchical 
name.

R

-diff_supply_only 
<TRUE | FALSE>

Determines the isolation behavior between driver and receiver supply 
sets. The default is FALSE.

R

-transitive 
<TRUE | FALSE>

When -transitive is TRUE (the default), the command applies to the 
descendants of the elements.

-update Use -update if the isolation_name has already been defined.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
Copyright © 2009 IEEE. All rights reserved. 89

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

For -diff_supply_only, no isolation shall be introduced into the path from the driver to the receiver for an
isolation strategy defined on a port on the interface of ref_domain_name, where the driver is powered by the
same supply as a receiver of the port.

If a -diff_supply_only, -source, or -sink argument is used and design elements are included in designs with
different power distribution or connectivity, the evaluation of the need for isolation may vary and cause a
change in the logical function of a block.

It shall be an error if a diff_supply_only, -source, or -sink argument is used and it is not possible to
determine the supply of all of the drivers and receivers for any candidate port.

NOTE 1— -diff_supply_only, -source, and -sink may impact the use of some design implementation flows.

When the aggregate_element_list (see 6.3) contains no elements, every port on the interface of the domain is
added into aggregate_element_list.

If an element in effective_element_list is not on the interface of ref_domain_name, it shall not be isolated.

The arguments -source, -sink, -applies_to, -applies_to_clamp, -applies_to_sink_off_clamp, and
-applies_to_source_off_clamp serve to filter the set of elements for a given set_isolation command
invocation. For any port in the prefilter_element_list, the following filtering functions are applied:

— -source filters the ports receiving a net that is driven by logic powered by the supply set.

— -sink filters the ports driving a net that fans out to logic powered by the supply set.

— When both -source and -sink are specified, a port is included if it has a source as specified and a sink
as specified.

— -applies_to filters the ports within the domain for which this strategy is defined that have the
specified mode. For ports whose LowConn is on the interface of the ref_domain_name, the port is
selected when the direction of the port matches. For ports whose HighConn is on the interface of
the ref_domain_name, the port is selected when the inverse of the direction of the port matches.

For example, if a port is on a design element in the extent of another domain and that design element
is a child of a design element within the extent of ref_domain_name, that port shall match the 
-applies_to IN filter when its direction is OUT. -applies_to is always relative to ref_domain_name.

— -applies_to_clamp, -applies_to_sink_off_clamp, and -applies_to_source_off_clamp filters the
ports within the ref_domain_name for which this strategy is defined that have the specified value for
the respective port attribute.

For a selected output port on the interface of the ref_domain_name, isolation is only performed on the subset
of the fanout that drives an element powered by the sink_supply_ref. For a selected input port on the
interface of the ref_domain_name, isolation is only performed on the subset of the fanin driven by an
element powered by the source_supply_ref.

The arguments -isolation_power_net, -isolation_ground_net, and -isolation_supply_set serve to specify
the supply net or supply set for a given set_isolation command invocation.

If isolation power and isolation ground nets are specified, an implicit isolation supply set is created and used
with the strategy. The isolation power net serves the power function in the isolation supply set and the
isolation ground net serves the ground function in the isolation supply set. If the isolation power net is
specified but the isolation ground net is not specified then ref_domain_name.primary.ground shall be used
as the isolation ground. If the isolation ground net is specified but the isolation power net is not specified
then ref_domain_name.primary.power shall be used as the isolation power. It shall be an error if a isolation
supply set is specified and an isolation supply net is individually defined.
90 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

The isolation supply set(s) specified by -isolation_supply_set are implicitly connected to the isolation logic
inferred by this command.

The isolation supply, isolation signal and sense, and isolation clamp are specified as lists. The tuples formed
by associating the positional entries from each list shall be used to define separate isolation requirements for
the strategy. These tuples are applied to the isolation cell for the specified port from the isolation cells’ data
input port to its data output port in the order in which they appear in each list.

The lists for these arguments need to match in length, except an isolation supply list, isolation sense list, or
isolation clamp list may contain a single item; in which case, this item shall be applied to all isolation
requirement tuples. It shall be an error if any list with more than one item does not have the same number of
items as any other list that has more than one item. It shall be an error if the number of items in the isolation
signal list is not the same as any other list that has more than one item.

The clamp value (-clamp_value) is enabled when -isolation_signal has the specified -isolation_sense. The
logic value of the isolation is specified by -clamp_value as

logic 0
logic 1
logic Z
latch (the value of the non-isolated port when the isolation signal becomes active)
any (the port shall be isolated with any clamp value legal for the port type)
In simulation, a clamp value of any shall be modeled as a 0 for logic and integer types; for all other
types, this shall be modeled as the default initial value of the type of the port.
value specifies a value that is legal for the type of the port, e.g., 255 might be specified for an
integer-typed port (perhaps constrained to an unsigned 8-bit range).

When isolation is being implemented for a port, the clamp value is determined
a) If -clamp_value is specified then it is used.
b) If only -sink_off_clamp is defined then that is used.
c) If only -source_off_clamp is defined then that is used.
d) If both -sink_off_clamp and -source_off_clamp are specified with the same value, then that value

is used.
e) If both -sink_off_clamp and -source_off_clamp are specified with different values and the

-clamp_value is not specified, then -clamp_value is inferred such that it satisfies the
-sink_off_clamp and -source_off_clamp requirements, where the -source_off_clamp requirement
is the first item in the -clamp_value list and the -sink_off_clamp value is the second and last item
in the clamp value list.

f) Otherwise, -clamp_value defaults to zero.

-sink_off_clamp specifies the clamp requirement when the supply set connected to the sink is in a power
state with a corresponding simstate of CORRUPT or any of the simstates specified in simstate_list.
-source_off_clamp specifies the clamp requirement when the supply set connected to the source is in a
power state with a corresponding simstate of CORRUPT or any of the simstates specified in simstate_list.
The simstate conditions of -source_off_clamp and -sink_off_clamp are constraints to be verified and do
not represent implementation directives.

When an isolation strategy targets an input port on the interface to a power domain and the sinks of the net
connected to a design element within the power domain have different -sink_off_clamp requirements
specified, more than one isolation element shall be created to satisfy the respective destination groups where
a group is a subset of the fanout that has the same -sink_off_clamp clamp value.
Copyright © 2009 IEEE. All rights reserved. 91

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

When an isolation strategy targets an output port on the interface to a power domain and the sinks of the net
connected to the port have different -source_off_clamp requirements specified, more than one isolation
element shall be created to satisfy the respective destination groups where a group is a subset of the fanout
that has the same -source_off_clamp clamp value.

NOTE 2—The set_port_attributes command (see 6.45) is an alternate method to specify -clamp_value,
-source_off_clamp, and -sink_off_clamp requirements on ports, which are not necessarily based on a domain
boundary, but are propagated to a domain boundary once this information is resolved. Both sets of information can
define clamping requirements.

It shall be an error if an isolation strategy targets a port on the interface of a power domain and the source
ports on design elements of the net connected to the port have different -sink_off_clamp or different
-source_off_clamp requirements among all sources and the port of the isolation strategy.

Verification shall issue an error when a -sink_off_clamp or -source_off_clamp requirement is violated.

-location defines where the isolation cells are placed in the logic hierarchy.
automatic—the implementation tool is free to choose the appropriate locations (the default).
self—the isolation cell is placed inside the domain whose interface port is being isolated.
other—the isolation cell is placed in the parent for ports on the interface of the domain that have
connections from the parent, and in the child for ports on the interface of the domain that connect to
a child.
fanout— isolation cell is placed at all fanout locations (sinks) of the port being isolated.
fanin—isolation cell is placed at all fanin locations (sources) of the port being isolated.
faninout—the isolation cell is placed at all fanout locations (sinks) for each output port being
isolated, or at all fanin locations (sources) for each input port being isolated.
parent—the isolation cell is placed in the parent of the domain whose interface port is being
isolated.
sibling—a new sibling is created into which the isolation cells are placed.

-instance specifies that the isolation functionality exists in the HDL design and instance_name denotes the
design element providing the isolation functionality. In this case, the following also apply:

Isolation enable signal(s) are automatically connected to ports on an instance where the port has the
attribute isolation_cell_enable_pin set to TRUE.
If the strategy specifies multiple isolation supply sets, the isolation_cell_enable_pin
attributed ports shall have related power, ground, and bias port attributes (see 6.44 and 6.45). The
supply nets of the isolation supply set corresponding to the isolation enable signal shall be
automatically connected to the supply ports matching the related power, ground, and bias ports of
the port connected to that isolation enable signal based on the supply set function and pg_type. If
there is more than one isolation enable signal for the strategy, then the port attribute
isolation_cell_enable_pin_index shall be specified and its value indicates which
enable signal from the list is connected to that port (index 0 corresponds to the enable signal closest
to the data input of the isolation cell).
If the strategy specifies a single isolation supply set, the supply nets of the set shall be automatically
connected to the isolation supply ports on the instance based on the value of the port’s pg_type
attribute.
If there are no supply ports on the instance, then the isolation supply set(s) specified in the strategy
shall be implicitly connected to the instance.
It is an error if there is a single isolation enable signal and there is more than one port on the instance
with the isolation_cell_enable_pin attribute.
92 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

The following also apply:
— This command never applies to inout ports.
— The connection from one domain to another domain may have multiple isolation strategies that

apply. Implementations may optimize away redundant isolation and issue a warning.
— Nets whose source and sink are in the same power domain shall not have isolation logic inserted.
— A net with sinks in multiple domains shall only have isolation logic inferred for those sinks that are

in power domains different from the source.
— If more than one isolation strategy is applied to the same port, the order of the isolation cells

insertion from the port’s source to its sink is first the -source_off_clamp strategy, then the
-clamp_value isolation strategy, and finally the -sink_off_clamp strategy.

— It shall be an error if the application of an isolation strategy results in an undefined topological
ordering of the inferred isolation logic.

— It shall be an error if both -force_isolation and -no_isolation are specified.
— It shall be an error if the application of this command conflicts with attributes specified with

set_port_attributes.
— It shall be an error if -applies_to is specified along with -source and/or -sink.
— It shall be an error if -isolation_supply_set is specified along with -isolation_power_net and/or

-isolation_ground_net.
— After the strategy has been completely applied, it shall be an error if the isolation supply set is not

defined for a strategy and the domain does not have a default isolation_supply_set.

Isolation clamp value port properties can be annotated in HDL using the attributes shown in 6.45.

Simulation

The simulation semantics for isolation are defined through an equivalent SystemVerilog always block,
unless -instance applies to a specific isolation element or use_interface_cell (see 6.53) is applied.

An isolation strategy with a constant clamp value (0, 1, Z, or a user-specified value) is functionally
equivalent to the following SystemVerilog code.

// For -isolation_sense HIGH
genvar x;
generate for (x=0; x < <num_iso_specs>; x++)
always @( isolation_signal[x], <data_input>, 

<isolation_supply_set[x].simstate>)
if (<isolation_supply_set[x].simstate> == NORMAL)

if (isolation_signal[x] === 1’bX)
     <data_output> = <corrupt_value_for_logic_type>;
   else if (isolation_signal[x] == 1)

<data_output> = <clamp_value[x]>;
else

      <data_output> = <data_input>;
else

<data_output> = <corrupt_value_for_logic_type>;
endgenerate

The isolation cell with a clamp value of latch is functionally equivalent to the following SystemVerilog
code.

reg iso_latch;
assign <isolation_output> = iso_latch;
Copyright © 2009 IEEE. All rights reserved. 93

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

// For -isolation_sense LOW

always @( <isolation_signal>, <non_isolated>,

<isolation_supply_set.simstate>)

begin

if (<isolation_supply_set.simstate> == NORMAL)

if ( <isolation_signal === 1’bX )

<iso_latch> = <corrupt_value_for_logic_type>;

     else if ( <isolation_signal> != 0)

         <iso_latch> = <non_isolated>;

else

;

else

<iso_latch> = <corrupt_value_for_logic_type>;

end

Syntax example:

set_isolation parent_strategy

  -domain pda

  -elements {a b c d}

  -isolation_supply_set {pda_isolation_supply}

-clamp_value {1}

6.41 set_isolation_control 

The set_isolation_control command allows the specification of the isolation control signal and sense
separate from the set_isolation command (see 6.40) for those situations where the isolation strategy is
known, but the control signals are not known until later.

Purpose Specify the control signals for a previously defined isolation strategy

Syntax

set_isolation_control isolation_name
-domain domain_name
-isolation_signal signal_name
[-isolation_sense <high | low>]
[-location <self | parent | sibling | fanout | automatic>]

Arguments

isolation_name Isolation strategy name.

-domain domain_name The domain where the strategy applies.

-isolation_signal 
signal_name

The signal that causes the specified element to drive its clamp value.

-isolation_sense <high | 
low>

The sense for -isolation_signal. The default is high.

-location <self | parent | 
sibling | fanout | auto-
matic>

Where the isolation cells are placed in the logic hierarchy. The default is 
automatic.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
94 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

Compatibility note: Excepting set_isolation_control is executed within the active scope and the -location
option, the semantics here are equivalent to having specified the isolation control signal and sense with the
set_isolation command.

-location defines where the isolation cells are placed in the logic hierarchy.
self— the isolation cell is placed inside the model/cell being isolated.
parent—the isolation cell is placed in the parent of the cell /model being isolated.
sibling—a new sibling is created into which the isolation cells are placed.
fanout—isolation occurs at all fanout locations (sinks) of the port being isolated.
automatic—the implementation tool is free to choose the appropriate locations (the default).

Syntax example:

set_isolation outputs_only
-domain PD1
-isolation_power_net VDDbackup
-clamp_value 1
-applies_to outputs

set_isolation_control outputs_only
-domain PD1
-isolation_signal cpu_iso
-isolation_sense low
-location parent

6.42 set_level_shifter 

Purpose Specify a level-shifter strategy

Syntax

set_level_shifter level_shifter_name
-domain domain_name
[-elements element_list] 
[-no_shift] [-threshold value | list] [-force_shift]
[-source domain_name] [-sink domain_name] [-applies_to <inputs | outputs | both>]
[-rule <low_to_high | high_to_low | both>]
[-location <self | parent | sibling | fanout | automatic>]
[-name_prefix string] [-name_suffix string]
[-input_supply_set supply_set_name] [-output_supply_set supply_set_name] 
[-internal_supply_set supply_set_name] [-instance {{instance_name port_name}*}]
[-transitive <TRUE | FALSE>]
[-update]
Copyright © 2009 IEEE. All rights reserved. 95

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

The set_level_shifter command can be used to explicitly specify a strategy for level-shifting during
implementation. Level-shifters are placed on the connections between domains that operate at different
supply levels.

Arguments

level_shifter_name Level-shifter strategy name.

-domain domain_name The domain for which this strategy is applied.

-elements element_list Defines a list of design elements, input ports, and output ports to which 
this strategy is applied.

R

-no_shift -no_shift prevents the insertion of level-shifters on the specified ports 
regardless on any other specifications.

-threshold value | list The voltage threshold (in volts) for determining when level-shifters are 
required. The default is 0. list is a matrix of values.

-force_shift Unconditional insertion of a level-shifter.

-source domain_name Hierarchical name to the domain from the active scope and its descendants.

-sink domain_name Hierarchical name to the domain from the active scope and its descendants.

-applies_to <inputs | 
outputs | both>

Whether the domain’s input ports, output ports, or both are shifted. The 
default is outputs.

-rule <low_to_high | 
high_to_low | both>

Which type of level-shifters are required. The default is both.

-location <automatic | 
self | other | fanout | 
fanin | faninout | par-
ent | sibling>

The -location option defines where the level-shifter cells are placed in 
the logic hierarchy. The default is automatic.

R

-name_prefix string
-name_suffix string

The name format (prefix & suffix) for generated level-shifter instances or 
nets related to implementation of the shifting strategy.

Arguments

-input_supply_set 
supply_set_name

The -input_supply_set option defines the supply set used to power the 
input portion of the level-shifter.

R

-output_supply_set 
supply_set_name

The -output_supply_set option defines the supply set used to power 
the output portion of the level-shifter.

R

-internal_supply_set 
supply_set_name

The -internal_supply_set option defines the supply set used to power 
internal circuits within the level-shifter.

R

-instance 
{{instance_name 
port_name}*}

The name of a technology library leaf cell instance and the name of the 
logic port that it level-shifts. If this instance has any unconnected sup-
ply ports, then these ports need to have identifying attributes in the cell 
model and the ports shall be connected in accordance with this 
set_level_shifter command.

R

-transitive 
<TRUE | FALSE>

When -transitive is TRUE (the default), the command applies to the 
descendants of the elements. 

-update Use -update if the level_shifter_name has already been defined.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
96 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

If no level-shifter strategy applies to a connection between domains, level-shifters shall be inferred based on
power states (see 5.4). All of the relevant supply sets need to be in the NORMAL simstate for the signal to
be transmitted without corruption.

The interface of a domain is defined as

— The LowConn side of ports defined on the top-level design elements in the extent of the domain.

— The HighConn side of ports defined on design elements in other power domains, but instanced by
design elements in this domain.

If -elements and -update are not specified, this is equivalent to the elements list containing every port on the
interface of the domain. When -elements is specified, the element names shall reference design elements or
ports in the domain_name.

When the aggregate_element_list (see 6.3) contains no elements, every port on the interface of the domain is
added into aggregate_element_list.

The filters (-source, -sink, and -applies_to) are applied to design element names in the elements list to
define a list of ports that is combined with any ports in the -elements list. This is the list of candidate ports
for the set_level_shifter command. The level-shifter strategy is applied only to the candidate ports that are
part of the domain’s interface.

The complete set of elements for a strategy in a domain is the union of all elements specified by all
invocations of the command targeting the strategy.

NOTE 1—This allows a reference to an element that does not exist, but not to an object that exists but is outside the
domain. Implementations may issue warnings if an element does not exist within the extent of domain_name. The
command has no effect on any element that does not exist within the extent of the domain.

The arguments -source, -sink, and -applies_to serve to filter the set of elements for a given
set_level_shifter command invocation. For any name in -elements that refers to a design element (not a
port):

— -source selects the ports receiving a net that is driven from a port on the interface of the domain
specified with this option.

— -sink selects the ports driving a net that fans out to a port on the interface of the domain specified
with this option.

— When -source and -sink are specified, a port is included if it has a source as specified or a sink as
specified.

— -applies_to selects the ports within the domain for which this strategy is defined that have the
specified mode. For ports whose LowConn is on the interface of the domain, the port is selected
when the direction of the port matches. For ports whose HighConn is on the interface of the
domain, the port is selected when the inverse of the direction of the port matches.

For example, if a port is on a design element in the extent of another domain and that design element
is a child of a design element within the extent of domain, that port shall match the -applies_to IN
filter when its direction is OUT. -applies_to is always relative to domain.

For a selected output port on the interface of a domain for which this strategy is specified, level-shifting is
only performed on the subset of the fanout that drives an element in the domain specified by the -sink
option. For a selected input port on the interface of a domain for which this strategy is specified, level
-shifting is only performed on the subset of the fanin driven by an element in the domain specified by the
-source option.

NOTE 2—When only ports are specified in the -elements list, any specified filters are ignored.
Copyright © 2009 IEEE. All rights reserved. 97

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

-threshold can be used to define how large the absolute voltage difference between the source and sink
needs to be before level-shifters are inserted. 

-threshold value is evaluated as shown in this pseudo code.

foreach A in the legal power states of the input supply set

foreach B in the legal power states of the output supply set

if exists legal power state (A, B)

if (T_value < max (|A_Nominal_power - B_nominal_power)|,

|(A_nominal_ground - B_nominal_ground)|))

return(REQUIRED)

endif

endif

next B

next A

return (NOT REQUIRED) 

-threshold list causes 12 values to be used; these are evaluated in the pseudo code loop {LB_IAP LB_IAG
LB_AIP LB_AIG LB_OOP LB_OOG UB_IAP UB_IAG UB_AIP UB_AIG UB_OOP UB_OOG} to
provide for threshold evaluations. A shifter may be omitted if all of the following tests are satisfied.
Specifying a larger value than any possible input / output voltage difference can be used to disable any
individual test.

When -no_shift is specified, the ports to which this command applies shall not be level-shifted.

If -force_shift is specified, a level-shifter shall be unconditionally inserted on that port. It shall be an error if
a legal location cannot be determined.

-rule can be low_to_high, high_to_low, or both. If low_to_high is specified, ports going from a lower
voltage to a higher voltage (where voltage means power - ground voltage) get a level-shifter if the voltage
difference exceeds that specified by -threshold. If high_to_low is specified, ports going from a higher
voltage to a lower voltage get a level-shifter when the voltage difference exceeds that specified by
-threshold. If both is specified, it is equivalent to having specified both rules in the strategy.

-location defines where the level-shifter cells are placed in the logic hierarchy.
automatic—the implementation tool is free to choose the appropriate locations (the default).
self—the level-shifter cell is placed inside the domain whose interface port is being shifted.
other—the level-shifter cell is placed in the parent for ports on the interface of the domain that have
connections from the parent, and in the child for ports on the interface of the domain that connect to
a child.
fanout—level-shifter cell is placed at all fanout locations (sinks) of the port being shifted.
fanin—level-shifter cell is placed at all fanin locations (sources) of the port being shifted.
faninout—the level-shifter cell is placed at all fanout locations (sinks) for each output port being
isolated, or at all fanin locations (sources) for each input port being shifted.

LB_IAP < input_mIn_power - output_mAx_Power < UB_IAP

LB_IAG < input_mIn_ground - output_mAx_Ground < UB_IAG

LB_AIP < input_mAx_power - output_mIn_Power < UB_AIP

LB_AIG < input_mAx_ground - output_mIn_Ground < UB_AIG

LB_OOP < input_nOm_power - output_nOm_Power < UB_OOP

LB_OOG < input_nOm_ground - output_nOm_Ground < UB_OOG
98 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

parent—the level-shifter cell is placed in the parent of the domain whose interface port is being
shifted.
sibling—a new sibling is created into which the level-shifter cells are placed.

-name_prefix specifies the substring to place at the beginning of any generated name implementing this
strategy.

-name_suffix specifies the substring to place at the end of any generated name implementing this strategy.

-input_supply_set is connected to the supply ports related to the input port of the level-shifter. The default
is the primary supply set of the domain containing the source of the level-shifter input when the source is
within the logic design starting at the design root. This default is used if and only if this primary supply set’s
component supply nets exist in the extent of the power domain where the level-shifter is going to be located.
If the default primary supply set is not in the extent of the power domain, the level-shifter may not be
inserted unless the -force_shift option is specified and these supply connections are left open. If the input
data pin of the level-shifter cell used for this level_shifter_name is related to the same supply ports as the
output data pin, then the default for this argument is not needed and none is used.

-output_supply_set is connected to the supply ports related to the output port of the level-shifter. The
default is the primary supply set of the domain containing the sink of the level-shifter output when the sink
is within the logic design starting at the design root. This default is used if and only if this primary supply
set’s component supply nets exist in the extent of the power domain where the level-shifter is going to be
located. If the default primary supply set is not in the extent of the power domain, the level-shifter may not
be inserted unless the -force_shift option is specified and these supply connections are left open.

-internal_supply_set is connected to the supply ports that are not related to the inputs or outputs of the
level-shifter. There are no default auto-connections defined for the internal_supply_set.

The following also apply: 
— This command never applies to inout ports.
— The simstate semantics of all implicitly connected supply sets apply to the output of a level-shifter.
— It shall be an error if the specified location is not within the logic design starting at the design root.
— It shall be an error if -no_shift is specified along with any of the following: -threshold, -force_shift, 

-source, -sink, -applies_to, -rule, -location, -name_prefix, -name_suffix, -input_supply_set, or
-output_supply_set.

It shall be an error if there is a connection between a driver and receiver and all of the following apply:
— The supplies powering the driver and receiver are at different voltage levels.
— A level-shifter is not specified for the connection using a level-shifter strategy.
— A level-shifter cannot be inferred for the connection by analysis of the power states of the supplies to

the driver and receiver.

Simulation semantics

A level-shifter has the logical functionality of a buffer.

Syntax example:

set_level_shifter shift_up
-domain PowerDomainZ

  -applies_to outputs
  -threshold 0.02
  -rule both
Copyright © 2009 IEEE. All rights reserved. 99

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

6.43 set_partial_on_translation 

This command defines the translation of PARTIAL_ON to FULL_ON or OFF for purposes of evaluating
the power state of supply sets and power domains. The state of a supply set is evaluated after this tool-
specific translation of PARTIAL_ON to FULL_ON or OFF for each supply net in the set.

It shall be an error if
— This command is invoked more than once per tool.
— The same string occurs in both the -full_on_tools and -off_tools string_lists.

Tools shall define the string(s) they recognize in the string_list arguments.

If this command is not specified, then tools shall translate PARTIAL_ON to OFF.

Syntax example:

set_partial_on_translation OFF -full_on_tools {power_analysis_tool_name}
-off_tools {steves_simulator}

Purpose Define the translation of PARTIAL_ON for named tools

Syntax

set_partial_on_translation 
[OFF | FULL_ON]
[-full_on_tools {string_list}] 
[-off_tools {string_list}]

Arguments

OFF | FULL_ON The default translation for unlisted tools.

-full_on_tools 
{string_list}

A list of strings.

-off_tools 
{string_list}

A list of strings.

Return 
value

Return the setting of the translation if successful or raise a TCL_ERROR if not.
100 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

6.44 set_pin_related_supply 

The set_pin_related_supply command provides the ability to define the related power and ground pins for
signal pins on a library cell. This command conveys information similar to related_power_pin and
related_power_pin in Liberty, but may override them. This command is restricted to only leaf-library
cells and not synthesizable hierarchical modules.

UPF file sets that include this command may result in designs that can not be formally verified.

This command has no simulation semantics. To specify simulation semantics, use the receiver and driver
supplies in set_port_attributes (see 6.45).

A port-supply relationship can be annotated in HDL using the following attributes:

Attribute name: UPF_related_power_pin or UPF_related_ground_pin.

Attribute value: "supply_port_name", where supply_port_name is a string whose value is the
simple name of a port on the same interface as the attributed port.

SystemVerilog or Verilog-2005 example:

(* UPF_related_power_pin = "my_Vdd" *) output my_Logic_Port;

VHDL example:

attribute UPF_related_power_pin of my_Logic_Port : signal is
"my_Vdd";

Syntax example:

set_pin_related_supply library1/cell1 -pins {A B C} -related_power_pin VDDX 
-related_ground_pin VSSX

Purpose Define the related power/ground pair for a library cell

Syntax

set_pin_related_supply library_cell
-pins list
-related_power_pin supply_pin
-related_ground_pin supply_pin

Arguments

library_cell The library cell where the supply nets are to defined.

-pins list A list of pins that is to have a related power/ground supply defined.

-related_power_pin 
supply_pin

The instance supply pin to which the pin is related.

-related_ground_pin 
supply_pin

The instance supply pin to which the pin is related.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
Copyright © 2009 IEEE. All rights reserved. 101

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

6.45 set_port_attributes 

Purpose Define information on ports

Syntax

set_port_attributes 
[-ports {port_list}] [-exclude_ports {port_list}]
[{-domains {domain_list} [-applies_to <inputs | outputs | both>]}] 
[{-exclude_domains {domain_list} [-applies_to <inputs | outputs | both>]}] 
[{-elements {element_list} [-applies_to <inputs | outputs | both>]}] 
[{-exclude_elements {exclude_list} [-applies_to <inputs | outputs | both>]}] 
[-model name]
[-attribute name value]*
[-clamp_value <0 | 1 | any | Z | latch | value>]
[-sink_off_clamp <0 | 1 | any | Z | latch | value>]
[-source_off_clamp <0 | 1 | any | Z | latch | value>]
[-receiver_supply supply_set_ref] [-driver_supply supply_set_ref]
[-related_power_port supply_port] [-related_ground_port supply_port]
[-related_bias_ports supply_port_list] [-repeater_supply supply_set_ref]
[-pg_type pg_type_value]
[-transitive <TRUE | FALSE>]

Arguments

-ports {port_list} A list of ports to be attributed.

-exclude_ports 
{port_list}

A list of ports to be excluded from the command.

{-domains 
{domain_list} [-
applies_to <inputs | 
outputs | both>]}

A list of domains whose ports are to be attributed.

{-exclude_domains 
{domain_list} [-
applies_to <inputs | 
outputs | both>]}

A list of domains whose ports are excluded from being attributed.

{-elements 
{element_list} [-
applies_to <inputs | 
outputs | both>]}

A list of elements to be attributed.

{-exclude_elements 
{exclude_list} [-
applies_to <inputs | 
outputs | both>]}

A list of elements to be excluded from the command.

-model name A module or library cell.

-attribute name value Associate the attribute name with the selected ports with the value of value.
102 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

The set_port_attributes command specifies information relevant to ports on the interface of power
domains. This information is used to determine isolation and guard requirements for the port.

The set of ports attributed is determined as follows:
a) The ports attributed by set_port_attributes are determined as follows:

1) -elements identifies a set of ports on the interface to the specified elements, excluding any
supply ports.

2) -domains identifies a set of ports on the interface to the specified domains, excluding any
supply ports.

3) -ports identifies a set of ports.
b) The union of the ports identified by -elements, -domains, and -ports is the set of candidate ports.

Any port in the candidate set that meets any of the following criteria are removed from this union.
1) The port is part of the -exclude_ports list.
2) The port is a port on a design element specified in the -exclude_elements list.
3) The port is a port on the interface of a power domain specified in the -exclude_domains list.

c) If a port on the interface of an element within the extent of a domain has port attributes defined for it
and that port is connected to a port on the interface of the domain and the value of the element port is
always the same as the value of the domain port to which it is connected (excluding any temporary
delays in value transition due to implicit or explicit buffers on the connectivity path), then the
attributes of the element port shall be applied to the domain port. Otherwise, the port attributes shall
have no effect.

Arguments

-clamp_value <0 | 1 | 
any | Z | latch | value>

The clamp requirement. 

-sink_off_clamp <0 | 1 | 
any | Z | latch | value>

The clamp requirement when the sink domain is off. 

-source_off_clamp <0 | 
1 | any | Z | latch | 
value>

The clamp requirement when the source domain is off.

-receiver_supply 
supply_set_ref

The supply set used by receivers of the port.

-driver_supply 
supply_set_ref

The supply set used by drivers of the port.

-related_power_port 
supply_port

The supply port for the attributed port.

-related_ground_port 
supply_port

The supply port for the attributed port.

-related_bias_ports 
supply_port_list

The supply port(s) for the attributed port.

-repeater_supply 
supply_set_ref

The supply set used by a repeater driving the port.

-pg_type pg_type_value The value of the pg_type for the port.

-transitive 
<TRUE | FALSE>

When -transitive is TRUE (the default), the command applies to the 
descendants of the elements.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
Copyright © 2009 IEEE. All rights reserved. 103

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

If -model is specified, the port attributes are applied to every design element that is an instance of the model.
In this case, only names that are visible to the model may be referenced in arguments to this command.

-clamp_value specifies the clamp requirement of the sinks when the supply set connected to the source is in
a power state with a corresponding simstate of CORRUPT.

-sink_off_clamp specifies the clamp requirement when the supply set connected to the sink is in a power
state with a corresponding simstate of CORRUPT. -source_off_clamp specifies the clamp requirement
when the supply set connected to the source is in a power state with a corresponding simstate of
CORRUPT.

When a user-defined clamp value is specified for -sink_off_clamp or -source_off_clamp, it shall be a legal
value for the type of the port. A clamp value of any specifies any clamp value legal for the port type is
allowed. This value can be constrained to a specific value in a subsequent set_isolation command.

If any of -related_power_port, -related_ground_port, or -related_bias_ports is specified, an implicit
supply set is created containing the supply nets connected to the ports. If the port being attributed is in
mode, the implicitly created supply set is treated as the -receiver_supply set. If the port being attributed is
out mode, the implicitly created supply set is treated as the -driver_supply set. If the port being attributed
is inout mode, the implicitly created supply set is treated as both the -receiver_supply and
-driver_supply set.

The -pg_type attribute can be specified on a supply port for use with automatic connection semantics.
pg_type_value is a string denoting the supply port type.

NOTE— -pg_type only applies to supply ports and is the only attribute that applies to supply ports. All other attributes
apply to ports that are not supply ports.

When -receiver_supply is attributed on a port, it specifies the supply of the logic reading the port. If the
receiving logic is not within the logic design starting at the design root, it is presumed the receiver supply is
the supply for the receiving logic.

When -driver_supply is attributed on a port, it specifies the supply of the logic driving the port. If the
driving logic is not within the logic design starting at the design root, it is presumed the driver supply is the
supply for the driver logic and the port is corrupted when the driver supply is in a simstate other than
NORMAL.

When -repeater_supply is attributed on a port, it specifies a repeater shall be inserted to drive an output port
and the repeater shall be connected to the specified supply set.

The following also apply:
— For -receiver_supply, when the receiving logic is within the logic design starting at the design root,

it shall be an error if its supply is not the receiver supply.
— For -driver_supply, when the driver logic is within the logic design starting at the design root, it

shall be an error if its supply is not the driver supply.
— It shall be an error if -model is specified and -domains and/or -elements is also specified.
— It shall be an error if a supply port is included in -ports and -pg_type is not specified.
— It shall be an error if -repeater_supply is attributed on a bidirectional port.
— It shall be an error if -pg_type is associated with a port that is not a supply port.
— It shall be an error if -pg_type is specified with any other attribute.
— It shall be an error if no argument is used.
104 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

A port-supply relationship can be annotated in HDL using the following attributes:

Attribute name: UPF_related_power_pin or UPF_related_ground_pin.

Attribute value: "supply_port_name", where supply_port_name is a string whose value is the
simple name of a port on the same interface as the attributed port.

Attribute name: UPF_related_bias_pin.

Attribute value: "list_of_supply_port_names", where list_of_supply_port_names is a string whose
value is a space-separated list of one or more simple names of port(s) on the same interface as the
attributed port.

SystemVerilog or Verilog-2005 example (power_pin):

(* UPF_related_power_pin = "my_Vdd" *) output my_Logic_Port;

VHDL example (power_pin):

attribute UPF_related_power_pin of my_Logic_Port : signal is
"my_Vdd";

(* UPF_related_power_pin = "my_Vdd" *) output my_Logic_Port;

SystemVerilog or Verilog-2005 example (bias_pin):

(* UPF_related_bias_pin = "my_VNWELL my_VPWELL" *) output 

my_Logic_Port;

VHDL example (bias_pin):

attribute UPF_related_bias_pin of my_Logic_Port : signal

is "my_VNWELL my_VPWELL";

Isolation clamp value port properties can be annotated in HDL using the following attributes:

Attribute name: UPF_clamp_value

Attribute value: <"0" | "1" | "Z" | "latch" | "any" | "value">

SystemVerilog or Verilog-2005 example:

(* UPF_clamp_value = "1" *) output my_Logic_Port;

VHDL example:

attribute UPF_clamp_value of my_Logic_Port : signal is "1";

pg_type port properties can be annotated in HDL using the following attributes:

Attribute name: UPF_pg_type or pg_type

Attribute value: <"primary_power" | "primary_ground" | 
"backup_power" | "backup_ground" >

SystemVerilog or Verilog-2005 example:

(* UPF_pg_type = "primary_power" *) output myVddPort;

VHDL example:

attribute UPF_primary_power of myVddPort : signal 
is "primary_power";

Syntax example:

set_port_attributes 
–ports {my_Logic_Port} -clamp_value 1
Copyright © 2009 IEEE. All rights reserved. 105

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

6.46 set_power_switch 

The set_power_switch command extends a switch by adding the input supply port(s), output supply port(s),
and states to the switch. The supply ports are connected to the specified nets.

switch_name shall denote a design element. This design element models any acknowledgement
functionality.

Any control ports shall be pre-existing ports on the switch design element.

An input supply port without a connected supply net has the value UNDETERMINED.

Purpose Extend an HDL model containing no more than acknowledge logic to complete switch definition

Syntax

set_power_switch switch_name
-output_supply_port {port_name [supply_net_name]}
{-input_supply_port {port_name [supply_net_name]}}*
{-control_port {port_name}}*
{-on_state {state_name input_supply_port {boolean_function}}}*
[-supply_set supply_set_name]
[-on_partial_state {state_name input_supply_port {boolean_function}}]*
[-off_state {state_name {boolean_function}}]*
[-error_state {state_name {boolean_function}}]*

Arguments

switch_name The name of the switch instance in the logic design relative to the active 
scope; this shall be a simple name.

-output_supply_port 
{port_name 
[supply_net_name]}

The output supply port of the switch and, optionally, the net where this port 
connects. The output port is added to the switch.

-input_supply_port 
{port_name 
[supply_net_name]}

The input supply port of the switch and, optionally, the net where this port 
is connected. The input ports are added to the switch.

-control_port 
{port_name}

A list of pre-existing ports on the switch that are the control ports.

-on_state {state_name 
input_supply_port 
{boolean_function}}

A named state, the input_supply_port for which this is defined, and its 
corresponding Boolean function.

-supply_set 
supply_set_name

Associate a supply set with a switch. 

-on_partial_state 
{state_name 
input_supply_port 
{boolean_function}}

A named state, the input_supply_port for which this is defined, and its cor-
responding Boolean function where the switch is in a current-limited state.

-off_state {state_name 
{boolean_function}}

A named state and its corresponding Boolean function.

-error_state 
{state_name 
{boolean_function}}

Any error states, which if defined on the switch can be flagged during
simulation or analysis.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
106 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

When the Boolean expression (see 4.10) for 

a) Any -error_state evaluates to True, the state of the switch's output port is set to
UNDETERMINED.

b) An -on_state evaluates to True, the switch is on and in that named state, and the value on the input
supply port for that -on_state is propagated to the output supply port. If more than one -on_state
concurrently evaluates to True, the state of the switch’s output port is set to UNDETERMINED
unless the root supply drivers of the respective -input_supply_ports are the same.

c) All -off_states evaluate to True, the switch is off and the supply port’s state is set to OFF.

d) One or more -on_partial_state evaluate to True, the switch is partially on and in that named state,
and the value on the input supply port for that -on_partial_state is propagated to the output supply
port and degraded to PARTIAL_ON if the input is FULL_ON.

e) All -on_states and all -on_partial_states evaluate to False and no -off_state is defined, the switch
is off and the supply port’s state is set to OFF.

Otherwise, the state of the switch’s output port is set to UNDETERMINED.

NOTE—When -off_state has a null Boolean expression, it can not evaluate True; therefore, when no -on_state or
-on_partial_state evaluates True, the state of the switch's output port is set to UNDETERMINED.

Any -on_state, -on_partial_state, -off_state, or -error_state boolean_function shall be a SystemVerilog
Boolean expression (see 4.10).

If a supply set is associated with a switch, it powers logic or timing control circuitry within the switch. The
supply set is implicitly connected to the design element. When the supply set simstate is anything other than
NORMAL, the state of the output supply port of a switch is UNDETERMINED. If a supply set is not
associated with a switch, the output of the supply port implicitly operates in a NORMAL simstate.

The following also apply:

— Any name in a boolean_function needs to refer to a control port of the switch.

— All states not covered by the states on, off, and error are anonymous error states.

— If the Boolean expression (see 4.10) for more than one state evaluates to True, the switch shall be put
into an anonymous error state.

— If the implementation of a switch can not be inferred, map_power_switch (see 6.32) can be used to
specify it.

— If net_name is not specified for any of the switch’s port definitions, connect_logic_net (see 6.12) or
connect_supply_net (see 6.13) can be used to create the port connections.

— Each state name shall be unique.

— Any port_names specified in this command are user-defined (e.g., my_dogs_name).

It shall be an error if the named switch instance does not exist in the logic design.

Syntax example:

set_power_switch hmacro/sw1

  -input_supply_port {i1 always_on_power}

  -output_supply_port {o1 switched_power}

  -control_port {on}

  -on_state {sw1_on i1 {on}}

  -off_state {sw1_off {~on}}
Copyright © 2009 IEEE. All rights reserved. 107

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

6.47 set_retention 

Purpose Specify which objects in the domain need to be retention registers and set the save and restore signals 
for the retention functionality

Syntax

set_retention retention_name
-domain domain_name
[-elements element_list] [-exclude_elements exclude_list]
[-retention_power_net net_name] [-retention_ground_net net_name] 
[-retention_supply_set ret_supply_set] [-no_retention]
[-save_signal {{logic_net <high | low | posedge | negedge>}} 
-restore_signal {{logic_net <high | low | posedge | negedge>}}]

[-save_condition {{boolean_function}}]
[-restore_condition {{boolean_function}}]
[-retention_condition {{boolean_function}}]
[-use_retention_as_primary]
[ -parameters {< <RET_SUP_COR | NO_RET_SUP_COR> |
 <SAV_RES_COR | NO_SAV_RES_COR> >*}]

[-instance {{instance_name [signal_name]}*}]
[-transitive <TRUE | FALSE>]
[-update]

Arguments

retention_name Retention strategy name.

-domain domain_name The domain for which this strategy is applied.

-elements element_list The -elements option defines a list of objects: design elements, 
retention_list_name of elements lists (see 6.49), named processes, or 
sequential reg or signal names to which this strategy is applied.

R

-exclude_elements 
exclude_list

The -exclude_elements option defines a list of objects: design 
elements, retention_list_name of elements lists (see 6.49), named 
processes, or sequential reg or signal names that are not included in 
this strategy.

R

-retention_power_net 
net_name

This option defines the supply net used as the power for the retention 
logic inferred by this strategy.

R

-retention_ground_net 
net_name

This option defines the supply net used as the power for the retention 
logic inferred by this strategy.

R

-no_retention When this option is used, the storage elements specified by this strat-
egy shall not have retention capability added.

R

 -retention_supply_set 
ret_supply_set

This option defines the supply set used to power the logic inferred by 
the retention_name strategy.

R

-save_signal 
{{logic_net <high | low 
| posedge | negedge>}} 
-restore_signal 
{{logic_net <high | low 
| posedge | negedge>}}

The -save_signal and -restore_signal options define a rooted name of 
a logic net or port and its active level or edge.The default sensitivity is 
high (for both -save_signal and -restore_signal).

R

-save_condition{{bool
ean_function}}

The -save_condition option defines a Boolean expression (see 4.10). 
The default is True.

R

-restore_condition 
{{boolean_function}}

The -restore_condition option defines a Boolean expression.The 
default is True.

R

108 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

The set_retention command specifies a set of objects in the domain that need to be retention registers and
identifies the save and restore behavior. If a design element is specified, all registers within the design
element acquire the specified retention strategy. If a process is specified, all registers inferred by the process
acquire the specified retention strategy. If a reg, signal, or variable is specified and that object is a
sequential element, the implied register acquires the specified retention strategy. Any specified reg, signal,
or variable that does not infer a sequential element shall not be changed by this command.

If -elements is specified, element names outside the extent of domain_name are excluded. When -elements
is not specified, this is equivalent to using the elements list that defines the power domain. When used with 
-update, -elements is additive such that the set of elements or signals is the union of all calls of this
command for a given strategy specifying any of these parameters.

-exclude_elements can also be used to define a list of storage elements that are not included in this strategy.
When used with -update, -exclude_elements is additive such that the set of elements or signals excluded is
the union of all calls of this command for a given strategy.

If retention power and retention ground nets are specified, an implicit retention supply set is created and
used with the specified strategy. The retention power net serves the power function in the retention supply
set and the retention ground net serves the ground function in the retention supply set. If the retention power
net is specified but the retention ground net is not specified then the domain’s primary supply set’s ground
function shall be used as the retention ground. If the retention ground net is specified but the retention power
net is not specified then the domain’s primary supply set’s power function shall be used as the retention
power. It shall be an error if a retention supply set is specified and a retention supply net is individually
defined.

-retention_supply_set powers the register holding the retained value.

Arguments

-retention_condition 
{{boolean_function}}

The -retention_condition option defines a Boolean expression. The 
default is True.

R

-use_retention_as_pri
mary

The -use_retention_as_primary option specifies that the storage 
element and its output are powered by the retention supply.

R

 -parameters {< 
<RET_SUP_COR | 
NO_RET_SUP_COR> 
|
 <SAV_RES_COR | 

NO_SAV_RES_COR> 
>*}

The -parameters option provides control over retention register 
corruption semantics.
RET_SUP_COR activates and NO_RET_SUP_COR deactivates 
corruption of the normal mode register when retention supplies are 
CORRUPT; RET_SUP_COR is the default.
SAV_RES_COR activates and NO_SAV_RES_COR deactivates cor-
ruption of the normal mode register during concurrent assertion of 
level-sensitive save, save_condition, restore, and restore_condition; 
SAV_RES_COR is the default.

R

-instance 
{{instance_name 
[signal_name]}*}

The name of a technology library leaf cell instance and the optional 
name of the signal that it retains. If this instance has any unconnected 
supply ports or save and restore control ports, then these ports need to 
have identifying attributes in the cell model, and the ports shall be con-
nected in accordance with this set_retention command.

R

-transitive 
<TRUE | FALSE>

When -transitive is TRUE (the default), the command applies to the 
descendants of the elements.

-update Use -update if the retention_name has already been defined.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
Copyright © 2009 IEEE. All rights reserved. 109

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

After the strategy has been completely applied, it shall be an error if the retention supply set is not defined
for a strategy and the domain does not have a default ret_supply_set.

The retained value [see retained_value in b)] shall be the register’s value at the time of the save event
when -save_condition evaluates to True. The save event is the rising- or falling-edge of an edge-triggered
save event or the trailing-edge of a level-sensitive save event.

The retained value is transferred to a register on the restore event when -restore_condition evaluates to
True. The restore event is the rising- or falling-edge of an edge-triggered restore event or the trailing-edge of
a level-sensitive restore event. The retained value and register state shall be CORRUPTED (see 6.51) when
level-sensitive: save, save condition, restore, and restore condition are simultaneously active. A level-
sensitive restore event has priority over any other register operation.

-restore_condition gates the restore event, defining the restore behavior of the register. For example, if the
restore signal is my_restore and the condition is !clock, the register restores if and only if
my_restore is active and the clock signal is low. If the value of the restore signal is active and the restore
condition is unknown, or the restore signal is unknown and the restore condition is True, the register value is
corrupted.

-save_condition gates the save event, defining the save behavior of the register. For example, if the save
signal is your_save and the condition is (!clock && !reset), the register saves if and only if
your_save is active and clock and reset are low. If the value of the save signal is active and the save
condition is unknown, or the save signal is unknown and the save condition is True, the register value is
corrupted.

The retained value is corrupted if the -retention_condition does not hold True while the primary supply is
not NORMAL (see 6.51).

-save_condition, -restore_condition, and -retention_condition shall only reference logic nets or ports
rooted in the active scope.

If -save and -restore are not specified, the register is supplied by the retention supply set. In this case, the
register value is corrupted according to the state of the retention supply or when the retention condition does
not hold True.

-use_retention_as_primary powers the storage element and the output drivers of the register using the
retention supply. The result of this is the simstate for the retention supply set is applied to the register’s
output. Inferred state elements shall be consistent with the -use_retention_as_primary constraint. No level-
shifting or isolation shall be added to the design as a result of using -use_retention_as_primary.

During simulation, the behavior of each register to be retained is modified as follows:
a) The process sensitivity list for the register is expanded to include the following signals:

1) Primary supply signals
2) Retention supply signals, if RET_SUP_COR is active
3) Restore signal; if the restore signal’s sensitivity is posedge or negedge, then the process is

sensitive to that edge; otherwise, the restore signal’s sensitivity is high or low, so the process is
sensitive to any change on the restore signal

4) Restore condition signals
5) Save signal and save condition signals, only if neither the restore nor save signal is edge-

sensitive, and SAV_RES_COR is active
b) The body of the process is modified as illustrated by the following Verilog:
110 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

if ( <primary_supplies_are_normal>
'ifdef RET_SUP_COR

&& <retention_supplies_are_normal>
'endif

&& ! ( <restore_signal_is_active> && <restore_condition_is_true> ) )
begin

<original_process_body>
end

else if ( <primary_supplies_are_normal>
'ifdef RET_SUP_COR

&& <retention_supplies_are_normal>
'endif

&& <restore_signal_is_active> && <restore_condition_is_true>
'ifdef SAV_RES_COR

&& ! ( <save_signal_is_active> && <save_condition_is_true> )
'endif

)
<register_value> <= <retained_value>

else
<register_value> <= <corrupt_value>

c) An additional process is created for the saved state, with a process sensitivity list comprised of the
following signals:
1) Retention supply signals
2) Retention condition signals
3) Save signal; if the save signal’s sensitivity is posedge or negedge, then the process is sensitive

to that edge; otherwise, the save signal’s sensitivity is high or low, so the process is sensitive to
any change on the save signal

4) Save condition signals
5) Restore signal and restore condition signals, only if neither the restore nor save signal is edge-

sensitive, and SAV_RES_COR is active
d) The body of the additional process is constructed as illustrated by the following Verilog:

if ( <retention_supplies_are_normal> && <retention_condition_is_true>
&& ! ( <save_signal_is_active> && <save_condition_is_true> ) )

begin
end

else if ( <retention_supplies_are_normal>
&& <save_signal_is_active> && <save_condition_is_true>

'ifdef SAV_RES_COR
&& ! ( <restore_signal_is_active> && <restore_condition_is_true> )

'endif
)

<retained_value> <= <register_value>
else

<retained_value> <= <corrupt_value>

The elements requiring retention can be attributed in HDL as shown in 6.49.

Syntax example:

set_retention my_retention_strategy
-retention_supply_set PDA_ret_supply
-save {my_save posedge}
-restore {my_restore posedge}
Copyright © 2009 IEEE. All rights reserved. 111

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

6.48 set_retention_control 

The set_retention_control command allows the specification of the retention control signal and sense
separate from the set_retention command (see 6.47) for those situations where the retention strategy is
known, but the control signals are not known until later. As the assertions are related to the save and restore
signals, they can also be specified with this command.

Compatibility note: Except that the set_retention_control command is executed within the active scope, the
semantics here are equivalent to having specified the retention control signals, senses, and assertions with
the set_retention command.

The set_retention_control command can also be used to specify any assertion options. Each assert retention
option creates one or more assertions, which verification tools can trigger when the indicated RTL signals
are active simultaneously with: the restore signal, -assert_r_mutex; the save signal, -assert_s_mutex; or
both signals, -assert_rs_mutex. If -assert_rs_mutex does not specify a list of signals, this indicates the
save and restore signals themselves are mutually exclusive.

The following also apply:

— The save signal shall be an existing net or port in the design.

— The restore signal shall be an existing net or port in the design.

Purpose Specify the control signals and assertions for a previously defined retention strategy

Syntax

set_retention_control retention_name
-domain domain_name
-save_signal {{net_name <high | low | posedge | negedge>}}
-restore_signal {{net_name <high | low | posedge | negedge>}}
[-assert_r_mutex {{net_name <high | low | posedge | negedge>}}]*
[-assert_s_mutex {{net_name <high | low | posedge | negedge>}}]*
[-assert_rs_mutex {{net_name <high | low | posedge | negedge>}}]*

Arguments

retention_name Retention strategy name (used only for reporting).

-domain domain_name The domain for which this strategy is applied.

-save_signal save_net The signal that causes the register values to be saved into the shadow 
registers.

-restore_signal 
restore_net

The signal that causes the register values to be restored from the shadow 
registers.

-assert_r_mutex 
{{net_name <high | low | 
posedge | negedge>}}

The restore signal for assertion.

-assert_s_mutex 
{{net_name <high | low | 
posedge | negedge>}}

The save signal for assertion.

-assert_rs_mutex 
{{net_name <high | low | 
posedge | negedge>}}

Both signals (save and restore) for assertion.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
112 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

Syntax example:

set_retention test_retention
-domain PDA
-retention_power_net ret_pwr

set_retention_control test_retention
-domain PDA
-save_signal {save_a high}

 -restore_signal {restore_a low}
-assert_rs_mutex
-assert_rs_mutex {reset_a low}

 -assert_s_mutex {clock_a posedge}

The above command creates three assertions. Then to ensure
a) Save and restore are mutually exclusive, use:

(save_a && !restore_a) == 0

b) Save and restore are mutually exclusive with a low level sensitive reset_a, use:

 ((save_a | !restore_a) && !reset_a) == 0

c) Save and the positive edge of signal clk are mutually exclusive, use:

save_a && (posedge clock_a) == 0
Copyright © 2009 IEEE. All rights reserved. 113

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

6.49 set_retention_elements 

The set_retention_elements command defines a list of objects that can then be used in set_retention and
map_retention_cell commands (see 6.47 and 6.33).

-applies_to filters the effective_element_list, removing any elements that do not have a UPF_retention
attribute value consistent with the selected filter choice: required, not_optional, not_required, or optional.

required matches all elements that have the UPF_retention attribute value "required".

optional matches all elements that have the UPF_retention attribute value "optional".

not_required matches all elements that do not have the UPF_retention attribute value "required".

not_optional matches all elements that do not have the UPF_retention attribute value "optional".

It shall be an error if a retention_list_name created with -retention_purpose required is not used in a
retention strategy when a domain containing an element from retention_list_name has a defined retention
strategy.

Syntax example:

set_retention_elements ret_chk_list
-elements {proc_1 sig_a}

Purpose Create a named list of elements to be used in a set_retention or map_retention_cell command

Syntax

set_retention_elements retention_list_name
[-elements element_list]
[{-applies_to <required | not_optional | not_required | optional>}]
[-exclude_elements exclude_list]
[-retention_purpose <required | optional>]
[-transitive <TRUE | FALSE>]

Arguments

retention_list_name A simple name; this shall be unique within the active scope.

-elements element_list A list of rooted names: design elements, named processes, sequential regs, 
or signal names.

-applies_to <required | 
not_optional | 
not_required | 
optional>

Filter elements based on the UPF_retention attribute value.

-exclude_elements 
exclude_list

A list of rooted names: design elements, named processes, sequential regs, 
or signal names.

-retention_purpose 
<required | optional>

The intended retention use of retention_list_name.

-transitive <TRUE | 
FALSE>

When -transitive is TRUE (the default), the command applies to the 
descendants of the elements.

-expand <TRUE | 
FALSE>

When -expand is TRUE, elements are expanded as though every register 
that otherwise would be included had been specified directly in 
element_list. The default is FALSE.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
114 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

6.50 set_scope 

If the set_scope command is called with no arguments or the UPF scope is not set, the scope is set to the root
of the design.

If instance is ., the scope remains unchanged. If instance is .., the context is moved up one level in the
instance hierarchy. If instance is /, the scope is set to the root of the design. See also 6.38.

Syntax examples:

set_scope foo/bar

set_scope ..

6.51 set_simstate_behavior 

This command specifies the simstate behavior for every design element that is an instance of a model.

If ENABLE is specified, the simstate simulation semantics are applied for every supply set automatically
connected to an instance of the model. See also 5.6.

a) If there is a single supply set connected, the simstates for that supply set are applied.

b) When no supply set is connected, but there are connected supply nets, an anonymous supply set is
created containing the supply nets and the default simstates for that supply set are applied.

c) When there are multiple supply sets connected, the simstates of all supply sets are applied.

Purpose Specify the active UPF scope

Syntax set_scope instance

Arguments instance The instance that becomes the active scope upon completion of the 
command.

Return 
value

Return the active scope prior to execution of the command as a full path string relative to the active 
design top if successful or raise a TCL_ERROR if it fails (e.g., if the instance does not exist).

Purpose Specify the simulation simstate behavior for a model or library

Syntax
set_simstate_behavior <ENABLE | DISABLE>

[-lib name]
[-model list]

Arguments

<ENABLE | DISABLE> Define if the UPF simstate behavior shall be enabled for the specified 
model(s).

-lib name The library name.

-model list One or more model names.

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
Copyright © 2009 IEEE. All rights reserved. 115

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

d) For a combination of connected supply nets and supply sets, an anonymous supply set is created
containing the supply nets, and the default simstates of the anonymous supply set and all other
connected supply sets are applied.

If -model is not defined and -lib is specified, the simstate behavior is defined for all models in name.

It shall be an error if 
— -model is specified and any of the model(s) cannot be found.
— DISABLE is specified and the model has no supply ports.
— A model has conflicting simstate behaviors specified.
— Any design element that is an instance of a model that has simstate behavior ENABLED is

connected to more than one supply set.

Simstate behavior of a module can be enabled or disabled in HDL using the following attributes:
Attribute name: UPF_simstate_behavior
Attribute value: <"ENABLE" | "DISABLE">
SystemVerilog or Verilog-2005 example:

(* UPF_simstate_behavior = "ENABLE" *) module my_adder;

VHDL example:
attribute UPF_simstate_behavior of my_adder : entity is
"ENABLE";

Syntax example:

set_simstate_behavior ENABLE -lib library1 -model ANDX7_non_power_aware

6.52 upf_version 

As the UPF standard matures, new updated versions of the UPF standard can occur. The upf_version
command can be used to specify the UPF version the input for processing subsequent UPF commands.
upf_version may be called multiple times; any previously processed UPF commands are not affected.

NOTE—load_upf_protected (see 6.29) can be used to preserve the version number.

The version numbers are
UPF1.0 returns 1.0.
IEEE1801_2009 returns 2.0.

Syntax example:

upf_version 2.0

Purpose Specify the UPF version for interpreting subsequent commands

Syntax upf_version [string]

Arguments string The UPF version number.

Return 
value

If called with an argument, return the argument. If called with no arguments, return the current version 
number. If the call fails, raise a TCL_ERROR.
116 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

6.53 use_interface_cell 

The use_interface_cell command provides user control for the integration of isolation and level-shifting.
The command specifies the implementation choices through -lib_cells and the functional isolation behavior
to be used if -force_function is specified.

NOTE—Unlike map_interface_cell and map_retention_cell, use_interface_cell can be used to manually map
isolation, level-shifting, and combined isolation level-shifting cells.

Purpose Specify the functional model and a list of implementation targets for isolation and level-shifting

Syntax

use_interface_cell interface_implementation_name
-strategy list_of_isolation_level_shifter_strategies
-domain domain_name
-lib_cells lib_cell_list
[-map {{port net_ref}*}]
[-elements element_list]
[-exclude_elements exclude_list]
[-applies_to_clamp <0 | 1 | any | Z | latch | value>]
[-update_any <0 | 1 | known | Z | latch | value>]
[-force_function]
[-inverter_supply_set list]

Arguments

interface_implementatio
n_name

The interface cell implementation strategy.

-strategy 
list_of_isolation_level_s
hifter_strategies

The isolation or level-shifter strategy as defined by set_isolation and 
set_level_shifter.

-domain domain_name The domain in which the strategies are defined.

-lib_cells lib_cell_list A list of library cell names.

-map {{port net_ref}*} The port and the net (net_ref) connections.

-elements element_list A list of ports from the list_of_isolation_level_shifter_strategies to which 
the command applies.

-exclude_elements 
exclude_list

A list of ports from the list_of_isolation_level_shifter_strategies.

-applies_to_clamp <0 | 
1 | any | Z | latch | 
value> 

Only ports that have the specified clamp value are mapped.

-update_any <0 | 1 | 
known | Z | latch | 
value>

What is now the known clamp value when -applies_to_clamp is any.

-force_function The first model in model_list is used as the functional specification of 
isolation behavior.

-inverter_supply_set 
list

The supply set implicitly connected to any inversion logic required by an 
isolation signal connection. 

Return 
value

Return a 1 if successful or raise a TCL_ERROR if not.
Copyright © 2009 IEEE. All rights reserved. 117

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

When -force_function is specified the first model in lib_cell_list shall be used as the functional model. The
isolation sense specification for the isolation strategy is ignored when -force_function is specified. It is
erroneous if the functional model clamps to a value that is different to the previously specified port clamp
value.

-elements selects the ports from the specified list of strategies to which the mapping command is applied. If
-elements is not specified, all ports inferred from the list of strategies shall have the mapping applied. When
-applies_to_clamp is specified, this command is applied only to the ports with that clamp value.

When -applies_to_clamp is any, -update_any shall be used to specify the clamp value after mapping. An
-update_any value of known specifies that the isolation function is more complex than can be specified by
a single value.

-map connects the specified net_ref to a port of the model. A net_ref may be one of the following:
a) A logic net name
b) A supply net name
c) One of the following symbolic references

1) isolation_supply_set.function_name
function_name refers to the supply net corresponding to the function it provides to the
isolation_supply_set.

2) isolation_supply_set[index].function_name
i) index is a non-negative integer corresponding to the position in the isolation_supply_set

list specified for the isolation strategy. 
ii) The isolation_supply_set index shall be specified if the isolation strategy specified more

than one isolation_supply_set.
3) isolation_signal

i) Refers to the isolation signal specified in the corresponding isolation strategy.
ii) To invert the sense of the isolation signal the Verilog bit-wise negation operator ~ can be

specified before the isolation_signal. The logic inferred by the negation shall be implicitly
connected to the inverter_supply_set if specified, otherwise the isolation_supply_set
shall be used.

4) isolation_signal[index]
i) index is a non-negative integer corresponding to the position in the isolation_signal list

specified for the isolation strategy.
ii) The isolation_signal index shall be specified if the isolation strategy specified more than

one isolation_signal.
iii) To invert the sense of the isolation signal the Verilog bit-wise negation operator ~ can be

specified before the isolation_signal. If the isolation_signal is being inverted then the
inverter_supply_set[index] if specified shall be implicitly connected to the inferred
inverter, otherwise the isolation_supply_set[index] shall be used.

5) input_supply_set.function_name
function_name refers to the supply net corresponding to the function it provides to the
level-shifter input_supply_set.

6) output_supply_set.function_name
function_name refers to the supply net corresponding to the function it provides to the
level-shifter output_supply_set.

7) internal_supply_set.function_name
function_name refers to the supply net corresponding to the function it provides to the
level-shifter internal_supply_set.
118 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

The -map command shall not reference the data input port or the data output port. The input port shall be
connected to the data input for the interface cell and the output port connected to the data output for the
interface cell.

It shall be an error if 
— domain_name does not indicate a previously created power domain.
— A port in the port_list is not covered by a set_isolation command.
— list_of_isolation_level_shifter_strategies is a null list.
— -force_function is not specified and none of the specified models in lib_cell_list implements the

functionality specified by the corresponding isolation_strategy and port attributes.
— -update_any is specified and -applies_to_clamp is not any.
— After completing the port and net_ref connections and the data input and output connections, any

port is unconnected.
— Ports specified by -elements are not included in all specified strategies.
— More than one isolation strategy is specified.
— More than one level-shifter strategy is specified.

Syntax example:

use_interface_cell my_interface -strategy {ISO1 LS1} –domain PD1\
-elements {top/moduleA/port1 top/moduleA/port2 top/moduleA/port3}
Copyright © 2009 IEEE. All rights reserved. 119

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



A
uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

7. Queries

This clause documents the syntax for each of the query_* commands (and find_objects). Each return value
is a Tcl string-object that is a list of defined objects, all options of the object, or individual settings for the
object. The names returned (Return values) are relative to the active scope. If there are any names to be
returned that are not rooted in the active scope, the query shall raise an “out of scope” error. This could
occur, for example, if the power domain of an object was queried, but the scope of the domain that was to be
returned via this query was not visible in the scope as specified by the active set_scope command (see 6.50).

— Each query in this clause consists of a keyword followed by one or more parameters. All parameters
begin with a hyphen (-). The meta-syntax for the description of the syntax rules uses the
conventions shown in Table 5.

— For general information on how errors are handled, see 6.5.

— Since the queries only return information about the active design, they have no implementation or
simulation semantics.

— Queries are not guaranteed to, and in virtually all situations do not, return information in the order
that their corresponding command (see Clause 6) supplied it. 

— Additional information can be returned by the queries, for example if a design element is added to a
domain using add_domain_elements, then query_power_domain also returns this added element.
Command refinement reconciliation is incorporated in query return values (see 6.4).

— All query_* commands search from the active scope down, unless otherwise stated.

find_objects, query_upf, and all query_* commands that accept the -non_leaf and -leaf_only options can
be interpreted differently between tools depending upon the library source. For example, a simulation tool
may have a hierarchical model representation of a IP block that is not returned if -leaf_only is specified (the
search would traverse through this boundary to find leaf cells). However, an implementation tool could have
this IP block represented as a timing abstract and thus could be treated as a leaf cell.

Query commands that have the -detailed option provide the ability to return information as a list of {key
value} pairs. The key is derived from the argument name of the corresponding command (see Clause 6) that
is being queried.

Commands that have a Boolean option, such as -include_scope, shall have a Boolean return flag of 1 if the
option was specified and 0 if it was not. For commands that have arguments that accept Tcl lists, the query
returns the entire list, e.g., -ports list produces the -detailed output of the form {ports
{{port_list_index_0} {port_list_index_1}{...}}}. For commands that have arguments
that have lists containing optional arguments, e.g., -supply {supply_set_handle
[supply_set_ref]} the query returns the optional argument (supply_set_ref) or a null string if the
optional argument has not been specified, e.g., {supply {{supply_set_handle_index_0 {}}
{supply_set_handle_index_1 {supply_set_ref}}...}.

When the -detailed argument to a query returns an argument for which no value has been specified, then the
default value is returned. If there is no default, then a null list ({}) is returned.

Compliance requirement: A tool compliant to this standard shall support the find_objects command. A tool
compliant to this standard may support the query_* commands in this clause.

NOTE—These query_* commands do not make up the power intent of a design; they are only used for querying the
design database and are included in this standard to enable portable, user-specified query procedures across tools that are
compliant to this standard.
Copyright © 2009 IEEE. All rights reserved. 121

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

7.1 find_objects 

The find_objects command searches for design elements, nets, or ports that are defined in the HDL. This
command works on the logical hierarchy and only searches in the scope (or in and below the scope when
-transitive is specified).

NOTE—To find UPF objects, such as isolation logic or retention elements, use the corresponding query_* commands.

The -non_leaf and -leaf_only options can be interpreted differently between tools, depending upon the
library source. For example, a simulation tool may have a hierarchical model of a IP block, which to the
implementation tool is represented as a timing abstract and, thus, treated as a leaf cell. A module may be
tagged as a leaf cell by using set_module_attribute (see 6.37).

The following conditions also apply:

— The specified scope cannot start with .. or /, i.e., find_objects needs to be referenced from the
active scope, and reside in the active scope or below it.

Purpose Find logical hierarchy objects within a scope

Syntax

find_objects scope
-pattern search_pattern
[-object_type <inst | port | net | process>] |
[-direction <in | out | inout>]
[-transitive <TRUE | FALSE>] 
[-regexp | -exact] 
[-ignore_case] 
[-non_leaf | -leaf_only]

Arguments

scope The search is restricted to the specified scope.

-pattern search_pattern The string used for searching. By default, search_pattern is treated as an 
Tcl glob expression.

-object_type <inst | 
port | net | process>

Limits the objects returned. By default, design elements, named processes, 
ports, and nets are returned; this can be restricted by specifying a specific 
-object_type. inst does not return named processes.

-direction <in | out | 
inout>

If -object_type is port, then -direction can be used to restrict the directions 
of the returned ports.

-transitive 
<TRUE | FALSE>

When -transitive is TRUE, the command applies to the descendants of the 
elements; the default is FALSE.

-regexp | -exact -regexp enables support for regular expression in the specified 
search_pattern. -exact disallows wildcard expansion on the specified 
search_pattern. If neither -regexp or -exact are specified, then 
search_pattern is interpreted as a Tcl glob expression.

-ignore_case Performs case-insensitive searches. By default, all matches are case 
sensitive.

-non_leaf | -leaf_only If -non_leaf is specified, only non-leaf design elements (elements that have 
children) are returned; if -leaf_only is specified, only leaf-level design ele-
ments (elements without children) are returned. By default, both leaf and 
non-leaf design elements are returned.

Return 
value

Return a list of the found hierarchical names (relative to the active scope); when nothing is found, a 
null string is returned.
122 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

— If scope is specified as . (a dot), the active scope is used as the root of the search.
— All elements returned are referenced to the active scope.
— It shall be an error if scope is not defined in the active scope.

Syntax examples:

find_objects A/B/D -pattern *BW1* 
-object_type inst
-transitive

7.1.1 Pattern matching and wildcarding

To improve usability and allow multiple objects (design elements, ports, etc.) to be easily specified without
onerous verbosity, pattern matching (wildcarding) is allowed (only) in find_objects and query_upf (see
7.2). Pattern matching is supported using the Tcl glob style, matching against the symbols in the scope
rather than filenames. For glob-style wildcarding, the following special operators are supported.

? matches any single character.
* matches any sequence of zero or more characters.
[chars] matches any single character in chars. If chars contains a sequence of the form a-b, any
character between a and b (inclusive) shall match.
\x matches the character x.
{a, b, ...} Matches any of the strings a, b, etc.

Tcl regular expression matching is described in the Tcl documentation for re_syntax [B4].

7.1.2 Wildcarding examples

Table 7 shows the pattern match for each of the following examples of find_objects.

find_objects top -pattern {a}
find_objects top -pattern {bc[0-3]}
find_objects top -pattern {e*}
find_objects top -pattern {d?f}
find_objects top -pattern {g\[0\]}

NOTE 1—The use of the Tcl quote semantics of “{string}” in the example illustrates an effective means to pass
characters that would otherwise be “special” to a Tcl interpreter.

NOTE 2—To select the four bits (0 to 3) of the bus my_bus, use the Tcl expression {my_bus\[[0-3]\]}.

Table 7—Pattern matches

a Only matches a design element called a in the active scope.

bc[0-3] Matches any design element called bc followed by a numerical value 
from 0 to 3, i.e., bc0, bc1, bc2, and bc3.

e* Matches any design element starting with e, i.e., e12, eab, ef, etc.

d?f Matches any design element starting with d followed by another character 
and ending in f, i.e., daf, d4f, etc.

g\[0\] Matches a design element called g[0].
Copyright © 2009 IEEE. All rights reserved. 123

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

7.2 query_upf 

The query_upf command searches for design elements, nets, supply nets, ports, and supply ports in and
below the scope or within the extent of a domain_name. This command works on the logical hierarchy and
can be executed post-UPF annotation. Different tools process the power intent at different times, e.g., a tool
could build a representation of the power intent directly after loading the UPF constraints, whereas another
tool could evaluate the different constraints as and when required. This means tools can issue an error if a
search is performed at a point in the flow where the UPF intent has not been implemented.

Purpose Find objects (including UPF created or inferred objects) in the logical hierarchy

Syntax

query_upf <domain_name | scope>
-pattern search_pattern
[-object_type <inst | port | supply_port | net | supply_net | supply_set>] 
[-inst_type <level_shifter | isolation_cell | switch_cell | retention_cell | all>] |
[-direction <in | out | inout>] 
[-transitive <TRUE | FALSE>] 
[-regexp | -exact] 
[-ignore_case] 
[-non_leaf | -leaf_only]

Arguments

domain_name | scope Either a power domain or a scope can be specified. If a power domain is 
specified, the search is restricted to that power domain; otherwise. the 
search is restricted to the specified scope.

-pattern search_pattern The string used for searching. By default, search_pattern is treated as an 
Tcl glob expression.

-object_type <inst | 
port | supply_port | net 
| supply_net | 
supply_set>

Limits the objects returned. By default, all objects are returned.

-inst_type 
<level_shifter | 
isolation_cell | 
switch_cell | 
retention_cell | all>

If -object is inst, this option limits the type of design elements returned to 
be level-shifter, isolation, switch, or retention cells. The default is all, 
which returns all design elements.

-direction <in | out | 
inout>

If -object is port, then -direction can be used to restrict the directions of 
the returned ports.

-transitive 
<TRUE | FALSE>

When -transitive is TRUE, the command applies to the descendants of the 
elements; the default is FALSE.

-regexp | -exact -regexp enables support for regular expression in the specified 
search_pattern. -exact disallows wildcard expansion on the specified 
search_pattern. If neither -regexp or -exact are specified, then 
search_pattern is interpreted as a Tcl glob expression.

-ignore_case Performs case-insensitive searches. By default, all matches are case 
sensitive.

-non_leaf | -leaf_only If -non_leaf is specified, only non-leaf design elements are returned; if 
-leaf_only is specified, only leaf-level design elements are returned. By 
default, both leaf and non-leaf design elements are returned.

Return 
value

Return a list of the found objects; when no object is found, a null string is returned.
124 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

The query_upf command works on the logical hierarchy from a domain-centric or hierarchy-centric
approach. A domain-centric approach restricts the search to design elements, net, or ports that are logically
within the extent of the specified domain_name. A hierarchy-centric approach searches in the scope only,
or in and below the scope when -transitive is specified.

A domain-centric search examines all logical levels that are members of the specified domain. Based on
Figure 7 and Figure 8, the command query_upf {PD1} -pattern * looks for any object (port, net,
or design element) matching the specified string in the logical hierarchies A, A/B, A/C, or A/B/D/F.

Figure 7—Logical hierarchy

Figure 8—Physical layout

If searching for inputs into PD3, the command 

query_upf {PD3} –pattern * -object_type port –direction in 

returns any inputs from {B->D, F->D, and E->D}.

-inst_type only returns design elements of a particular type. For example, to find all level-shifters in the
domain PD3, the following query_upf command could be used.

query_upf {PD3} -pattern * -inst_type level_shifter -object inst

 A

B C

D

E F

G

PD1

PD2

PD3

 A

B C

G

DE

F

Copyright © 2009 IEEE. All rights reserved. 125

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

A domain-centric search examines all logical levels that are members of the domain_name. Based on
Figure 7 and Figure 8, the command query_upf {PD1} -pattern *BW1* looks for any object (port,
supply port, net, supply net, or design element) that matched the specified string in the logical hierarchies A,
A/B, A/C, or A/B/D/F.

If searching for inputs into PD3, the command 

query_upf {PD3} –pattern * -object port –direction in 

returns any inputs from {B->D, F->D, and E->D}.

The following conditions also apply:

— -transitive is ignored in a domain-centric search.

— The specified domain_name or scope cannot start with .. or /, i.e., find_objects needs to be
referenced from the active scope, and reside in the active scope or below it.

— All elements returned are referenced to the active scope.

— If domain_name or scope is specified as . (a dot), the active scope is used as the root of the search.

Syntax examples:

query_upf A/B/D \

-pattern *BW1* \

-object inst \

-transitive

7.3 query_associate_supply_set 

The query_associate_supply_set commands queries the association between a supply set and a domain or
strategy. 

If a supply set is associated with a domain using the following associate_supply_set command:

associate_supply_set some_supply_set
-handle U1/PD1.rolf_mem_ss

Purpose Query a previously defined supply set association

Syntax query_associate_supply_set supply_set_ref
[-detailed]

Arguments

supply_set_ref Specifies the name of the supply set supply_set_ref to query.

-detailed Returns the supply set association information as a list of {key value} pairs, 
where key is the name of an argument of the associate_supply_set com-
mand (any - prefixes are removed) and value is the value of that argument. 
Valid keys are supply_set_ref and handle.

Return 
value

There are two distinct return structures.
a) If -detailed is not specified then the supply set association shall be returned in the format of

the corresponding associate_supply_set command.
b) If -detailed is specified then the supply set association shall be returned as {key value} pairs.
126 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

then query_associate_supply_set some_supply_set returns the corresponding
associate_supply_set command as defined above. If the -detailed option is specified the association shall
be returned as {key value} pairs, i.e.,

{supply_set_ref some_supply_set} {handle U1/PD1.rolf_mem_ss}

Syntax example:

query_associate_supply_set some_supply_set

7.4 query_bind_checker 

The query_bind_checker command queries any previously defined bind checkers in and below the active
scope.

If a bind checker was previously defined as

bind_checker chk_p_clks

-module assert_partial_clk

-bind_to aars

-ports {{prt1 clknet2} {port3 net4}}

then query_bind_checker chk_p_clks returns the corresponding bind_checker command as
defined above. query_bind_checker * returns the instance names of all the previously defined bind
checkers, i.e., {chk_p_clks} and if the -detailed option is used, i.e., query_bind_checker
chk_p_clks -detailed then the state information is returned as {{instance_name
chk_p_clks} {elements {}} {module assert_partial_clk} {bind_to aars}
{arch {}} {ports {}}.

It shall be an error if -detailed is specified and * is specified for instance_name.

Purpose Query a previously defined checker module

Syntax query_bind_checker instance_name
[-detailed]

Arguments

instance_name Specifies the instance_name of the checker module to query. If * is speci-
fied, then all checker modules defined shall be returned.

-detailed Returns the checker information as a list of {key value} pairs, where key is 
the name of an argument of the bind_checker command (any - prefixes are 
removed) and value is the value of that argument. Valid keys are 
instance_name, elements, module, bind_to, arch, and ports.

Return 
value

There are three distinct return structures.
a) If * is specified for instance_name then the instance names of all previously defined checker

modules shall be returned as a Tcl list (a null string shall be returned if no power states are
defined).

b) If instance_name is specified then the checker module information for the specified instance
shall be returned.

c) If -detailed is specified then the checker module information for the specified instance
instance_name shall be returned as {key value} pairs.
Copyright © 2009 IEEE. All rights reserved. 127

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

Syntax example:

query_bind_checker *

7.5 query_cell_instances 

The query_cell_instances command can locate all uses of a particular cell.

Syntax example:

//To find all instances of a cell named rolf in the active scope
query_cell_instances rolf

7.6 query_cell_mapped 

The query_cell_mapped command can identify the cell that is used for the named instance instance_name.

Syntax example:

query_cell_mapped top/a/my_inst

Purpose Query the instances of a mapped cell within the active scope

Syntax query_cell_instances cell_name
[-domain domain_name]

Arguments
cell_name The name of the cell or module to find.

-domain domain_name Limits the search to the instances in the domain specified.

Return 
value

Return a list of the instances that use the named cell or module. The list may be empty.

Purpose Query which cell is mapped to this instance

Syntax query_cell_mapped instance_name

Arguments instance_name The name of the instance.

Return 
value

Return a cell name.
128 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

7.7 query_composite_domain 

The query_composite_domain command returns any previously defined composite domains, in and below
the active scope. If a composite domain is defined as

create_composite_domain dom_combined
-subdomains {IP1/PDtop IP2/SIM/PD2}
-supply {primary IP1/PDtop}

then query_composite_domain dom_combined returns the composite domain information using
the create_composite_domain command defined above. query_composite_domain * returns all
defined composite domains, i.e., {dom_combined}. If the -detailed option is used, i.e.,
query_composite_domain dom_combined -detailed then the composite domain information
information is returned as {{composite_domain_name dom_combined} {subdomains
{IP1/PDtop IP2/SIM/PD2}} {supply {{primary IP1/PDtop}}}.

It shall be an error if -detailed is specified and * is specified for composite_domain_name.

Syntax example:

query_composite_domain dom_combined

Purpose Query a composite domain

Syntax query_composite_domain composite_domain_name
[-detailed]

Arguments

 
composite_domain_nam
e

Specifies the composite_domain_name to query. If * is specified then the 
name of all composite domains shall be returned as a Tcl list.

-detailed Returns the composite domain information as a list of {key value} pairs, 
where key is the name of an argument of the create_composite_domain 
command (any - prefixes are removed) and value is the value of that argu-
ment. Valid keys are composite_domain_name, subdomains, and supply.

Return 
value

There are three distinct return structures.
a) If * is specified for composite_domain_name then all previously defined composite domains

shall be returned as a Tcl list (a null string shall be returned if no power states are defined).
b) If composite_domain_name is specified (and it is not *) then the composite domain informa-

tion shall be returned. If the specified composite_domain_name is not a composite domain,
but is a non-composite domain, then a 0 shall be returned to indicate this.

c) If -detailed is specified then the composite domain information for the specified
composite_domain_name shall be returned as {key value} pairs.
Copyright © 2009 IEEE. All rights reserved. 129

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

7.8 query_design_attributes 

The query_design_attributes command queries attribute information for a specified element_name or
model_name.

For an element that has the following attribute information applied:

set_design_attributes -elements lock_cache[0] -attribute UPF_is_leaf TRUE 
set_design_attributes -elements lock_cache[0] -attribute UPF_retention 

required

then query_design_attributes -elements lock_cache[0] shall return the attribute
information in the form of the corresponding set_design_attributes command. The -detailed argument
shall return the attribute information as {key value} pairs, i.e.,

{UPF_is_leaf TRUE} {UPF_retention required}

Syntax example:

query_design_attributes -elements lock_cache[0] -detailed

Purpose Query attributes for a design element or model

Syntax
query_design_attributes

<-element element_name | -model model_name>
[-detailed]

Arguments

-element element_name A rooted name of a design elements, named processes, sequential regs, or 
signal names.

 -model model_name A model to query.

-detailed Returns the design attribute information as a list of {key value} pairs, where 
key is the name of the attribute value is the value of that attribute. Valid 
keys are elements, model, and attribute.

Return 
value

There are two distinct return structures.
a) If -detailed is not specified then the attribute information shall be return in the form of the

corresponding set_design_attributes command, or a null string shall be returned if no attri-
bute information is defined for the specified element or model.

b) If -detailed is specified then the attribute information for the specified element or model shall
be returned as {key value} pairs.
130 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

7.9 query_hdl2upf_vct 

The query_hdl2upf_vct command can list and query any previously defined value conversion table.

If a value conversion table specified as

create_hdl2upf_vct stdlogic2upf_vss

-hdl_type {vhdl std_logic}

-table {{‘U’ OFF}

{‘X’ OFF}

{‘0’ OFF}

{‘1’ FULL_ON}

{‘Z’ PARTIAL_ON}

{‘W’ OFF}

{‘L’ OFF}

{‘H’ FULL_ON}

{‘-’ OFF}}

then query_hdl2upf_vct stdlogic2upf_vss returns the VCT information in the formation of the
create_hdl2upf_vct command defined above. query_hdl2upf_vct * returns the defined VCTs, i.e.,
{stdlogic2upf_vss} and query_hdl2upf_vct stdlogic2upf_vss -detailed returns
the VCT information using {key value} pairs, i.e.,

{vct_name stdlogic2upf_vss} {hdl_type {vhdl std_logic}} {table {{‘U’ OFF} {‘X’ 
OFF} {‘0’ OFF} {‘1’ FULL_ON} {‘Z’ PARTIAL_ON} {‘W’ OFF} {‘L’ OFF} {‘H’ 
FULL_ON} {‘-’ OFF}}}

It shall be an error if -detailed is specified and * is specified for vct_name.

Syntax example:

query_hdl2upf_vct stdlogic2upf_vss

Purpose Query a value conversion table

Syntax query_hdl2upf_vct vct_name
[-detailed]

Arguments

 vct_name Specifies the vct_name to query. If * is specified then the name of all 
defined VCTs shall be returned as a Tcl list.

-detailed Returns the VCT information as a list of {key value} pairs, where key is the 
name of an argument of the create_hdl2upf_vct command (any - prefixes 
are removed) and value is the value of that argument. Valid keys are 
vct_name, hdl_type, and table.

Return 
value

There are three distinct return structures.
a) If * is specified for vct_name then all previously defined VCTs shall be returned as a Tcl list (a

null string shall be returned if no VCTs are defined).
b) If vct_name is specified (and it is not *) then the VCT information shall be returned in the

form of the corresponding create_hdl2upf_vct command.
c) If -detailed is specified then the VCT information for the specified vct_name shall be returned

as {key value} pairs.
Copyright © 2009 IEEE. All rights reserved. 131

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

7.10 query_isolation 

The query_isolation command can list the previously defined isolation strategies for the specified power
domain domain_name. All elements returned are referenced to the active scope.

If * is specified for isolation_name, then a list of the previously defined isolation strategies for the specified
domain_name shall be returned. If no strategies are defined then a null string shall be returned.

If -detailed is specified then all the parameters of the specified isolation strategy isolation_name shall be
returned as a Tcl list consisting of {key value} pairs. If value is a Boolean, then 0 is returned for False and 1
is returned for True. For example, if the following isolation strategies have been previously defined

set_isolation clamp0_strategy

-domain pda

-isolation_supply_set {ISO1 ISO2} -source_off_clamp 0

set_isolation clamp1_strategy

-domain pda

-isolation_supply_set {ISO1 ISO2} -clamp 1 -applies_to outputs 

then query_isolation * -domain pda returns {clamp0_strategy clamp1_strategy}.
query_isolation clamp0_strategy -domain pda returns the isolation strategy information in
the form of the corresponding set_isolation command, as defined above. query_isolation
clamp0_strategy -domain pda -detailed returns

Purpose Query information for an isolation strategy

Syntax
query_isolation isolation_name

-domain ref_domain_name
[-detailed]

Arguments

isolation_name Specifies the isolation strategy to be queried. If * is specified then a list of 
isolation strategy names defined for domain_name shall be returned (or a 
null string if no strategies have been previously defined).

-domain 
ref_domain_name

Specifies the ref_domain_name for which the isolation strategies are to be 
queried.

-detailed Returns the strategy information as a list of {key value} pairs. Where key is 
the name of the arguments from the set_isolation command (any - prefixes 
are removed) and value is the value of that argument. Valid keys are 
isolation_name, domain, elements, exclude_elements, 
isolation_power_net, isolation_ground_net, no_isolation, 
isolation_supply_set, isolation_signal, name_prefix, name_suffix, 
isolation_sense, clamp_value, sink_off_clamp, source_off_clamp, 
location, force_isolation, diff_supply_only, and instance.

Return 
value

There are three distinct return structures.
a) If a * is specified for isolation_name, then a list of the defined isolation strategies for the spec-

ified domain_name shall be returned.
b) If a previously defined isolation strategy is specified for isolation_name and -detailed is not

specified then all arguments of the isolation strategy shall be returned in the format of the cor-
responding set_isolation command (see 6.20).

c) If -detailed is specified then the isolation strategy information shall be returned as a list of
{key value} pairs.
132 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

{isolation_name clamp0_strategy} {domain pda} {elements {}} { 
isolation_power_net {}} {isolation_ground_net {}} {no_isolation 0} 
{isolation_supply_set {ISO1 ISO2}} { isolation_signal {}} |{clamp_value 
any} {sink_off_clamp {}} {source_off_clamp 0} {location automatic} 
{force_isolation 0}

The following arguments of the set_isolation command (see 6.40) are not supported by query_isolation, as
they are expanded on the invocation of the set_isolation command.

-applies_to*
-source
-sink

NOTE—If it is not be possible to return all the strategy information in a single return string, i.e., because of layering, the
return information shall be returned as a list of lists. The return value of a detailed query of this form shall be composed
as {{detailed_unique_1} {detailed_unique_2} ...}, where each detailed_unique_* shall be an
entire detailed query as shown above.

It shall be an error if
— -detailed is specified and isolation_name is *.
— the specified domain_name starts with .. or /, i.e., the domain needs to be referenced from the

active scope, and reside in the active scope or below it.

Syntax example:

query_isolation * -domain pda

7.11 query_isolation_control 

Purpose Query the control information for an isolation strategy

Syntax
query_isolation_control isolation_name

-domain domain_name
[-detailed]

Arguments

isolation_name Specifies the isolation strategy to be queried. If * is specified then a list of 
isolation strategy names defined for domain_name shall be returned (or a 
null string if no strategies have been previously defined).

-domain domain_name Specifies the domain_name for which the isolation strategies are to be 
queried.

-detailed Returns the parameters of the isolation strategy as a list of {key value} pairs, 
where key is the name of an argument of the set_isolation_control com-
mand (any - prefixes are removed) and value is the value of that argument. 
Valid keys are isolation_name, domain, isolation_signal, isolation_sense, 
and location.

Return 
value

There are three distinct return structures.
a) If a * is specified for isolation_name, then a list of the defined isolation strategies for the spec-

ified domain_name shall be returned.
b) If a previously defined isolation strategy is specified for isolation_name and -detailed is not

specified then all arguments of the isolation strategy shall be returned in the format of the cor-
responding set_isolation_control command (see 6.41).

c) If -detailed is specified then the isolation control information for the isolation strategy shall
be returned as a list of {key value} pairs.
Copyright © 2009 IEEE. All rights reserved. 133

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

The query_isolation_control command can query the isolation control information for an isolation strategy.

If a control specification is defined as

set_isolation_control outputs_only
-domain PD1
-isolation_signal cpu_iso
-isolation_sense low
-location parent

then query_isolation_control * -domain PD1 returns all the defined isolation strategies for
domain PD1, i.e., {outputs_only}. query_isolation_control outputs_only -domain
PD1 returns the isolation control information in the format of the corresponding set_isolation_control
command, as defined above. query_isolation_control outputs_only -domain PD1
-detailed returns the information as a list of {key value} pairs, i.e.,

{isolation_name output_only} {domain PD1} {isolation_signal cpu_iso} 
{isolation_sense low} {location parent}

It shall be an error if
— -detailed is specified and isolation_name is *.
— The specified domain_name starts with .. or /, i.e., the domain needs to be referenced from the

active scope, and reside in the active scope or below it.

Syntax example:

query_isolation_control output_only -domain pda
134 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

7.12 query_level_shifter 

The query_level_shifter command can list the previously defined level-shifter strategies and parameters of
these strategies. All elements returned are referenced to the active scope.

If a level-shifter strategy is defined as

set_level_shifter shift_up

-domain PowerDomainZ

-applies_to outputs

-threshold 0.02

-rule both

then query_level_shifter * -domain PowerDomainZ returns all the level-shifter strategies
defined for the power domain PowerDomainZ, i.e., {shift_up}. query_level_shifter
shift_up -domain PowerDomainZ returns the level-shifter strategy information in the format of the
corresponding set_level_shifter command, as defined above. query_level_shifter shift_up
-domain PowerDomainZ -detailed returns the level-shifter information as {key value} pairs, i.e.,

{level_shifter_name shift_up} {domain PowerDomainZ} {elements {}} {no_shift 0} 
{threshold 0.02} {force_shift 0} {rule both} {location automatic} 
{name_prefix {}} {name_suffix {}} {input_supply_set {}} {output_supply_set 
{}} {internal_supply_set {}}

Purpose Query information for a level-shifter strategy

Syntax
query_level_shifter level_shifter_name

-domain domain_name
[-detailed]

Arguments

level_shifter_name Specifies the level-shifter strategy to be queried. If * is specified then a list 
of level-shifter strategy names defined for domain_name shall be returned 
(or a null string if no strategies have been previously defined).

-domain domain_name Specifies the domain_name for which the level-shifter strategies are to be 
queried.

-detailed Returns the parameters of the level-shifter strategy as a list of {key value} 
pairs, where key is the name of an argument of the set_level_shifter 
command (any - prefixes are removed) and value is the value of that argu-
ment. Valid keys are level_shifter_name, domain, elements, no_shift, 
threshold, force_shift, rule, location, instance, name_prefix, 
name_suffix, input_supply_set, output_supply_set, and 
internal_supply_set.

Return 
value

There are three distinct return structures.
a) If a * is specified for level_shifter_name, then a list of the defined level-shifter strategies for

the specified domain_name shall be returned.
b) If a previously defined level-shifter strategy is specified for level_shifter_name and -detailed

is not specified then all arguments of the level-shifter strategy shall be returned in the format
of the corresponding set_level_shifter command (see 6.42).

c) If -detailed is specified then the level-shifter strategy information for the specified
level_shifter_name strategy shall be returned as a list of {key value} pairs.
Copyright © 2009 IEEE. All rights reserved. 135

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

The following arguments of the set_level_shifter command (see 6.42) are not support by
query_level_shifter, as they are expanded on the invocation of the set_level_shifter command.

-applies_to <input | output | both>

-source

-sink

NOTE—If it is not be possible to return all the strategy information in a single return string, i.e., because of layering, the
return information shall be returned as a list of lists. The return value of a detailed query of this form shall be composed
as {{detailed_unique_1} {detailed_unique_2} ...}, where each detailed_unique_* shall be an
entire detailed query as shown above.

It shall be an error if

— -detailed is specified and level_shifter_name is *.

— The specified domain_name starts with .. or /, i.e., the domain needs to be referenced from the
active scope, and reside in the active scope or below it.

Syntax example:

query_level_shifter * -domain pda

7.13 query_map_isolation_cell 

The query_map_isolation_cell command queries the mapping specification for an isolation strategy
isolation_name. 

If an isolation strategy has a mapping specification defined as

map_isolation_cell test_PD1 -domain PD1 -lib_cell_type jims_iso_fast

Purpose Query the mapping for an isolation strategy

Syntax
query_map_isolation_cell isolation_name

-domain domain_name
[-detailed]

Arguments

 isolation_name Specifies the isolation strategy name isolation_name to query. If * is speci-
fied then the name of all isolation strategies shall be returned as a Tcl list.

-domain domain_name The domain_name for which the strategies are to be queried.

-detailed Returns the strategy information as a list of {key value} pairs, where key 
is the name of an argument of the map_isolation_cell command (any
- prefixes are removed) and value is the value of that argument. Valid keys 
are isolation_name, domain, elements, lib_cell, lib_cell_type, 
lib_model_name, and port.

Return 
value

There are three distinct return structures.
a) If * is specified for isolation_name then all previously defined isolation strategies shall be

returned as a Tcl list (a null string shall be returned if no isolation strategies are defined).
b) If isolation_name is specified (and it is not *) then the strategy information shall be returned

in the form of the corresponding map_isolatation_cell command.
c) If -detailed is specified then the isolation information for the specified isolation_name shall

be returned as {key value} pairs.
136 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

then query_map_isolation_cell * -domain PD1 returns all defined isolation strategies for
power domain PD1, i.e., {test_PD1}. query_map_isolation_cell test_PD1 -domain PD1
returns the isolation mapping information in the format of the corresponding map_isolation_cell command
as defined above. query_map_isolation_cell test_PD1 -domain PD1 -detailed returns
the mapping specification as a list of {key value} pairs, i.e,

{isolation_name test_PD1} {domain PD1} {elements {}} {lib_cells {}} 
{lib_cell_type jims_iso_fast} {lib_model_name {}} {port {}}

NOTE—If multiple mapping specification are defined for different design elements of an isolation strategy, then
multiple map_isolation_cell commands shall be returned if -detailed is not specified and if -detailed is specified, then a
list of list of {key value} pairs shall be returned, e.g., {{mapping_specification_1}
{mapping_specification_2}}.

It shall be an error if
— isolation_name is * and -detailed is specified.
— isolation_name is not a valid isolation strategy.

Syntax example:

query_map_isolation_cell * -domain PD1

7.14 query_map_level_shifter_cell 

The query_map_level_shifter_cell command can query the mapping specification for a level-shifter
strategy.

If a level-shifter strategy has a mapping specification defined as

Purpose Query the mapping for a level_shifter strategy

Syntax
query_map_level_shifter_cell level_shifter_strategy

-domain domain_name
[-detailed]

Arguments

 level_shifter_strategy Specifies the level-shifter strategy name level_shifter_strategy to query. If 
* is specified then the name of all level-shifter strategies shall be returned 
as a Tcl list.

-domain domain_name The domain_name for which the strategies are to be queried.

-detailed Returns the strategy information as a list of {key value} pairs, where key is 
the name of an argument of the map_level_shifter_cell command (any - 
prefixes are removed) and value is the value of that argument. Valid keys 
are level_shifter_strategy, domain, elements, model, map, and 
applies_to.

Return 
value

There are three distinct return structures.
a) If * is specified for level_shifter_strategy then all previously defined level-shifter strategy

names shall be returned as a Tcl list (a null string shall be returned if no level-shifter strategies
are defined).

b) If level_shifter_strategy is specified (and it is not *) then the strategy information shall be
returned in the form of the corresponding map_level_shifter_cell command.

c) If -detailed is specified then the level-shifter strategy information for the specified
level_shifter_strategy shall be returned as {key value} pairs.
Copyright © 2009 IEEE. All rights reserved. 137

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

map_level_shifter_cell shift_up -domain PD1 -applies_to verification

then query_map_level_shifter_cell * -domain PD1 returns all defined level-shifter
strategies for power domain PD1, i.e., {shift_up}. query_map_level_shifter_cell
shift_up -domain PD1 returns the level-shifter mapping information in the format of the
corresponding map_level_shifter_cell command, as defined above.
query_map_level_shifter_cell shift_up -domain PD1 -detailed returns the
mapping specification as a list of {key value} pairs, i.e.,

{level_shifter_strategy shift_up} {domain PD1} {elements {}} {model {}} {map 
{}} {applies_to verification}

NOTE—If multiple mapping specification are defined for different design elements of a level-shifter strategy, then
multiple map_level_shifter_cell commands shall be returned if -detailed is not specified and if -detailed is specified,
then a list of list of {key value} pairs shall be returned, e.g., {{mapping_specification_1}
{mapping_specification_2}}.

It shall be an error if

— level_shifter_strategy is * and -detailed is specified.

— level_shifter_strategy is not a valid level-shifter strategy.

Syntax example:

query_map_level_shifter_cell * -domain PD1

7.15 query_map_power_switch 

The query_map_power_switch command can query the mapping specification for a switch cell.

If a switch cell has a mapping specification defined as

map_power_switch switch_sw1 -lib_cells test_model -port_map {{test_port 
control_port_test}}

Purpose Query the mapping for a switch cell

Syntax query_map_power_switch switch_name
[-detailed]

Arguments

switch_name Specifies the switch switch_name to query. If * is specified then the name 
of all switches shall be returned as a Tcl list.

-detailed Returns the switch information as a list of {key value} pairs, where key
is the name of an argument of the map_power_switch command (any
- prefixes are removed) and value is the value of that argument. Valid keys 
are switch_name, lib_cells, and port_map.

Return 
value

There are three distinct return structures.
a) If * is specified for switch_name then all previously defined switches shall be returned as a

Tcl list (a null string shall be returned if no switches are defined).
b) If switch_name is specified (and it is not *) then the switch information shall be returned in

the form of the corresponding map_power_switch command.
c) If -detailed is specified then the switch information for the specified switch_name shall be

returned as {key value} pairs.
138 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

then query_map_power_switch * returns all defined switches, i.e., {switch_sw1}.
query_map_power_switch switch_sw1 returns the switch mapping information in the format of
the corresponding map_power_switch command, as defined above. query_map_power_switch
switch_sw1 -detailed returns the mapping specification as a list of {key value} pairs, i.e.,

{switch_name switch_sw1} {lib_cells {test_model}} {port_map {}} 

It shall be an error if
— switch_name is * and -detailed is specified.
— switch_name is not a valid switch.

Syntax example:

query_map_power_switch switch_sw1 -detailed

7.16 query_map_retention_cell 

The query_map_retention_cell can query the mapping specification for a retention strategy.

Give a retention mapping specification defined as

map_retention_cell test_PdA -domain {PdA} -elements {foo/U1 foo/U2}

then query_map_retention_cell * -domain PdA returns all the retention strategies defined on
PdA, i.e.,. {test_PdA}. query_map_retention_cell test_PdA -domain PdA returns the
retention mapping information in the format of the corresponding map_retention_cell command, as defined
above. query_map_retention_cell test_PdA -domain PdA -detailed returns the
mapping information as {key value} pairs, i.e.,

Purpose Query the mapping for a retention strategy

Syntax
query_map_retention_cell retention_name_list

-domain domain_name
[-detailed]

Arguments

 retention_name_list Specifies the retention strategy name retention_name_list to query. If * is 
specified then the name of all retention strategies shall be returned as a Tcl 
list.

-domain domain_name The domain_name for which the strategies are to be queried.

-detailed Returns the strategy information as a list of {key value} pairs, where key is 
the name of the arguments from the map_retention_cell command (any - 
prefixes are removed) and value is the value of that argument. Valid keys 
are retention_strategy, domain, lib_cells, lib_cell_type, 
lib_model_name, port, and elements.

Return 
value

There are three distinct return structures.
a) If * is specified for retention_name_list then all previously defined retention strategy names

shall be returned as a Tcl list (a null string shall be returned if no retention strategies are
defined).

b) If retention_name_list is specified (and it is not *) then the strategy information shall be
returned in the form of the corresponding map_retention_cell command.

c) If -detailed is specified then the retention strategy information for the specified
retention_name_list shall be returned as {key value} pairs.
Copyright © 2009 IEEE. All rights reserved. 139

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

{retention_strategy test_PdA} {domain PdA} {elements {foo/U1 foo/U2} {model 
{}} {map {}}

NOTE—If multiple mapping specification are defined for different design elements of a retention strategy, then multiple
map_retention_cell commands shall be returned if -detailed is not specified and if -detailed is specified, then a list of
list of {key value} pairs shall be returned, e.g., {{mapping_specification_1}
{mapping_specification_2}}.

It shall be an error if
— retention_strategy is * and -detailed is specified.
— retention_strategy is not a valid level-shifter strategy.

Syntax example:

query_map_retention_cell * -domain PD1

7.17 query_name_format 

The query_name_format command lists the current name format rules in effect.

-detailed returns all the name format parameters as a Tcl list consisting of {key value} pairs. For example, if
-isolation_prefix is set to ISO_ and -level_shift_prefix is set to LS_, the -detailed option returns the
following:

Purpose Query information on the name formatting rules

Syntax

query_name_format
[-isolation_prefix | -isolation_suffix |
-level_shift_prefix | -level_shift_suffix |
-implicit_supply_prefix | -implicit_supply_suffix |
-implicit_logic_prefix | -implicit_logic_suffix |
-detailed]

Arguments

-isolation_prefix Returns the isolation instance and net prefix.

-isolation_suffix Returns the isolation instance and net suffix.

-level_shift_prefix Returns the level-shifter instance and net prefix.

-level_shift_suffix Returns the level-shifter instance and net suffix.

-implicit_supply_prefix Returns the implicitly created supply net and port prefix.

-implicit_supply_suffix Returns the implicitly created supply net and port suffix.

-implicit_logic_prefix Returns the implicitly created logic net and port prefix.

-implicit_logic_suffix Returns the implicitly created logic net and port suffix.

-detailed Returns the parameters of the name format as a list of {key value} pairs, 
where key is the name of an argument of the query (any - prefixes are 
removed) and value is the value of that argument.

Return 
value

Return the queried parameter if an optional argument is specified or all of the parameters of the 
name_format command (see 6.35) if none of the optional arguments are specified.
140 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

{{isolation_prefix ISO_} {isolation_suffix _UPF_ISO} {level_shift_prefix LS_} 
{level_shift_suffix _UPF_LS} {implicit_supply_prefix “”} 
{implicit_supply_suffix _UPF_IS} {implicit_logic_prefix “”} 
{implicit_logic_suffix _UPF_IL}}

Syntax example:

query_name_format \
-isolation_suffix

7.18 query_net_ports 

The query_net_ports command lists all ports that are logically connected to a specified net.

-transitive returns all ports that are connected hierarchically to this net (and that are visible within the active
scope); otherwise, only ports connected at the scope of net_name are returned.

The following conditions also apply:
— The specified net_name cannot start with .. or /, i.e., the net needs to be referenced from the active

scope, and reside in the active scope or below it.
— All ports returned are referenced to the active scope.

Syntax example:

query_net_ports top/a/b/c -transitive

Purpose Return ports logically connected to a net

Syntax query_net_ports net_name
[-transitive <TRUE | FALSE>] [-leaf]

Arguments

net_name The net for which the connected ports are to be listed. Any port connected 
to net_name in the active scope is returned.

-transitive 
<TRUE | FALSE>

When -transitive is TRUE, the command applies to the descendants of the 
elements; the default is FALSE.

-leaf Only returns leaf cell ports connected to net_name. By default, both non-
leaf and leaf cell ports shall be returned.

Return 
value

Return a list of ports that are logically connected to the specified net. If no ports are connected, a null 
string is returned.
Copyright © 2009 IEEE. All rights reserved. 141

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

7.19 query_partial_on_translation 

The query_partial_on_translation command provides the ability to determine the translation of
PARTIAL_ON to FULL_ON or OFF.

The query returns the translation settings as {key value} pairs. If the translation settings are specified as

set_partial_on_translation OFF -full_on_tools {power_analysis_tool_name}
-off_tools {steves_simulator}

then query_partial_on_translation shall return the settings as {key value} pairs of the form

{partial_on_translation OFF} {full_on_tools {power_analysis_tool_name}} 
{off_tools {steves_simulator}}

Syntax example:

query_partial_on_translation 

7.20 query_pin_related_supply 

The query_pin_related_supply command queries the related power and ground pins for signal pins on a
library cell. 

If a library cell has the following related supply settings:

Purpose Return the translation of PARTIAL_ON for named tools

Syntax query_partial_on_translation

Return 
value

Return the current setting of the translation as a list of {key value} pairs, where key is the name of an 
argument of the set_partial_on_translation command (any - prefixes are removed) and value is the 
value of that argument. Valid keys are partial_on_translation, full_on_tools, and off_tools.

Purpose Query the related power and ground pairs for a library cell

Syntax query_pin_related_supply library_cell
[-detailed]

Arguments

library_cell Specifies the library cell to query.

-detailed Returns the parameters of the level-shifter strategy as a list of {key value} 
pairs, where key is the name of an argument of the set_pin_related_supply 
command (any - prefixes are removed) and value is the value of that argu-
ment. Valid keys are library_cell, pins, related_power_pin, and 
related_ground_pin.

Return 
value

There are two distinct return structures.
a) If -detailed is not specified then the related supply information for library_cell shall be

returned in the form of the corresponding set_pin_related_supply command or a null string
shall be returned if no related supply information has been defined.

b) If -detailed is specified then the related supply information for the specified library_cell shall
be returned as a list of {key value} pairs.
142 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

set_pin_related_supply library1/cell1 -pins {A} -related_power_pin VDDI 
-related_ground_pin VSS

set_pin_related_supply library1/cell1 -pins {Y} -related_power_pin VDDO 
-related_ground_pin VSS

then query_pin_related_supply library1/cell1 returns the related supply information in the
form of the corresponding set_pin_related_supply command, as defined above (two
set_pin_related_supply commands are returned in this example). query_pin_related_supply
library1/cell1 -detailed returns the related supply information as {key value} pairs, i.e.,

{{library_cell library1/cell1} {pins {A}} {related_power_pin VDDI} 
{related_ground_pin VSS}} {library_cell library1/cell1} {pins {Y}} 
{related_power_pin VDDO} {related_ground_pin VSS}}}

NOTE—Because a library cell can have n signal pins with different related power and ground pins, the
query_pin_related_supply command can result in multiple set_pin_related_supply commands being returned if
-detailed is not specified, and if -detailed is specified then a list of list of {key value} pairs shall be returned, i.e.,
{{signal_pin_to_pg_pin_group_1} {signal_pin_to_pg_pin_group_2}{...}...}.

Syntax example:

query_pin_related_supply library1/cell1

7.21 query_port_attributes 

The query_port_attributes command queries the port attribute information for a specified port.

If a port has the following attribute specification

set_port_attributes -ports {A B} -sink_off_clamp 0

then query_port_attributes A returns the attribute information in the form of the corresponding
set_port_attributes command, as defined above. query_port_attributes {A} -detailed
returns the attribute information as {key value} pairs, i.e.,

Purpose Query the port attributes for a specified port

Syntax query_port_attributes port
[-detailed]

Arguments

port Specifies the port to query.

-detailed Returns the parameters of the level-shifter strategy as a list of {key value} 
pairs, where key is the name of an argument of the set_port_attributes 
command (any - prefixes are removed) and value is the value of that 
argument. Valid keys ports, exclude_ports, domains, exclude_domains, 
elements, exclude_elements, model, attribute, sink_off_clamp, 
source_off_clamp, receiver_supply, driver_supply, 
related_power_port, related_ground_port, related_bias_ports, 
repeater_supply, and pg_type.

Return 
value

There are two distinct return structures.
a) If -detailed is not specified then all attributes of the port port_name shall be returned in the

format of the corresponding set_port_attributes command (see 6.45).
b) If -detailed is specified then the port attribute information for the specified shall be returned

as a list of {key value} pairs.
Copyright © 2009 IEEE. All rights reserved. 143

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

{port A} {model {}} {sink_off_clamp 0} {source_off_clamp {}} {receiver_supply 
{}} {driver_supply {}}

Syntax example:

query_port_attributes B

7.22 query_port_direction 

The query_port_direction command returns the direction of the specified port. The port can be a signal
port or a supply port.

The specified port cannot start with .. or /, i.e., the port needs to be referenced from the active scope, and
reside in the active scope or below it.

Syntax example:

query_port_direction {top/a/b}

7.23 query_port_net 

The query_port_net command returns the net connected to a specified port (if such a connection exists). A
hierarchal port can have both a LowConn and HighConn, so the -conn option can be used to specify the
net name to return. If no net is connected to the specified port, a null string is returned.

The following conditions also apply:
— The specified port_name cannot start with .. or /, i.e., the port needs to be referenced from the

active scope, and reside in the active scope or below it.
— The returned net is referenced to the active scope.

Purpose Return the direction of the specified port

Syntax query_port_direction port

Arguments port The name of the port for which the direction is being queried.

Return 
value

Return in, out, or inout.

Purpose Return the net logically connected to a port

Syntax query_port_net port_name
-conn <low | high>

Arguments

port_name The port where this net is to be returned.

-conn <low | high> Returns the LowConn or HighConn (the default) connection. This option 
can only be specified if port_name is not on a leaf cell.

Return 
value

Return the name of the net connected to the specified port_name. If no net is connected, a null string is 
returned.
144 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

Syntax example:

query_port_net top/a/b -conn low

7.24 query_port_state 

The query_port_state command lists the previously defined states for port_name. If state_name is not
specified then a list of defined states for the port shall be returned. If state_name is defined then all
parameters of the specified state shall be returned.

-detailed returns all the parameters of state_name as a Tcl list consisting of {key value} pairs. For example,
if a state called active_state is defined on the port VN1 with the state information {0.88 0.90
0.92) then -detailed option returns the following:

{port_name VN1} {state_name active_state} {state {0.88 0.90 0.92}}

Without the -detailed option, the format of the returned parameters shall be in the format of the
corresponding add_port_state command, i.e.,

add_port_state VN1 -state {active_state {0.88 0.90 0.92}}

It shall be an error if -detailed is specified and * is specified for state_name.

Syntax example:

query_port_state VN1

Purpose Return the state information for a specified port

Syntax
query_port_state port_name

-state state_name
[-detailed]

Arguments

port_name Simple or hierarchical name of a supply port for which the power state 
information is to be queried. 

-state state_name The state_name being queried. If * is specified then state information for all 
states defined for port_name shall be returned.

-detailed Returns the port state information as a list of {key value} pairs. Where valid 
keys are port_name, state_name, and state.

Return 
value

There are three distinct return structures.
a) If -state is not specified then a list of all defined states for the port_name shall be returned as

a Tcl list. A null string shall be returned if no states are defined.
b) If a state_name is specified then the state information for the specified state shall be returned,

using the corresponding add_port_state command. If * is specified then state information for
all states shall be returned.

c) If -detailed is specified then the state information shall be returned as {key value} pairs.
Copyright © 2009 IEEE. All rights reserved. 145

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

7.25 query_power_domain 

The query_power_domain command queries the parameters of a power domain. The -no_elements option
prevents the elements attached to the domain from being returned by the query command. 

If a power domain is created as follows:

create_power_domain PD1 -elements {top/U1}

-supply {primary PD1_Primary}

-supply {isolation PD1_ret}

-supply {retention PD1_ret}

-supply {mem_array PD1_ma}

then query_power_domain * returns any power domains defined in and below the active scope, i.e.,
{PD1}. query_power_domain PD1 returns the power domain information in the format of the
corresponding create_power_domain command, as defined above. query_power_domain PD1
-detailed returns the power domain information as {key value} pairs, i.e.,

{domain_name PD1} {elements {top/U1}} {supply {{primary PD1_Primary} 
{isolation PD1_ret} {retention PD1_ret} {mem_array PD1_ma}}}

It shall be an error if -detailed is specified and * is specified for domain_name.

Syntax example:

query_power_domain PD1 -no_elements -detailed

Purpose Query a power domain

Syntax
query_power_domain domain_name

[-non_leaf | -all | -no_elements]
[-detailed]

Arguments

 domain_name Specifies the power domain to query. If * is specified then the name of all 
defined power domains shall be returned as a Tcl list.

-non_leaf | -all | -
no_elements

Allows filtering or exclusion for any elements from being returned by the 
query. The default is to return the non-leaf cells attached to the domain 
only.

-detailed Returns the domain information as a list of {key value} pairs, where key is 
the name of an argument of the create_power_domain command (any - 
prefixes are removed) and value is the value of that argument. Valid keys 
are domain_name, simulation_only, elements, include_scope, supply, 
scope, and define_func_type.

Return 
value

There are three distinct return structures.
a) If * is specified for domain_name then all previously defined domains shall be returned as a

Tcl list (a null string shall be returned if no domains are defined).
b) If domain_name is specified (and it is not *) then the domain information shall be returned in

the format of the corresponding create_power_domain command.
c) If -detailed is specified then the domain information for the specified domain_name shall be

returned as {key value} pairs.
146 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

7.26 query_power_domain_element 

The query_power_domain_element returns the domain membership of the specified object.

The following conditions also apply:
— The specified design_element cannot start with .. or /, i.e., the object needs to be referenced from

the active scope, and reside in the active scope or below it.
— The returned domain is referenced to the active scope.

Syntax example:

query_power_domain_element {net@top/a/b}

NOTE—Nets are propagated as necessary through the descendant tree and may be renamed to avoid name collision;
therefore, the same simple name in different scopes may refer to nets that are independent and unconnected.

7.27 query_power_state 

The query_power_state command lists the previously defined power states for the specified object_name,
which can be a power domain or a supply set. If state_name is not specified then a list of defined states for

Purpose Return the domain membership information for a design element

Syntax query_power_domain_element design_element

Arguments design_element The design_element for which the domain membership information is to be 
returned. 

Return 
value

Return the domain for the specified design_element. If no domain is found, a null string is returned.

Purpose Return the state information for a power domain or supply set

Syntax
query_power_state object_name

-state state_name
[-detailed]

Arguments

object_name Simple name of a power domain or supply set.

-state state_name state_name is the simple name of the state being queried. If * is specified 
then state information for all states are returned.

-detailed Returns the power state information as list of {key value} pairs, where key is 
the name of an argument of the add_power_state command (any - prefixes 
are removed) and value is the value of that argument. Valid keys are 
object_name, state_name, supply_expr, logic_expr, simstate, legal, and 
illegal.

Return 
value

There are three distinct return structures.
a) If -state is not specified a list of defined power states for object_name shall be returned as a

Tcl list (a null string shall be returned if no power states are defined).
b) If state_name is specified then the state information for this state shall be returned in the for-

mat of the corresponding add_power_state command.
c) If -detailed is specified then the power state information shall be returned as {key value} pairs.
Copyright © 2009 IEEE. All rights reserved. 147

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

object_name shall be returned. If a state_name is defined then all parameters of the specified state shall be
returned.

-detailed returns all the parameters of the specified power state state_name as a Tcl list consisting of {key
value} pairs. For example, if a legal state called LPS on the supply set PDA_SUPPLY has the -supply_expr
condition {power == ‘{FULL_ON, 0.8}} and the -logic_expr condition {u1/PdA ==
GO_MODE} then the -detailed option returns the following.

{state_name LPS} {object_name PDA_SUPPLY} {supply_expr {power == ‘{FULL_ON, 
0.8}}} {logic_expr {u1/PdA == GO_MODE}} {legal 1} {illegal 0} {simstate {}} 

Without the -detailed option, the format of the returned parameters shall be in the format of the
corresponding add_power_state command, i.e.,

add_power_state PDA_RET 
-state LPS 
-supply_expr {power == ‘{FULL_ON, 0.8}} 
-logic_expr {u1/PdA == GO_MODE}
-legal

It shall be an error if -detailed is specified and * is specified for state_name.

Syntax example:

query_power_state PDA_RET -detailed

7.28 query_power_switch 

The query_power_switch command queries the parameters for a UPF defined power switch.

If a power switch is defined as

create_power_switch sw1
-output_supply_port {vout VN3}

Purpose Query the information for a UPF power switch

Syntax query_power_switch switch_name
[-detailed]

Arguments

 switch_name Specifies the power switch to query. If * is specified then the name of all 
power switches shall be returned as a Tcl list.

-detailed Returns the power switch information as a list of {key value} pairs, where 
key is the name of an argument of the create_power_switch command (any 
- prefixes are removed) and value is the value of that argument. Valid keys 
are switch_name, domain, output_supply_port, input_supply_port, 
control_port, on_state, off_state, supply_set, on_partial_state, 
ack_port, ack_delay, and error_state.

Return 
value

There are three distinct return structures.
a) If * is specified for switch_name then all previously defined switches shall be returned as a

Tcl list (a null string shall be returned if no domains are defined).
b) If switch_name is specified (and it is not *) then the switch information shall be returned.
c) If -detailed is specified then the switch information for the specified switch_name shall be

returned as {key value} pairs.
148 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

-input_supply_port {vin1 VN1}
-input_supply_port {vin2 VN2}
-control_port {ctrl_small ON1}
-control_port {ctrl_large ON2}
-control_port {ss SUPPLY_SELECT}
-on_partial_state {partial_s1 vin1 {ctrl_small & !ctrl_large & ss}}
-on_state {full_s1 vin1 {ctrl_small & ctrl_large & ss}}
-on_partial_state {partial_s2 vin2 {ctrl_small & !ctrl_large & !ss}}
-on_state {full_s2 vin2 {ctrl_small & ctrl_large & !ss}}
-off_state {not_required {~ctrl_small | ctrl_large | ss}}
-error_state {no_small {!ctrl_small & ctrl_large}}

then query_power_switch * returns the name of any switches defined in and below the active scope.
query_power_switch sw1 returns the switch information in the format of the corresponding
create_power_switch command, as defined above. query_power_switch sw1 -detailed returns
the switch information as a list of {key value} pairs, i.e.,

{switch_name sw1} {domain {}} {output_supply_port {vout VN3}} 
{input_supply_port {{vin1 VN1} {vin2 VN2}}} {control_port {{ctrl_small ON1} 
{ctrl_large ON2} {ss SUPPLY_SELECT}}} {on_state {{full_s1 vin1 {ctrl_small 
& ctrl_large & ss}} {full_s2 vin2 {ctrl_small & ctrl_large & !ss}}}} 
{off_state {not_required {~ctrl_small | ctrl_large | ss}} {supply_set {}} 
{on_partial_state {{partial_s1 vin1 {ctrl_small & !ctrl_large & ss}} 
{partial_s2 vin2 {ctrl_small & !ctrl_large & !ss}}}} {ack_port {}} 
{ack_delay {}} {error_state {{no_small {!ctrl_small & ctrl_large}}}}

It shall be an error if -detailed is specified and * is specified for switch_name.

Syntax example:

query_power_switch *

7.29 query_pst 

The query_pst command queries the information for any defined PSTs. 

Purpose Query a power state table

Syntax query_pst table_name
[-detailed]

Arguments

 table_name Specifies the pst table name to query. If * is specified then the name of all 
PSTs shall be returned as a Tcl list.

-detailed Returns the pst information as a list of {key value} pairs, where key is the 
name of an argument of the create_pst command (any - prefixes are 
removed) and value is the value of that argument. Valid keys are 
table_name and supplies.

Return 
value

There are three distinct return structures.
a) If * is specified for table_name then all previously defined PSTs shall be returned as a Tcl list

(a null string shall be returned if no PSTs are defined).
b) If table_name is specified (and it is not *) then the table information shall be returned.
c) If -detailed is specified then the table information for the specified table_name shall be

returned as {key value} pairs.
Copyright © 2009 IEEE. All rights reserved. 149

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

If a power state table is defined as

create_pst MyPowerStateTable -supplies {PN1 PN2 SOC/OTC/PN3}

then query_pst * returns any defined PSTs, i.e., MyPowerStateTable. query_pst
MyPowerStateTable returns the PST information in the form of the create_pst command, as defined
above. query_pst MyPowerStateTable -detailed returns the PST information as a list of {key
value} pairs, i.e.,

{table_name MyPowerStateTable} {supplies {PN1 PN2 SOC/OTC/PN3}}

It shall be an error if -detailed is specified and * is specified for table_name.

Syntax example:

query_pst *

7.30 query_pst_state 

The query_pst_state command lists the previously defined power states for table_name. If * is specified for
the state_name then a list of defined state names shall be returned as a Tcl list. If a state_name is defined
(and is not *) then all parameters of the specified state shall be returned.

-detailed returns all the parameters of the specified power state state_name as a Tcl list consisting of {key
value} pairs. If a power state table is defined as:

create_pst pt -supplies { PN1 PN2 SOC/OTC/PN3 }

add_pst_state s1 –pst pt –state { s08 s08 s08 }

add_pst_state s2 –pst pt –state { s08 s08 off }

add_pst_state s3 –pst pt –state { s08 s09 off }

Purpose Return the state information for a power domain or supply set

Syntax
query_pst_state state_name

-pst table_name
[-detailed]

Arguments

state_name Specifies the name of the state or * for all states.

-pst table_name The power state table for which the state information is to be queried.

-detailed Returns the power state information as list of {key value} pairs, where key is 
the name of an argument of the add_pst_state command (any - prefixes are 
removed) and value is the value of that argument. Valid keys are 
state_name, pst, and state.

Return 
value

There are three distinct return structures.
a) If * is specified for state_name then all states defined for the specified power state table

table_name shall be returned as a Tcl list (a null string shall be returned if no power states are
defined).

b) If state_name is specified then the state information for the specified state shall be returned in
the format of the corresponding add_pst_state command.

c) If -detailed is specified the power state information shall be returned as {key value} pairs.
150 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

then query_pst_state * -pst pt returns all the specified states, i.e., {s1 s2 s3}. If the
-detailed option is used, i.e., query_pst_state s1 -pst pt -detailed, then the state
information shall be returned as {pst pt} {state_name s1} {state {s08 s08 s08}.

NOTE—Without the -detailed option, the format of the returned parameters shall be in the format of the corresponding
add_pst_state command.

It shall be an error if -detailed is specified and * is specified for state_name.

Syntax example:

query_pst_state s1 -pst pt -detailed

7.31 query_retention 

The query_retention command lists the previously defined retention strategies for the specified power
domain domain_name. All elements returned are referenced to the active scope.

If * is specified for retention_name, then a list of the previously defined retention strategies for the specified
domain_name shall be returned. If no strategies are defined, then a null string shall be returned.

If -detailed is specified then all the parameters of the specified retention strategy retention_name shall be
returned as a Tcl list consisting of {key value} pairs.

If a retention strategy is defined as

Purpose Query the retention strategy information for a domain

Syntax
query_retention retention_name

-domain domain_name
[-detailed]

Arguments

retention_name Specified the retention strategy to be queried. If * is specified then a list of 
retention strategy names defined for domain_name shall be returned (or a 
null string if no strategies have been previously defined).

-domain domain_name Specifies the domain_name for which the retention strategies are to be 
queried.

-detailed Returns the parameters of the retention strategy as a list of {key value} 
pairs, where key is the name of an argument of the set_retention command 
(any - prefixes are removed) and value is the value of that argument. Valid 
keys are retention_name, domain, elements, exclude_elements, 
retention_power_net, retention_ground_net, retention_supply_set, 
no_isolation, save_signal, restore_signal, save_condition, 
restore_condition, retention_condition, use_retention_as_primary, 
parameters, and instance.

Return 
value

There are three distinct return structures.
a) If a * is specified for retention_name, then a list of the defined retention strategies for the

specified domain_name shall be returned.
b) If a previously defined retention strategy is specified for retention_name and -detailed is not

specified then all arguments of the retention strategy shall be returned in the format of the 
corresponding set_retention command (see 6.47).

c) If -detailed is specified then the retention strategy information for the specified
retention_name strategy shall be returned as a list of {key value} pairs.
Copyright © 2009 IEEE. All rights reserved. 151

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

set_retention my_retention_strategy -domain pda
-retention_supply_set PDA_ret_supply
-save_signal {my_save posedge} -restore_signal {my_restore negedge }

then query_retention * -domain pda returns {my_retention_strategy}.
query_retention my_retention_strategy -domain pda returns the retention strategy
information in the form of the corresponding set_retention command, as defined above.
query_retention my_retention_strategy -domain pda -detailed returns the
retention strategy information as a list of {key value} pairs, i.e.,

{retention_name my_retention_strategy} {domain pda} {elements {}} 
{exclude_elements {}} {retention_power_net {}} {retention_ground_net {}} 
{retention_supply_set PDA_ret_supply} {save_signal {my_save posedge}} 
{restore_signal {my_restore negedge}} {save_condition {}} 
{restore_condition {}} {output_related_supply_set {}}

NOTE—If it is not be possible to return all the strategy information in a single return string, i.e., because of layering, the
return information shall be returned as a list of lists. The return value of a detailed query of this form shall be composed
as {{detailed_unique_1} {detailed_unique_2} ...}, where each detailed_unique_* shall be an
entire detailed query as shown above.

It shall be an error if 
— -detailed is specified and retention_name is *.
— The specified domain_name starts with .. or /, i.e., the domain needs to be referenced from the

active scope, and reside in the active scope or below it.

Syntax example:

query_retention * -domain pda
152 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

7.32 query_retention_control 

The query_retention_control command queries the retention control information for a retention strategy.

If a control specification is defined as

set_retention_control my_retention_strategy
-domain PDA
-save_signal {power_controller_inst/save_1 high}
-restore_signal {power_controller_inst/restore_1 low}
-assert_rs_mutex {clock_a posedge}

then query_retention_control * -domain PD1 returns all the defined retention strategies for
domain PDA, i.e., {my_retention_strategy}. query_retention_control
my_retention_strategy -domain PDA returns the retention control information in the format of
the corresponding set_retention_control command, as defined above. query_retention_control
my_retention_strategy -domain PDA -detailed returns the information as a list of {key
value} pairs, i.e.,

{retention_name my_retention_strategy} {domain PDA} {save_signal 
{power_controller_inst/save_1 high}} {restore_signal 
{power_controller_inst/restore_1 low}} {assert_rs_mutex {clock_a posedge}} 
{assert_r_mutex {}} {assert_s_mutex {}}

It shall be an error if

Purpose Query the retention strategy control information for a domain

Syntax
query_retention_control retention_name

-domain domain_name
[-detailed]

Arguments

retention_name Specified the retention strategy control information to be queried. If * is 
specified then a list of retention strategy names defined for domain_name 
shall be returned (or a null string if no strategies have been previously 
defined).

-domain domain_name Specifies the domain_name for which the retention strategies are to be 
queried.

-detailed Returns the control parameters of the retention strategy as a list of {key 
value} pairs, where key is the name of an argument of the 
set_retention_control command (any - prefixes are removed) and value is 
the value of that argument. Valid keys are retention_name, domain, 
save_signal, restore_signal, assert_r_mutex, assert_s_mutex, and 
assert_rs_mutex.

Return 
value

There are three distinct return structures.
a) If a * is specified for retention_name, then a list of the defined retention strategies for the

specified domain_name shall be returned.
b) If a previously defined retention strategy is specified for retention_name and -detailed is not

specified then all the control arguments of the retention strategy shall be returned in the format
of the corresponding set_retention_control command (see 6.48).

c) If -detailed is specified then the retention strategy information for the specified
retention_name strategy shall be returned as a list of {key value} pairs.
Copyright © 2009 IEEE. All rights reserved. 153

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

— -detailed is specified and retention_name is *.
— The specified domain_name starts with .. or /, i.e., the domain needs to be referenced from the

active scope, and reside in the active scope or below it.

Syntax example:

query_retention_control my_retention_strategy -domain PDA

7.33 query_retention_elements 

The query_retention_elements command returns the list of objects that can be used in a
set_retention_elements command.

If a retention elements definition is

set_retention_elements my_retention_group -elements {state_reg} 
-exclude_elements {awake_from_sleep_reg}

then query_retention_elements * returns all defined retention element groups, i.e.,
my_retention_group. query_retention_elements my_retention_group returns the
retention elements in the form of the set_retention_elements command, as defined above.
query_retention_elements my_retention_group -detailed returns the retention
elements as a list of {key value} pairs, i.e.,

{retention_list_name my_retention_group} {elements {state_reg}} 
{exclude_elements {awake_from_sleep_reg}}

It shall be an error if -detailed is specified and retention_list_name is *.

Syntax example:

query_retention_elements my_retention_group

Purpose Query the retention strategy elements

Syntax query_retention_elements retention_list_name
[-detailed]

Arguments

retention_list_name Specifies the retention element group identifier to be queried. If * is speci-
fied then a list of retention element group identifiers shall be returned (or a 
null string if no groups have been previously defined).

-detailed Returns the retention elements as a list of {key value} pairs, where key is 
the name of an argument of the set_retention_elements command (any 
- prefixes are removed) and value is the value of that argument. Valid keys 
are retention_list_name, elements, applies_to, and retention_purpose.

Return 
value

There are three distinct return structures.
a) If a * is specified for retention_list_name, then a list of the defined retention group identifiers

shall be returned.
b) If a previously defined retention group identifier is specified for retention_list_name and 

-detailed is not specified then the retention group information shall be returned in the format
of the corresponding set_retention_elements command (see 6.49).

c) If -detailed is specified then the retention group information for the specified
retention_list_name shall be returned as a list of {key value} pairs.
154 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

7.34 query_simstate_behavior 

The query_simstate_behavior command queries the simulation simstate behavior for a model or a library.

If a simstate is defined as

set_simstate_behavior ENABLE -lib library1 -model ANDX7_non_power_aware

then query_simstate_behavior -lib library1 -model ANDX7_non_power_aware
returns the simstate behavior for the specified model in the format of the corresponding
set_simstate_behavior command, as defined above. query_simstate_behavior -lib
library1 -model ANDX7_non_power_aware -detailed returns the simstate information as a
list of {key value} pairs, i.e.,

{{lib library1} {simstate_behavior ENABLE} {model ANDX7_non_power_aware}} 

If -model * is specified, the simstate information shall be returned for all models in the specified library.
Because different models can have different simstate behaviors, a list of a list shall be returned for the two
behaviors, i.e.,

{{simstate_behavior } {lib } {model } {model } ...} {{simstate_behavior } 
{lib } {model } {model } ...}

If a simstate is defined as

set_simstate_behavior ENABLE -lib library1 -model ANDX7_non_power_aware
set_simstate_behavior DISABLE -lib library1 -model NANDX7_power_aware

then a detailed simstate query returns

{{simstate_behavior ENABLE} {lib library1} {model ANDX7_non_power_aware}} 
{{simstate_behavior DISABLE} {lib library1} {model NANDX7_power_aware}}

Purpose Query the simstate behavior information for a domain

Syntax

query_simstate_behavior
-lib name
[-model name]
[-detailed]

Arguments -lib name Specifies the library name.

-model name Specifies the model name or use * to query all models in the given library.

-detailed Returns the simstate behavior as a list of {key value} pairs, where key is
the name of an argument of the set_simstate_behavior command (any 
- prefixes are removed) and value is the value of that argument. Valid keys 
are simstate_behavior, lib, and model.

Return 
value

There are two distinct return structures.
a) If -detailed is not specified then the simstate behavior information shall be returned in the 

format of a corresponding set_simstate_behavior command.
b) If -detailed is specified then the simstate behavior shall be returned as a list of {key value}

pairs.
Copyright © 2009 IEEE. All rights reserved. 155

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

Syntax example:

query_simstate_behavior -lib library1 -model ANDX7_non_power_aware

7.35 query_state_transition 

The query_state_transition command queries state transition information. All transition states for a
specified object_name can be queried as a Tcl list if * is specified for transition_name. The -from, -to,
-paired, -legal, and -illegal arguments can be used to filter the returned state transitions when
transition_name is *.

Purpose Query a state transition

Syntax

query_state_transition transition_name
-object object_name
[-from {from_state_list}]
[-to {to_state_list}]
[-paired {paired_state_list}]
[-legal | -illegal]
[-detailed]

Arguments

 transition_name Specifies the transition_name to query. If * is specified then all state transi-
tions for the specified object_name shall be returned as a Tcl list.

-object object_name Name of a power domain or supply set for which the state transition infor-
mation shall be queried.

-from {from_state_list} If transition_name is *, then from_state_list can be used to filter the 
returned transitions. A transition name shall only be returned if it starts 
from any one of the states in from_state_list.

-to {to_state_list} If transition_name is *, then to_state_list can be used to filter the returned 
transitions. A transition name shall only be returned if it ends at any one of 
the states in to_state_list.

-paired
{paired_state_list}

If transition_name is *, then paired_state_list can be used to filter the 
returned transitions. A transition name shall only be returned if it ends at 
any one of the states in paired_state_list.

-legal | -illegal If transition_name is *, then -legal or -illegal can be specified to restrict the 
returned transition names. If neither are specified then both illegal and legal 
transitions shall be returned.

-detailed Returns the transition information as a list of {key value} pairs, where key is 
the name of an argument of the describe_state_transition command (any 
- prefixes are removed) and value is the value of that argument. Valid keys 
are transition_name, object, from, to, paired, legal, and illegal.

Return 
value

There are three distinct return structures.
a) If * is specified for transition_name then the name of all transitions for the specified

object_name shall be returned as a Tcl list (a null string shall be returned if no state transitions
are defined). Returned transition names shall be filtered by the -from, -to, -paired, -illegal,
and -legal arguments, if specified.

b) If transition_name is specified (and it is not *) then the state transition information shall be
returned in the form of the corresponding describe_state_transition command.

c) If -detailed is specified then the state information for the specified transition_name shall be
returned as {key value} pairs.
156 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

If a state transition is specified as

describe_state_transition turn_on -object PdA -from {SLEEP_MODE} -to {GO_MODE} 
-paired {DROWSY SLEEP_MODE} -legal

then query_state_transition * -object PdA returns a Tcl list of all defined state transitions
for PdA, i.e., {turn_on}. query_state_transition * -object PdA -from SLEEP_MODE,
returns any state transitions starting from the state SLEEP_MODE. query_state_transition
turn_on -object PdA -detailed returns the state transition information as a list of {key value}
pairs, i.e.,

{transition_name turn_on} {object PdA} {from {SLEEP_MODE}} {to {GO_MODE}} 
{paired {{DROWSY SLEEP_MODE}} {legal 1} {illegal 0}

It shall be an error if
— transition_name is not * and -from, -to, -paired, -legal, -illegal, or -detailed is specified.
— transition_name is not a transition state.

Syntax example:

query_state_transition * -object PdA

7.36 query_supply_net 

The query_supply_net command returns the information about a previously created supply net. When
called with the -is_supply argument, this query can be used to check if the specified net_name is a supply
net. The -domain option restricts the query to the specified domain_name.

Purpose Query a supply net

Syntax
query_supply_net net_name

[-domain domain_name]
[-detailed]

Arguments

 net_name Specifies the net_name to query. If * is specified then the name of all 
supply nets shall be returned as a Tcl list.

-domain domain_name Restricts the query to a specified domain_name.

-is_supply | -detailed If -is_supply is specified then a 1 shall be returned if the specified 
net_name is a supply port and a 0 shall be returned if it is not. If -detailed is 
specified then the supply port information shall be returned as a list of {key 
value} pairs, where key is the name of an argument of the 
create_supply_net command (any - prefixes are removed) and value is the 
value of that argument. Valid keys are net_name, domain, and resolve.

Return 
value

There are four distinct return structures.
a) If * is specified for net_name then all previously defined supply nets shall be returned as a Tcl

list (a null string shall be returned if no supply nets are defined). 
b) If net_name is specified (and it is not *) then the net information shall be returned.
c) If -detailed is specified then the net information for the specified net_name shall be returned

as {key value} pairs.
d) if -is_supply is specified then a 1 shall be returned if the specified net_name is a supply port;

otherwise, a 0 shall be returned.
Copyright © 2009 IEEE. All rights reserved. 157

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

If a supply net is created as follows

create_supply_net oneh_supply -resolve one_hot

then query_supply_net * returns all supply nets in and below the active scope, i.e., oneh_supply.
query_supply_net oneh_supply returns the supply net information in the format of the
corresponding create_supply_net command, as defined above. query_supply_net oneh_supply
-detailed returns the supply net information as a list of {key value} pairs, i.e.,

{net_name oneh_supply} {resolve {one_hot}}

The following also apply:
— It shall be an error if -detailed, -is_supply, or -supply_set is specified and * is specified for

net_name.
— net_name is not a supply net unless -is_supply is specified.

Syntax example:

query_supply_net andrews_net -is_supply

7.37 query_supply_port 

The query_supply_port command returns the information about a previously created supply port. When
called with the -is_supply argument, this query can be used to check if the specified port_name is a supply
port. The -domain option restricts the query to the interface of the specified domain_name. The interface of
a domain in this context is the logical hierarchy boundary between one domain and another, or between a
domain and the top-level scope.

Purpose Query a supply port

Syntax
query_supply_port port_name

[-domain domain_name]
[-is_supply | -detailed]

Arguments

 port_name Specifies the port_name to query. If * is specified then the name of all sup-
ply ports shall be returned as a Tcl list. By default, ports are listed on the 
active scope unless -domain is specified.

-domain domain_name Restricts the query to the interface of the specified domain_name.

is_supply | -detailed If -is_supply is specified then a 1 shall be returned if the specified 
port_name is a supply port and a 0 shall be returned if it is not. If -detailed 
is specified then the supply port information shall be returned as a list of 
{key value} pairs, where key is the name of an argument of the 
create_supply_port command (any - prefixes are removed) and value is 
the value of that argument. Valid keys are port_name and direction.

Return 
value

There are four distinct return structures.
a) If * is specified for port_name then all previously defined supply ports shall be returned as a

Tcl list (a null string shall be returned if no supply ports are defined). 
b) If port_name is specified (and it is not *) then the port information shall be returned.
c) If -detailed is specified then the port information for the specified port_name shall be

returned as {key value} pairs.
d) if -is_supply is specified then a 1 shall be returned if the specified port_name is a supply port;

otherwise, a 0 shall be returned.
158 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

If a supply port is created as

create_supply_port VN1 -direction inout

then query_supply_port * returns all supply ports on the active scope, i.e., {VN1}.
query_supply_port VN1 returns the supply port information in the format of the corresponding
create_supply_port command, as defined above. query_supply_port VN1 -detailed returns
the supply port information as a list of {key value} pairs, i.e.,

{port_name VN1} {direction inout}

The following also apply:
— It shall be an error if -is_supply or -detailed are specified and port_name is *.
— It shall be an error if port_name is not * and -domain is specified.
— port_name is not a supply port, unless -is_supply is specified.

Syntax example:

query_supply_port joes_port -is_supply

7.38 query_supply_set 

The query_supply_set commands queries any previously defined supply sets.

If a supply set is created as

create_supply_set relative_always_on_ss
-function {power vdd}

Purpose Query a supply set

Syntax
query_supply_set set_name

[-detailed]
[-transitive <TRUE | FALSE>]

Arguments

 set_name Specifies the supply set set_name to query. If * is specified then the name 
of all supply sets shall be returned as a Tcl list.

-detailed If -detailed is specified then the supply set information shall be returned as 
a list of {key value} pairs, where key is the name of an argument of the 
create_supply_set command (any - prefixes are removed) and value is the 
value of that argument. Valid keys are set_name, function, and 
reference_gnd.

-transitive 
<TRUE | FALSE>

When -transitive is TRUE, the command applies to the descendants of the 
elements; the default is FALSE.

Return 
value

There are three distinct return structures.
a) If * is specified for set_name then all previously defined supply sets in the active scope (and

below if -transitive is specified) shall be returned as a Tcl list (a null string shall be returned
if no supply ports are defined).

b) If set_name is specified (and it is not *) then the supply set information shall be returned in the
form of the corresponding create_supply_set command.

c) If -detailed is specified then the supply set information for the specified set_name shall be
returned as {key value} pairs.
Copyright © 2009 IEEE. All rights reserved. 159

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

-function {ground vss}

-reference_gnd {earth_ground}

then query_supply_set * returns the names of any previously created supply sets, i.e.,
{relative_always_on_ss}. query_supply_set relative_always_on_ss returns the
supply set information in the format of the corresponding create_supply_set command, as defined above.
query_supply_set relative_always_on_ss -detailed returns the supply set information
using {key value} pairs, i.e.,

{set_name relative_always_on_ss} {function {{power vdd} {ground vss}}} 
{reference_gnd {earth_ground}}

It shall be an error if 
— -detailed is specified and set_name is *.
— -transitive is specified and set_name is not *.

Syntax example:

query_supply_set relative_always_on_ss

7.39 query_upf2hdl_vct 

The query_upf2hdl_vct command queries can list and query any previously defined value conversion table.

If a VCT is created as

create_upf2hdl_vct upf2vlog_vdd

-hdl_type {sv}

-table {{OFF X} {FULL_ON 1} {PARTIAL_ON 0}}

then query_upf2hdl_vct * returns upf2vlog_vdd. query_upf2hdl_vcd upf2vlog_vdd
returns the VCT information in the format of the corresponding create_upf2hdl_vct command, as defined

Purpose Query a value conversion table

Syntax query_upf2hdl_vct vct_name
[-detailed]

Arguments

 vct_name Specifies the vct_name to query. If * is specified then the name of all 
defined VCTs shall be returned as a Tcl list.

-detailed Returns the VCT information as a list of {key value} pairs, where key is the 
name of an argument of the create_upf2hdl_vct command (any - prefixes 
are removed) and value is the value of that argument. Valid keys are 
vct_name, hdl_type, and table.

Return 
value

There are three distinct return structures.
a) If * is specified for vct_name then all previously defined VCTs shall be returned as a Tcl list (a

null string shall be returned if no VCTs are defined).
b) If vct_name is specified (and it is not *) then the VCT information shall be returned in the

form of the corresponding create_upf2hdl_vct command.
c) If -detailed is specified then the VCT information for the specified vct_name shall be returned

as {key value} pairs.
160 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

above. query_upf2hdl_vct upf2vlog_vdd -detailed returns the VCT information as {key
value} pairs, i.e.,

{vct_name upf2vlog_vdd} {hdl_type {sv}} {table {{OFF X} {FULL_ON 1} {PARTIAL_ON 
0}}}

It shall be an error if -detailed is specified and * is specified for vct_name.

Syntax example:

query_upf2hdl_vcd upf2vlog_vdd

7.40 query_use_interface_cell 

The query_use_interface_cell command provides the ability to query the interface cell information for a
specific interface_implementation_name.

If an interface cell is specified as

use_interface_cell my_interface -strategy {ISO1 LS1} –domain PD1
-elements {top/moduleA/port1 top/moduleA/port2 top/moduleA/port3}
-lib_cells LS_ISO_COMBO

Purpose Query the interface cell information for a domain

Syntax

query_use_interface_cell interface_implementation_name
-strategy list_of_isolation_level_shifter_strategies
-domain domain_name
[-detailed]

Arguments

interface_implementatio
n_name

Specifies the interface_implementation_name to be queried. If * is speci-
fied then a list of interface implementation names shall be returned (or a 
null string if none have been previously defined).

-strategy 
list_of_isolation_level_s
hifter_strategies

Specifies the levelshifter or isolation strategy for which the 
interface_implementation_name is to be queried.

-domain domain_name Specifies the domain_name for which the 
list_of_isolation_level_shifter_strategies is defined.

-detailed Returns the interface cell information as a list of {key value} pairs, where 
key is the name of an argument of the use_interface_cell command (any - 
prefixes are removed) and value is the value of that argument. Valid keys 
are interface_implementation_name, strategy, domain, lib_cells, map, 
elements, with_clamp, update_any, force_function, and 
inverter_supply_set

Return 
value

There are three distinct return structures.
a) If a * is specified for interface_implementation_name, then a list of the defined interface

implementation identifiers shall be returned.
b) If a previously defined interface implementation identifier is specified 

for interface_implementation_name and -detailed is not specified, then the interface 
implementation information shall be returned in the format of the corresponding
use_interface_cell command (see 6.53).

c) If -detailed is specified then the interface implementation information for the specified
interface_implementation_name shall be returned as a list of {key value} pairs.
Copyright © 2009 IEEE. All rights reserved. 161

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

then query_use_interface_cell * -domain PD1 -strategy ISO1 returns all the interface
cell specifications defined for strategy ISO1 on domain PD1. query_use_interface_cell
my_interface -domain PD1 -strategy ISO1 returns the interface cell information in the
format of the corresponding use_interface_cell command for the strategy ISO1, as defined above.
query_use_interface_cell my_interface -domain PD1 -strategy ISO1
-detailed returns the interface cell information as a list of {key value} pairs, i.e.,

{{interface_implementation_name my_interface} {strategy ISO1} {domain PD1} 
{lib_cells CLASS1} {map {}} {elements {top/moduleA/port1 top/moduleA/port2 
top/moduleA/port3}} {with_clamp {}} {update_any {}} {force_function 0} 
{inverter_supply_set {}}} 

It shall be an error if -detailed is specified and interface_implementation_name is *.

Syntax example:

query_use_interface_cell * -domain PD1 -strategy ISO1
162 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

8. Switching Activity Interchange Format (SAIF)

The Switching Activity Interchange Format (SAIF) is designed to assist in the extraction and storing of the
switching activity information generated by EDA (electronic design automation) tools.

A SAIF file containing switching activity information can be generated using an HDL simulator and then the
switching activity can be back-annotated into the power analysis/optimization tool as shown in Figure 9.
This type of SAIF file is called a backward SAIF file.

Figure 9—Backward SAIF file

The power analysis/optimization tool, or some other EDA tool, may issue directives (instructions) to the
backward SAIF file generation application on the format of the required SAIF file. These directives can be
stored into a SAIF file, called a forward SAIF file, as shown in Figure 10.
Copyright © 2009 IEEE. All rights reserved. 163

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

Figure 10—Forward SAIF file

This clause provides the syntax and semantics of the backward SAIF file and the following two kinds of
forward SAIF files:

a) The library or gate-level forward SAIF file, which contains the directives for generating state-
dependent and path-dependent switching activity.

b) The RTL forward SAIF file, which contains the directives for generating switching activity from the
simulation of RTL hardware descriptions.

For examples of SAIF files, see [B7].

8.1 Syntactic conventions

The syntax of the SAIF file is described using the Backus-Naur Form (BNF), as follows:

Lowercase words (some containing underscores) are used to denote syntactic categories, e.g.,

backward_instance_info

Boldface words are used to denote the reserved keywords, operators and punctuation marks that are a
required part of the syntax, e.g.,

INSTANCE * ( )

A non-boldface vertical bar (|) separates alternative items, e.g.,

binary_operator ::= 
* | ^ | |
164 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

Note that the last vertical bar is in boldface and therefore represents an actual operator rather than a
separator between the alternative operators.

Non-boldface square brackets ([]) enclose optional items, e.g.,

date ::=
(DATE [string])

Non-boldface braces ({}) enclose items that can be repeated 0 or more times, e.g.,

backward_saif_info ::=
{backward_instance_info}

8.2 Lexical conventions

SAIF files are a stream of lexical tokens that consist of one or more characters. Except for one-line
comments (see below), the layout of SAIF files is free-format, i.e., spaces and newlines are only
syntactically significant as token separators.

The following are types of lexical tokens in SAIF files:
— white space
— comments
— numbers
— strings
— parenthesis
— operators
— hierarchical separator character
— identifiers
— keywords

The rest of this subclause describes the lexical tokens used in SAIF files and their conventions.

8.2.1 White space

White spaces are sequences of spaces, tabs, newlines, and form-feeds. White spaces separate the other
lexical tokens.

8.2.2 Comments

The SAIF format allows for both one-line comments and block comments. One-line comments start with the
character sequence // and end with a newline. Block comments start with the character sequence /* and end
with the first occurrence of the sequence */. Block comments are not nested.

8.2.3 Numbers

Numbers in SAIF files are either
— Non-negative decimal integers, which are represented by a sequence of decimal characters, e.g., 12,

012, or 1200.
— Non-negative real numbers, which are non-negative IEEE standard double precision floating point

number representations, e.g., 1, 3.4, .7, 0.3, 2.4e2, or 5.3e-1.
Copyright © 2009 IEEE. All rights reserved. 165

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

8.2.4 Strings

A string in SAIF files is a possibly empty sequence of characters enclosed by the double quotes character
("") and contained on a single line, e.g.,“SAIF version 2.0” or “”.

8.2.5 Parenthesis

Most of the constructs in SAIF files are enclosed between the left-parenthesis character (() and the right-
parenthesis character ()).

8.2.6 Operators

An operator in SAIF files is one of the following characters: !, *, ^, and |. Operators are used in conditional
expressions.

8.2.7 Hierarchical separator character

The hierarchical separator is a special character used in composing hierarchical port/pin/net/instance names
from simple identifiers. The hierarchical separator character is defined in the header of SAIF files and can be
either the / character or the . character.

8.2.8 Identifiers

A SAIF identifier is a non-empty sequence of alphanumeric characters, the underscore character (_) and
escaped characters, followed by an optional decimal number enclosed in brackets ([]). Escaped identifiers
consist of the \ character followed by a non-white space character. A SAIF identifier cannot start with a
decimal digit (.) character and cannot contain the hierarchical separator character, unless it is escaped. The
\ character used in an escaped character is not part of the identifier, so abc and a\b\c represent the same
identifier. SAIF identifiers are case-sensitive, abc and ABC represent two different identifiers. 

Examples:

clk, clk_net, clk[4], clk\#4, clk\(4\), \1clk, or mod\/net

where the hierarchical separator character is presumed to be /.

8.2.9 Keywords

A SAIF keyword is a special sequence of alphanumeric characters. SAIF keywords can be used as
identifiers; to avoid possible ambiguity, escape the first character of identifiers that can be mistaken for
keywords. SAIF keywords are case-sensitive. Table 8 shows the set of SAIF keywords. 
166 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

8.2.10 Syntactic categories for token types

The syntax of the SAIF files described in this document use the syntactic categories shown in Table 9 for
token types. 

8.3 Backward SAIF file

This subclause describes the format of the backward SAIF file, which contains hierarchical instance-specific
switching activity information.

Table 8—SAIF keywords

COND LEAKAGE TB

COND_DEFAULT LIBRARY TC

DATE MODULE TG

DESIGN NET TIMESCALE

DIRECTION PORT TX

DIVIDER PROGRAM_NAME TZ

DURATION PROGRAM_VERSION VENDOR

FALL RISE VIRTUAL_INSTANCE

IG RISE_FALL fs

IK SAIFILE ms

INSTANCE SAIFVERSION ns

IOPATH T0 ps

IOPATH_DEFAULT T1 s

us

Table 9—Token type categories

Syntactic category Token type

dnumber Non-negative integer numbers

rnumber Non-negative real numbers

string Strings

hchar Possible hierarchical separator characters

identifier Simple (non-hierarchical) identifiers

hierarchical_identifier Hierarchical identifiers
Copyright © 2009 IEEE. All rights reserved. 167

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

8.3.1 SAIF file

The backward SAIF file consists of a left-parenthesis ((), the SAIFILE keyword, the backward SAIF
header, the backward SAIF info, and a right-parenthesis ()), as shown in Syntax 1. 

8.3.2 Header

Syntax 2 defines the backward SAIF file header. 

Each backward SAIF header construct is described in the following subclauses.

8.3.2.1 backward_saif_version

Syntax 3 defines the backward_saif_version. 

The string in this construct represents the version number of the SAIF file, i.e., 2.0.

8.3.2.2 direction

Syntax 4 defines the direction. 

The string in this construct represents the type of the SAIF file, i.e., backward.

backward_saif_file ::=
(SAIFILE backward_saif_header backward_saif_info)

Syntax 1—backward_saif_file

backward_saif_header ::=
backward_saif_version
direction 
design_name 
date 
vendor 
program_name 
program_version 
hierarchy_divider 
time_scale 
duration

Syntax 2—backward_saif_header

backward_saif_version ::=
(SAIFVERSION string)

Syntax 3—backward_saif_version

direction ::=
(DIRECTION string)

Syntax 4—direction
168 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

8.3.2.3 design_name

Syntax 5 defines the design_name. 

The optional string in this construct represents the design for which the switching activity in the SAIF file
has been generated.

8.3.2.4 date

Syntax 6 defines the date. 

The optional string in this construct represents the date the SAIF file was generated.

8.3.2.5 vendor

Syntax 7 defines the vendor. 

The optional string in this construct represents the name of the vendor whose application was used to
generate the SAIF file.

8.3.2.6 program_name

Syntax 8 defines the program_name. 

The optional string in this construct represents the name of the application used to generate the SAIF file.

8.3.2.7 program_version

Syntax 9 defines the program_version. 

The optional string in this construct represents the version number of the application used to generate the
SAIF file.

design_name ::=
(DESIGN [string])

Syntax 5—design_name

date ::=
(DATE [string])

Syntax 6—date

vendor ::=
(VENDOR [string])

Syntax 7—vendor

program_name ::=
(PROGRAM_NAME [string])

Syntax 8—program_name
Copyright © 2009 IEEE. All rights reserved. 169

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

8.3.2.8 hierarchy_divider

Syntax 10 defines the hierarchy_divider. 

The optional hchar in this construct represents the hierarchical separator character used in hierarchical
identifiers. Only the / and . characters shall be specified as the hierarchical separator character; the default is
the . character.

8.3.2.9 time_scale

Syntax 11 defines the time_scale. 

This construct specifies the units used for all time values in the SAIF file. The dnumber shall be 1, 10, or
100; it represents the scaling factor of the time values. For example, if the time_scale of a SAIF file is

(TIMESCALE 100 us)

then all the time values in the SAIF file are specified in hundreds of microseconds. If the decimal number
and time unit are not specified, the default time scale is 1 ns.

8.3.2.10 duration

Syntax 12 defines the duration. 

This construct specifies the total time duration applied to the switching activity in the SAIF file.

8.3.2.11 Example

This is an example of a valid backward SAIF file header.

(SAIFVERSION "2.0")

program_version ::=
(PROGRAM_VERSION [string])

Syntax 9—program_version

hierarchy_divider ::=
(DIVIDER [hchar])

Syntax 10—hierarchy_divider

time_scale ::=
(TIMESCALE [dnumber timeunit])

timeunit ::=
s | ms | us | ns | ps | fs

Syntax 11—time_scale

duration ::=
(DURATION rnumber)

Syntax 12—duration
170 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

(DIRECTION "backward")
(DESIGN "alu")

(DATE "Fri Jan 18 10:30:00 PDT 2002")
(VENDOR "SAIF’R’US Corp.")

(PROGRAM_NAME "saifgenerator")
(PROGRAM_VERSION "1.0")

(DIVIDER /)

(TIMESCALE 1 ns)
(DURATION 5000)

8.3.3 Simple timing attributes

This construct specifies the total duration (in time values) that some particular design net/port/pin (specified
elsewhere) has some particular value. Syntax 13 defines this construct. 

The different types of simple timing attributes are as follows:
— T0 is the total time the design object has the value 0.
— T1 is the total time the design object has the value 1.
— TX is the total time the design object has an unknown value.
— TZ is the total time the design object is in a floating bus state. A floating bus state is the state when

all drivers on a particular bus are disabled and the bus has a floating logic value.
— TB is the total time the design object is in a bus contention state. A bus contention state is the state

when two or more drivers simultaneously drive a bus to different logic levels.

Example:

If the time scale is 100 μs, then the following three simple timing attribute constructs:

(T0 100)

(T1 92.5)
(TX 7.5)

specify a particular design object has the value 0 for a total 10,000 us, the value 1 for a total of 9250
us, an unknown value for a total of 750 us, and it never reaches the floating bus and bus contention states.

8.3.4 Simple toggle attributes

This attribute construct specifies the number on a particular type of toggle registered on a particular design
net/port/ pin (specified elsewhere). Syntax 14 defines this construct. 

The different types of simple toggle attributes are as follows:
— TC is the number of 0 to 1 plus the number of 1 to 0 transitions. This is usually referred to as the

toggle count.

simple_timing_attribute ::=
(T0 rnumber)

| (T1 rnumber)
| (TX rnumber)
| (TZ rnumber)
| (TB rnumber)

Syntax 13—simple_timing_attribute
Copyright © 2009 IEEE. All rights reserved. 171

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

— TG is the number of transport glitch edges (see 8.3.4.1).

— IG is the number of inertial glitch edges (see 8.3.4.2).
— IK is the inertial glitch de-rating factor. To estimate this factor, see Annex E. 

Example:

The following simple toggle attributes:

(TC 200)
(IG 6)

specify a total of 200 transitions between the 0 and 1 logic states, and a total of six inertial glitch edges are
registered on some particular design object(s).

8.3.4.1 Transport glitch

Transport glitches are extra transitions at the output of the gate before the output signal reaches its steady
state and, unlike inertial glitches (see 8.3.4.2), can not be canceled by an inertial delay algorithm. A transport
glitch consumes the same amount of power as a normal toggle transition does and is an ideal candidate for
power minimization during the optimization process. Transport glitches at the output of the gate have a
pulse width longer than the gate delay and do not contribute to the functional behavior of the circuit.

In general, the number of transport glitch transitions occurring in the circuit is the difference between the
total number of toggle transitions obtained from a full-timing simulation and that from a cycle-based
simulation, assuming all inertial glitches (see 8.3.4.2) have been filtered out by the timing simulator, i.e., the
total number of toggles obtained from the timing simulator does not include inertial glitches. Figure 11
shows a possible way to have transport glitches in the circuit. While steady state analysis of the circuit
indicates node N, the output of the XOR gate, should always remain logic 1 regardless of the primary input,
the additional timing delay by the inverter causes a glitch at N whenever the input changes its state.

simple_toggle_attribute ::=
(TC rnumber)

| (TG rnumber)
| (IG rnumber)
| (IK rnumber)

Syntax 14—simple_toggle_attribute
172 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

Figure 11—Transport glitch

8.3.4.2 Inertial glitch

Inertial glitches are signal transitions occurring at the output of the gate, which can be filtered out if an
inertial delay algorithm is applied. A simple example (see Figure 12) best explains inertial glitches.

Figure 12—Inertial glitch

A VHDL description for this inverter looks something like:

OUT ← not IN after 5 ns (inertial delay is implicitly presumed)

If the input pulse has a width less than 5 ns, the inertial delay algorithm shall cancel the signal transitions
at the output of the inverter. However, some power is still consumed due to the two partial transitions at the
output. Therefore, it is necessary to report these two inertial glitch transitions in a SAIF file.

NOTE—SAIF counts the number of glitches by signal edges, not signal pulses.

8.3.5 State-dependent timing attributes

State-dependent timing attributes specify the time duration when a cell is in particular states. The state of a
cell is defined as the logic value of its pins. Syntax 15 defines this construct. 
Copyright © 2009 IEEE. All rights reserved. 173

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

Here cond_expr represents conditional expressions on pin names; sd_simple_timing_attribute
can only contain one of the following:

— T1 is the total time duration in which the cell is in any of its associated states.
— T0 is the total time duration in which the cell is not in any of its associated states.

A conditional expression specifies the set of states for which the condition holds. For example, given a cell
with, three inputs, A, B, and C, and one output Y, the conditional expression

A | B

represents all the cell states when the input pin A is 1 or the input B is 1, while C and Y can have any value.

The precedence of the operators in conditional expressions is by the following sequence: ! (logical not), *
(logical and), ^ (logical exclusive or), and | (logical or), where ! has the highest precedence.

A state-dependent timing attribute construct

(COND expr1 attrs1
COND expr2 attrs2
...
COND exprn attrsn
COND_DEFAULT attrs_default)

determines a priority-encoded specification of the timing attributes attrs1, ..., attrs_default, i.e.,
the attributes attrs1 apply for the set of states for which the condition expr1 holds, while the attributes
attrs2 apply for the set of states where the condition expr2 holds and expr1 does not hold, etc. The
attributes attrs_default apply for all the states where none of the conditional expressions hold.

Example:

The state-dependent timing attributes of the cell given in Figure 13 during the time duration given in the
wave diagram in Figure 14 can be specified as follows:

state_dep_timing_attributes ::=
(state_dep_timing_item {state_dep_timing_item}
[COND_DEFAULT sd_simple_timing_attributes])

state_dep_timing_item ::=
COND cond_expr sd_simple_timing_attributes

cond_expr ::=
port_name

| unary_operator cond_expr
| cond_expr binary_operator cond_expr
| (cond_expr)

port_name ::= 
identifier

unary_operator ::= 
!

binary_operator ::= 
* | ^ | |

sd_simple_timing_attributes ::=
{sd_simple_timing_attribute}

sd_simple_timing_attribute ::=
(T1 rnumber)

| (T0 rnumber)

Syntax 15—state_dep_timing_attributes
174 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

(COND (A * B * Y) (T1 1) (T0 8)

COND (!A * B * Y) (T1 1) (T0 8)

COND (A * !(B * C)) (T1 2) (T0 7)

COND B (T1 1) (T0 8)

COND C (T1 1) (T0 8)

COND_DEFAULT (T1 3) (T0 6))

Figure 13—A cell and its internal behavior

Figure 14—A wave diagram

8.3.6 State-dependent toggle attributes

The toggle attributes on cell pins can be state dependent, i.e., the attributes are relevant only to particular cell
states. Syntax 16 defines this construct. 
Copyright © 2009 IEEE. All rights reserved. 175

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

Similar to state-dependent timing attributes, the state-dependent toggle attributes construct represents a
priority-encoded attribute specification. The optional edge_type is used to further differentiate the toggle
count between 0 to 1 (RISE) and 1 to 0 (FALL) transitions.

The state-dependent toggle attributes construct can end with an optional COND_DEFAULT specification
that has no edge restrictions. Otherwise, it can end with up to two COND_DEFAULT specifications having
different edge restrictions.

Example:

The following state-dependent toggle attributes construct:

(COND A (RISE) (TC 20)
COND A (FALL) (TC 15)
COND B (RISE) (TC 5)
COND B (FALL) (TC 10))

specifies a total toggle count of 50. Of the 25 rise transitions, 20 occur when pin A has a value of 1, and 5
occur when pin A has a value of 0 and B is 1. Of the 25 fall transitions, 15 occur when the pin A is 1, and 10
occur when the pin A is 0 and B is 1.

The state associated with an input pin transition is the cell state just before the time of the transition, e.g., in
the wave diagram given in Figure 15, the state associated with the rise transition on input pin A at time 10 is
represented by the expression A * !B * !Y.

The state associated with an output pin transition is the cell state just before the time of the input pin
transition causing the output pin transition, e.g., in the wave diagram given in Figure 15, the rise transition
on the output pin Y at time 13 is caused by the rise transition on the input pin B at time 10. The state
associated with the rise transition on Y is the cell state just before time 10 (not time 13). This state is
represented by the expression !A * B * !Y.

state_dep_toggle_attributes ::=
(state_dep_toggle_item {state_dep_toggle_item}
[state_dep_default_toggle_item])

state_dep_toggle_item ::=
COND cond_expr [(edge_type)] simple_toggle_attribute

state_dep_default_toggle_item ::=
COND_DEFAULT simple_toggle_attribute

| COND_DEFAULT (edge_type) simple_toggle_attribute
[COND_DEFAULT (edge_type) simple_toggle_attribute]

edge_type ::=
RISE | FALL

Syntax 16—state_dep_toggle_attributes
176 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

Figure 15—A cell and its wave diagram

8.3.7 Path-dependent toggle attributes

The toggle attributes on output cell pins can be path dependent, i.e., the attributes are relevant only to
particular input pins causing the output toggles. Syntax 17 defines this construct. 

Given a path-dependent toggle attributes construct:

(IOPATH pins1 attrs1

IOPATH pins2 attrs2

...

IOPATH pinsn attrsn

IOPATH_DEFAULT attrs_default)

the attributes attrs1 represent toggles caused by the input pins in pins1, the attributes attrs2
represent toggles caused by the input pins in pins2, etc. The pin lists pins1, ..., pinsn are mutually
exclusive. The attributes attrs_default represent toggles caused by the cell input pins not present in
pins1, ..., pinsn. The pin lists pins1, ..., pinsn are also called the path conditions or related pins.

path_dep_toggle_attributes ::=
(path_dep_toggle_item {path_dep_toggle_item}
[IOPATH_DEFAULT simple_toggle_attribute])

path_dep_toggle_item ::=
IOPATH port_name {port_name} simple_toggle_attribute

Syntax 17—path_dep_toggle_attributes
Copyright © 2009 IEEE. All rights reserved. 177

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

Example:

The following path-dependent toggle attributes construct:

(IOPATH A (TC 10)
IOPATH B (TC 20)
IOPATH C D (TC 5))

specifies a total of 35 toggle edges on a cell output port, of which 10 are caused by transitions on the input
port A, 20 are caused by transitions on the input port B and 5 are caused either by a transition on the input
port C or D.

8.3.8 SDPD toggle attributes

The toggle attributes on output cell pins can be both state and path dependent (SDPD). The syntax of state-
dependent and path dependent toggle attributes is that of simple toggle attributes and path-dependent toggle
attributes nested inside a state-dependent toggle attributes construct, as shown in Syntax 18. 

Similarly to state-dependent toggle attributes and path-dependent toggle attributes, the SDPD toggle
attributes construct represents a priority -encoded attribute specification. 

Example:

This is an example of an SDPD toggle attributes construct.

(COND A (RISE) (IOPATH B (TC 1))
COND A (FALL) (IOPATH B (TC 2))
COND B (RISE) (IOPATH A (TC 1))
COND B (FALL) (IOPATH A (TC 0))
COND_DEFAULT (RISE) (IOPATH A (TC 1)
IOPATH B (TC 0))
COND_DEFAULT (FALL) (IOPATH A (TC 0)
IOPATH B (TC 1)))

8.3.9 Net, port, and leakage switching specifications

The constructs for net, port, and leakage switching specification associate switching activity (given in terms
of timing and toggle attributes) to individual design nets, ports, and cells.

sdpd_toggle_attributes ::=
(sdpd_toggle_item {sdpd_toggle_item}
[sdpd_default_toggle_item])

sdpd_toggle_item ::=
COND cond_expr [(edge_type)] potential_pd_toggle_attributes

potential_pd_toggle_attributes ::=
path_dep_toggle_attributes

| simple_toggle_attribute
sdpd_default_toggle_item ::=

COND_DEFAULT potential_pd_toggle_attributes
| COND_DEFAULT (edge_type) potential_pd_toggle_attributes

[COND_DEFAULT (edge_type) potential_pd_toggle_attributes]

Syntax 18—sdpd_toggle_attributes
178 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

8.3.9.1 Net switching specifications

The net switching specification construct associates switching activity to individual nets. Syntax 19 defines
the backward_net_spec. 

The switching attributes that can be associated to nets are simple timing attributes and simple toggle
attributes.

Example:

This is an example of a net switching specification assigning switching activity to the nets clk, rst, in1,
in2, and out.

(NET
(clk (T0 100) (T1 100) (TC 50))
(rst (T0 180) (T1 20) (TC 2))
(in1 (T0 60) (T1 140) (TC 22))
(in2 (T0 80) (T1 120) (TC 12))
(out (T0 120) (T1 60) (TX 20) (TC 10))
)

8.3.9.2 Port switching specifications

The port switching specification construct associates switching activity to individual design ports and cell
pins. Syntax 20 defines the backward_port_spec. 

The toggle attributes that can be associated to input cell pins can be simple or state dependent. The toggle
attributes that can be associated to output cell pins can be simple, state dependent, path dependent, or both
state and path dependent. The toggle attributes that can be associated to design ports have to be simple. The
timing attributes that can be associated to design ports and cell pins have to be simple.

Example:

This is an example of the port switching specification construct applied to an AND gate.

(PORT
(A (T0 8) (T1 7)
(COND B (RISE) (TC 1)
COND B (FALL) (TC 2)
COND_DEFAULT (TC 1)))

backward_net_spec ::=
(NET backward_net_info {backward_net_info})

backward_net_info ::=
(net_name net_switching_attributes)

net_name ::= 
identifier

net_switching_attributes ::=
{net_switching_attribute}

net_switching_attribute ::=
simple_timing_attribute

| simple_toggle_attribute

Syntax 19—backward_net_spec
Copyright © 2009 IEEE. All rights reserved. 179

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

(B (T0 9) (T1 6)

(COND A (RISE) (TC 2)

COND A (FALL) (TC 1)

COND_DEFAULT (TC 3)))

(Y (T0 10) (T1 5)

(COND A (RISE) (IOPATH B) (TC 2)

COND A (FALL) (IOPATH B) (TC 1)

COND B (RISE) (IOPATH A) (TC 1)

COND B (FALL) (IOPATH A) (TC 2)

COND_DEFAULT (TC 0)))

)

8.3.9.3 Leakage switching specifications

The leakage switching specification construct specifies the duration that a particular cell spends in particular
states. This construct is a list of state-dependent timing attributes, as shown in Syntax 21. 

Example:

This is an example of a leakage switching specification.

(LEAKAGE

(COND (A * B) (T1 5) (T0 10))

COND (A | B) (T1 6) (T0 9))

(COND_DEFAULT (T1 4) (T0 11)))

)

8.3.10 Backward SAIF info and instance data

Design switching activity is organized hierarchically in the backward SAIF info construct (that follows the
SAIF header in a backward SAIF file). The backward SAIF info is a list of backward instance info
constructs, as shown in Syntax 22. 

backward_port_spec ::=
(PORT backward_port_info {backward_port_info})

backward_port_info ::=
(port_name port_switching_attributes)

port_name ::= 
identifier

port_switching_attributes ::=
{port_switching_attribute}

port_switching_attribute ::=
simple_timing_attribute

| simple_toggle_attribute
| state_dep_toggle_attributes
| path_dep_toggle_attributes
| sdpd_toggle_attributes

Syntax 20—backward_port_spec

backward_leakage_spec ::=
(LEAKAGE state_dep_timing_attributes {state_dep_timing_attributes})

Syntax 21—backward_leakage_spec
180 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

backward_instance_info contains the switching activity of a particular cell or design instance. The
optional string following the INSTANCE keyword is the cell/design name that is instantiated and path is the
hierarchical name of the actual instance. This is followed by a possibly empty list of instance switching
specifications, which are the net, port, and leakage switching specifications described in 8.3.9. For design
instances, the instance info can recursively contain the switching activity of its sub-design and library cell
instances.

backward_instance_info can also be used to specify the switching activity of cell instances where
the port names of the instance are not known, e.g., in design flows where switching activity generated by
RTL simulation is annotated to the synthesized gate-level netlist of the RTL design. 

In this case, the string following the VIRTUAL_INSTANCE keyword represents the type of cell instance;
it needs to be recognized by the application reading the backward SAIF file. The path represents the name of
the instance and backward_port_spec assigns switching activity to logical port names. The application
reading the SAIF file needs to map the logical port names to the actual cell instance port names.

Example:

For example, the following virtual instance construct:

(VIRTUAL_INSTANCE "sequential" A_reg

(PORT

(Q (T0 220) (T1 370) (TC 122))

)

)

gives the switching activity of the positive output pin of a sequential element; the actual name of the output
pin depends on the library cell that is used to implement the sequential cell, i.e., it can have a different name
than Q.

8.4 Library forward SAIF file

The Library forward SAIF file contains the state-dependent and path-dependent (SDPD) directives needed
by simulators and other applications generating backward SAIF files that contain state-dependent and path-
dependent switching activity. The SDPD directives can be generated from cell libraries with SDPD power
characterization by using the appropriate tools.

For a description of state and path dependency, see 8.3.

backward_saif_info ::=
{backward_instance_info}

backward_instance_info ::=
(INSTANCE [string] path {backward_instance_spec} {backward_instance_info})

| (VIRTUAL_INSTANCE string path backward_port_spec)
backward_instance_spec ::=

backward_net_spec
| backward_port_spec
| backward_leakage_spec

Syntax 22—backward_saif_info
Copyright © 2009 IEEE. All rights reserved. 181

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

8.4.1 The SAIF file

The library forward SAIF file consists of a left-parenthesis ((), the SAIFILE keyword, the library forward
SAIF header, the library forward SAIF info, and a finishing right-parenthesis ()), as shown in Syntax 23. 

8.4.1.1 Header

Syntax 24 defines the library forward SAIF file header.

Each library forward SAIF header construct is described in the following subclauses.

8.4.1.2 lforward_saif_version

Syntax 25 defines the lforward_saif_version. 

The first string in the this construct represents the version number of the SAIF file, i.e., 2.0.

The second string is optional and is either the string “lib” or “LIB”; this is used to specify that the SAIF file
is a library forward SAIF file.

8.4.1.3 direction

Syntax 26 defines the direction. 

The string in the this construct represents the type of the SAIF file, i.e., forward.

lforward_saif_file ::=
(SAIFILE lforward_saif_header lforward_saif_info)

Syntax 23—lforward_saif_file

lforward_saif_header ::=
lforward_saif_version
direction 
design_name 
date 
vendor 
program_name 
program_version 
hierarchy_divider 

Syntax 24—lforward_saif_header

lforward_saif_version ::=
(SAIFVERSION string [string])

Syntax 25—lforward_saif_version

direction ::=
(DIRECTION string)

Syntax 26—direction
182 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

8.4.1.4 design_name

Syntax 27 defines the design_name. 

The optional string in this construct represents the design for which the forward SAIF file has been
generated.

8.4.1.5 date

Syntax 28 defines the date. 

The optional string in this construct represents the date the SAIF file was generated.

8.4.1.6 vendor

Syntax 29 defines the vendor. 

The optional string in this construct represents the name of the vendor whose application was used to
generate the SAIF file.

8.4.1.7 program_name

Syntax 30 defines the program_name. 

The optional string in this construct represents the name of the application used to generate the SAIF file.

8.4.1.8 program_version

Syntax 31 defines the program_version. 

The optional string in this construct represents the version number of the application used to generate the
SAIF file.

design_name ::=
(DESIGN [string])

Syntax 27—design_name

date ::=
(DATE [string])

Syntax 28—date

vendor ::=
(VENDOR [string])

Syntax 29—vendor

program_name ::=
(PROGRAM_NAME [string])

Syntax 30—program_name
Copyright © 2009 IEEE. All rights reserved. 183

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

8.4.1.9 hierarchy_divider

Syntax 32 defines the hierarchy_divider. 

The optional hchar in this construct represents the hierarchical separator character used in hierarchical
identifiers. Only the / and . characters shall be specified as the hierarchical separator character; the default is
the . character.

Example:

This is an example of a valid library forward SAIF file header.

(SAIFVERSION "2.0" "lib")
(DIRECTION "forward")
(DESIGN)
(DATE "Fri Jan 18 10:00:00 PDT 2002")
(VENDOR "SAIFíRíUS Corp.")
(PROGRAM_NAME "libsaifgenerator")
(PROGRAM_VERSION "1.0")
(DIVIDER /)

8.4.2 State-dependent timing directive

State-dependent timing directives instruct the backward SAIF generator on the state conditions required in
state-dependent timing attributes. Syntax 33 defines the state_dep_timing_directive. 

A state-dependent timing directive is a list of directive items. The state-dependent timing attributes
generated using such a timing directive contain switching activity assigned to a number of the states given in
the directive. The order of any states in the timing attribute shall be the same as that in the timing directive.

Example:

This is an example of a state-dependent timing directive.

(COND (A * B * C)

program_version ::=
(PROGRAM_VERSION [string])

Syntax 31—program_version

hierarchy_divider ::=
(DIVIDER [hchar])

Syntax 32—hierarchy_divider

state_dep_timing_directive ::=
(state_dep_timing_directive_item
{state_dep_timing_directive_item}
[COND_DEFAULT])

state_dep_timing_directive_item ::=
COND cond_expr

Syntax 33—state_dep_timing_directive
184 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

COND (!A * B * C)

COND (A * !(B * C))

COND B

COND C

COND_DEFAULT)

8.4.3 State-dependent toggle directive

State-dependent toggle directives instruct the backward SAIF generator on the state and rise/fall conditions
required in state-dependent toggle attributes. Syntax 34 defines the state_dep_toggle_directive. 

A state-dependent toggle directive is a list of directive items, each followed by an optional RISE_FALL
keyword. The item list is followed by an optional COND_DEFAULT keyword, which can also be followed
by an optional RISE_FALL keyword. 

The state-dependent toggle attributes generated using such a toggle directive contain switching activity for a
number of the states given in the directive. The order of any states in the toggle attribute shall be the same as
that in the toggle directive. The RISE_FALL keyword instructs the backward SAIF generator that rise and
fall edges can be differentiated and state-dependent toggle attribute items with RISE and/or FALL
keywords can be generated.

Example:

This is an example of a state-dependent toggle directive construct.

(COND (A*B) RISE_FALL

COND A RISE_FALL

COND B RISE_FALL

COND_DEFAULT)

8.4.4 Path-dependent toggle directive

Path-dependent toggle directives instruct the backward SAIF generator on the path conditions required in
path-dependent toggle attributes for cell output pins. A path condition is a list of input port pins. Syntax 35
defines the path_dep_toggle_directive. 

state_dep_toggle_directive ::=
(state_dep_toggle_directive_item
{state_dep_toggle_directive_item}
[COND_DEFAULT [RISE_FALL]])

state_dep_toggle_directive_item ::=
COND cond_expr [RISE_FALL]

Syntax 34—state_dep_toggle_directive

path_dep_toggle_directive ::=
(path_dep_toggle_directive_item
{path_dep_toggle_directive_item}
[IOPATH_DEFAULT])

path_dep_toggle_directive_item ::=
IOPATH port_name {port_name}

Syntax 35—path_dep_toggle_directive
Copyright © 2009 IEEE. All rights reserved. 185

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

A path-dependent toggle directive is a list of directive items. The path-dependent toggle attributes generated
using such a toggle directive contain switching activity for a number of the path conditions (input pin lists)
given in the directive. The order of the path conditions in the toggle attribute shall be the same as that in the
toggle directive.

Example:

This is an example of a path-dependent toggle directive construct.

(IOPATH A
IOPATH B
IOPATH C D)

8.4.5 SDPD toggle directives

SDPD toggle directives instruct the backward SAIF generator on the state and path conditions required in
SDPD toggle attributes for cell output pins. The syntax of this construct is that of the path-dependent toggle
directive embedded in the state-dependent toggle directive, as shown in Syntax 36. 

The SDPD dependent toggle attributes generated using such a toggle directive contain switching activity for
a number of the state and path conditions given in the directive. The order of the conditions in the toggle
attribute shall be the same as that in the toggle directive.

Example:

This is an example of an SDPD toggle directive construct.

(COND A RISE_FALL (IOPATH B)
COND B RISE_FALL (IOPATH A)
COND_DEFAULT RISE_FALL
(IOPATH A
IOPATH B
IOPATH_DEFAULT))

8.4.6 Module SDPD declarations

Module SDPD declarations instruct the backward SAIF generator on the type and structure of the required
switching activity for particular cells. Syntax 37 defines this construct. 

The module name identifier represents the library cell name.

A port declaration assigns port directives to the individual cell pins. Port directives are either state-
dependent toggle directives, path-dependent toggle directives, or SDPD toggle directives.

A leakage declaration consists of the LEAKAGE keyword followed by a state-dependent timing directive,
which instructs the backward SAIF generator on the state conditions for the state-dependent timing
attributes in backward leakage specifications.

sdpd_toggle_directive ::=
(sdpd_toggle_directive_item {sdpd_toggle_directive_item}
[COND_DEFAULT [RISE_FALL] [path_dep_toggle_directive]])

sdpd_toggle_directive_item ::=
COND cond_expr [RISE_FALL] [path_dep_toggle_directive]

Syntax 36—sdpd_toggle_directive
186 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

Examples:

This is an example of a port declaration.

(PORT

(A

(COND B RISE_FALL

COND_DEFAULT))

(B

(COND A RISE_FALL

COND_DEFAULT))

(Y

(COND A RISE_FALL (IOPATH B)

COND B RISE_FALL (IOPATH A)

COND_DEFAULT))

)

This is an example of a leakage declaration.

(LEAKAGE

(COND (A * B)

COND (A | B)

COND_DEFAULT)

)

8.4.7 Library SDPD information

The SDPD declarations for each library cell are listed in the library SDPD info constructs (that follow the
SAIF header in the library forward SAIF file). Syntax 38 defines the library_sdpd_info. 

module_sdpd_declaration ::=
(MODULE module_name {module_sdpd_directive})

module_name ::= 
identifier

module_sdpd_directive ::=
port_declaration

| leakage_declaration
port_declaration ::=

(PORT port_name {port_directive})
port_directive ::=

state_dep_toggle_directive
| path_dep_toggle_directive
| sdpd_toggle_directive

leakage_declaration ::=
(LEAKAGE {state_dep_timing_directive})

Syntax 37—module_sdpd_declaration

library_sdpd_info ::=
(LIBRARY string [string]
{module_sdpd_declaration})

Syntax 38—library_sdpd_info
Copyright © 2009 IEEE. All rights reserved. 187

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

The first string following the LIBRARY keyword represents the name of the library. The second (optional)
string sets the path of the directory containing the library and can be used for locating it.

8.5 The RTL forward SAIF file

The RTF forward SAIF file lists the synthesis invariant points of an RTL design and provides a mapping
from the RTL identifiers of these design objects to their synthesized gate-level identifiers. Synthesis
invariant points are design objects (nets, ports, etc.) in the RTL description that are mapped directly to
equivalent design objects in the synthesized gate-level descriptions. Examples of such points are the design
ports and RTL identifiers (variables, signals, wires, etc.) that are mapped to the outputs of sequential cells.

8.5.1 The SAIF file

The RTF forward SAIF file consists of a left-parenthesis ((), the SAIFILE keyword, the RTL forward SAIF
header, the RTL forward SAIF info, and a finishing right-parenthesis ()), as shown in Syntax 39. 

8.5.1.1 Header

Syntax 40 defines the RTL forward SAIF file header.

Each RTL forward SAIF header construct is described in the following subclauses.

8.5.1.2 rforward_saif_version

Syntax 41 defines the rforward_saif_version. 

The string in the this construct represents the version number of the SAIF file, i.e., 2.0.

8.5.1.3 direction

Syntax 42 defines the direction. 

rforward_saif_file ::=
(SAIFILE rforward_saif_header rforward_saif_info)

Syntax 39—rforward_saif_file

rforward_saif_header ::=
rforward_saif_version
direction 
design_name 
date 
vendor 
program_name 
program_version 
hierarchy_divider 

Syntax 40—rforward_saif_header

rforward_saif_version ::=
(SAIFVERSION string)

Syntax 41—rforward_saif_version
188 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

The string in the this construct represents the type of the SAIF file, i.e., forward.

8.5.1.4 design_name

Syntax 43 defines the design_name. 

The optional string in this construct represents the design for which the forward SAIF file has been
generated.

8.5.1.5 date

Syntax 44 defines the date. 

The optional string in this construct represents the date the SAIF file was generated.

8.5.1.6 vendor

Syntax 45 defines the vendor. 

The optional string in this construct represents the name of the vendor whose application was used to
generate the SAIF file.

8.5.1.7 program_name

Syntax 46 defines the program_name. 

direction ::=
(DIRECTION string)

Syntax 42—direction

design_name ::=
(DESIGN [string])

Syntax 43—design_name

date ::=
(DATE [string])

Syntax 44—date

vendor ::=
(VENDOR [string])

Syntax 45—vendor

program_name ::=
(PROGRAM_NAME [string])

Syntax 46—program_name
Copyright © 2009 IEEE. All rights reserved. 189

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

The optional string in this construct represents the name of the application used to generate the SAIF file.

8.5.1.8 program_version

Syntax 47 defines the program_version. 

The optional string in this construct represents the version number of the application used to generate the
SAIF file.

8.5.1.9 hierarchy_divider

Syntax 48 defines the hierarchy_divider. 

The optional hchar in this construct represents the hierarchical separator character used in hierarchical
identifiers. Only the / and . characters shall be specified as the hierarchical separator character; the default is
the . character.

Example:

The following is an example of a valid library forward SAIF file header:
(SAIFVERSION "2.0")

(DIRECTION "forward")

(DESIGN "alu")

(DATE "Fri Jan 18 11:00:00 PDT 2002")

(VENDOR "SAIFíRíUS Corp.")

(PROGRAM_NAME "rtlsaifgenerator")

(PROGRAM_VERSION "1.0")

(DIVIDER /)

8.5.2 Port and net mapping directives

The port and net mapping directives in the RTL forward SAIF file contain a list of synthesis invariant port
and net identifiers and their corresponding synthesized gate-level identifiers. Syntax 49 defines these
constructs. 

Here, the rtl_name is mapped into the gate-level identifier mapped_name. Both the RTL name and
mapped name in these constructs are represented by hierarchical identifiers.

In port_mapping_directives, the optional string is used for generating virtual instance data in the
backward SAIF file and represents the type of the virtual instance.

program_version ::=
(PROGRAM_VERSION [string])

Syntax 47—program_version

hierarchy_divider ::=
(DIVIDER [hchar])

Syntax 48—hierarchy_divider
190 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

8.5.3 Instance declarations

The port and net mapping directives in the RTL forward SAIF file are organized hierarchically in RTL
forward instance declarations, which comprise the RTL forward SAIF instance info that follows the header
in the forward SAIF file. Syntax 50 defines the RTL forward SAIF info constructs. 

The RTL forward SAIF info is a list of instance declarations. The optional string following the INSTANCE
keyword represents the design name and the hierarchical_identifier following it is the actual instance name.
The port and net mapping directives follow the instance name. The instance declarations of any sub-design
instances can be included recursively in this construct. 

port_mapping_directives ::=
(PORT {(rtl_name mapped_name [string])})

rtl_name ::= 
hierarchical_identifier

mapped_name ::= 
hierarchical_identifier

net_mapping_directives ::=
(NET {(rtl_name mapped_name)})

Syntax 49—Port and net mapping directives

rforward_saif_info ::=
{rforward_instance_declaration}

rforward_instance_declaration ::=
(INSTANCE [string] instance_name {rforward_instance_directive}
{rforward_instance_declaration})

instance_name ::= 
hierarchical_identifier

rforward_instance_directive ::=
port_mapping_directives

| net_mapping_directives

Syntax 50—RTL forward SAIF info constructs
Copyright © 2009 IEEE. All rights reserved. 191

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



A
uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

Annex A

(informative) 

Bibliography

[B1] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition. New York: Insti-
tute of Electrical and Electronics Engineers, Inc.

[B2] IEEE Std 1364™, IEEE Standard for Verilog Hardware Description Language.7

[B3] ISO/IEC 8859-1, Information technology—8-bit single-byte coded graphic character sets—Part 1:
Latin Alphabet No. 1.8

[B4] For a summary of Tcl language syntax, see the following Internet location:
http://www.tcl.tk/man/tcl8.4/TclCmd.

[B5] For more details on using the Tcl language, see the following Internet location: 
http://sourceforge.net/projects/tcl/.

[B6] For more details on using the Liberty library format, see the following Internet location: 
http://synopsys.com/cgi-bin/tapin/login1.cgi.

[B7] Coding examples are available from the UPF WG World Wide Web site http://www.accellera.org/upf/
references.html.

7The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
8ISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20, Swit-
zerland/Suisse (http://www.iso.ch/). ISO/IEC publications are also available in the United States from Global Engineering Documents,
15 Inverness Way East, Englewood, CO 80112, USA (http://global.ihs.com/). Electronic copies are available in the United States from
the American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://www.ansi.org/).
Copyright © 2009 IEEE. All rights reserved. 193

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



A
uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

Annex B

(normative) 

Supply net logic type

These functions are required for any implementations supporting VHDL and/or SystemVerilog simulation.

The real typed value parameter to the supply_on and supply_partial_on functions is the voltage value in
units of volts. This voltage value shall be converted into a signed 32-bit integer value in units of microvolts.

B.1 VHDL

The following defines the VHDL package for UPF. This package shall be located in the IEEE library.

Library IEEE;
Use IEEE.std_logic_1164.all;
Use IEEE.numeric_bit.all;
package UPF is

  type state is (OFF,
                     UNDETERMINED,
                     PARTIAL_ON, 
                     FULL_ON);

  -- The provided routines shall be used to ensure
  -- the HDL code is independent of the details of the supply net
  -- type implementation.  This ensures portability and forward
  -- compatibility of the HDL.
  -- The supply net type implementation is openly specified for
  -- the following reasons:
  --   1.  Users know how supply net and port values will visually
  --       appear in tools such as wave windows.
  --   2.  C language access by user or 3rd party tools can depend
  --       on existing functionality to read and write supply
  --       values.
  --
  -- Tools implementing this package may optimize the supply data
  -- type as long as the 2 items above are preserved and the
  -- supply value set and get routines are supported.
  type supply_net_type is record
    state   : state;  -- UPF reserves 32 bits
    -- Voltage in microvolts
    voltage : signed(31 downto 0);
  end record;

  -- Types used to navigate and to find UPF objects in
  -- the design hierarchy
  subtype upf_object_handle is Integer;

  type object_kind is (ERROR_KIND,
                       SWITCH, ISOLATION_CELL, LEVEL_SHIFTER,
                       SUPPLY_SET, SUPPLY_NET, SUPPLY_PORT,
                       ROOT_SUPPLY_DRIVER,
                       LOGIC_NET, LOGIC_PORT,
Copyright © 2009 IEEE. All rights reserved. 195

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

                       INSTANCE,
                       POWER_DOMAIN,
                       UPF_POWER_STATE,
                       ITERATOR,
                       OTHER );

  -- NOTE: UNDETERMINED is not defined as a power state kind as
  --       it is replaced during simulation with a determined state
  type power_state_kind is
    (ERROR_PS, OPERATING, ILLEGAL, TRANSIENT);

  type power_state_simstate is
    (NORMAL, CORRUPT, CORRUPT_ON_ACTIVITY, CORRUPT_STATE_ON_CHANGE,
     CORRUPT_STATE_ON_ACTIVITY);

  subtype supply_kind is object_kind
    range SUPPLY_NET to ROOT_SUPPLY_DRIVER;

  -- Voltage is a real value in volts that is converted into
  -- an integer value normalized to microvolts
  function supply_on (
    supply_name : STRING;   -- Path name to supply net, port or
                            -- root supply driver
    voltage     : REAL := 1.0 )
  return BOOLEAN;

  function supply_off (
    supply_name : STRING )
  return BOOLEAN;

  -- Voltage is a real value in volts that is converted into
  -- an integer value normalized to microvolts
  function supply_partial_on (
    supply_name : STRING;
    value       : REAL := 1.0 )
  return BOOLEAN;

  function get_supply_value (
    supply_name : STRING )
  return supply_net_type;

  function get_supply_voltage (
    value : supply_net_type )
  return REAL;

  function get_supply_on_state (
    value : supply_net_type )
  return BOOLEAN;

  function get_supply_on_state (
    value : supply_net_type )
  return BIT;

  function get_supply_state (
    value : supply_net_type )
  return state;

  -- Routines to navigate and find UPF objects in the design hierarchy
196 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

  -- The initial scope shall be the root of the simulation
  -- which allows access to the testbench as well as design
  -- under verification.
  -- If inst_path is valid for the active scope, then
  -- the function changes the scope to that instance.
  -- The function returns TRUE on success, FALSE if the
  -- the scope cannot be set as requested.
  function set_scope( inst_path : STRING )
  return Boolean;

  -- This function returns the active scope's complete
  -- instance path from the root of the simulation.
  function get_scope
  return STRING;

  -- Tests the handle and returns TRUE if the handle is valid
  -- and FALSE if it is invalid
  function is_valid_handle( handle : in upf_object_handle )
  return Boolean;

  -- Get a handle to a design object (either HDL or UPF
  -- created).  If a qualifier is required to differentiate
  -- objects in different name spaces at the same scope, then
  -- the qualifier string shall not be null.  See section 7.x
  -- for a list of valid qualifier strings.
  -- Returns a valid handle on success; invalid handle on failure
  function get_object( inst_path : STRING;
                       qualifier : STRING := "" )
  return upf_object_handle;

  -- Returns the kind of object that the handle refers
  -- to.
  -- If the handle is not valid, ERROR object kind is
  -- returned.
  function get_object_kind( handle : upf_object_handle )
  return object_kind;

  -- Returns TRUE if the kind of object referenced by
  -- handle is a supply_net, supply_port or
  -- root_supply_driver.
  -- Returns FALSE otherwise.
  function is_supply_kind ( handle : upf_object_handle )
  return Boolean;

  -- For a supply kind of object referenced by handle,
  -- return the state of that object.
  -- It is the caller's responsibility to ensure that
  -- the handle passed references a supply kind of object.
  -- If the object is not a supply kind, the value returned
  -- is UNDETERMINED
  function get_supply_state( handle : upf_object_handle )
  return state;

  -- For a supply kind of object referenced by handle,
  -- return the voltage of that object.
  -- It is the caller's responsibility to ensure that
  -- the handle passed references a supply kind of object.
  -- If the object is not a supply kind, the value returned
  -- is -1.0.
Copyright © 2009 IEEE. All rights reserved. 197

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

  function get_supply_voltage( handle : upf_object_handle )
  return REAL;

  -- For a handle that references a supply kind object, sets
  -- the net state and voltage of the supply.
  -- Returns TRUE on success.
  -- Returns FALSE if the supply state cannot be set or
  -- if the object that handle references is not a supply
  -- kind of object.
  function assign_supply_state( handle  : upf_object_handle;
                                state   : state := OFF;
                                voltage : REAL := 0.0,
                                after   : TIME := 0 ns )
  return Boolean;

  -- Quick checks for the information specified by the
  -- function name.
  -- All functions return TRUE if the information/state
  -- specified is true for the object referenced by handle.
  -- Returns FALSE if it is not true or if the information/
  -- state being compared or check is not applicable to the
  -- kind of object that handle references.
  function is_supply_full_on ( handle : upf_object_handle )
  return Boolean;

  function is_supply_off ( handle : upf_object_handle )
  return Boolean;

  function is_supply_partial_on ( handle : upf_object_handle )
  return Boolean;

  function is_supply_undetermined ( handle : upf_object_handle )
  return Boolean;

  function is_supply_equal ( handle  : upf_object_handle;
                             state   : state;
                             voltage : real )
  return Boolean;

  -- Both handles must reference a supply kind of object.
  -- Returns TRUE if states are the same and, if
  -- state is not OFF, the voltages are the same.
  -- This function does not check the root supply drivers of
  -- the supplies or any other connectivity aspects of the supplies
  function are_supplies_equivalent ( handle1 : upf_object_handle;
                                     handle2 : upf_object_handle )
  return Boolean;

  -- Assigns the source supply to the destination supply.
  -- For purposes of supply net resolution, the destination
  -- will be sourced by the same root supply driver as the source.
  -- (The source may be a root supply driver.)
  -- Returns TRUE on success, FALSE on failure.
  function assign_supply2supply( destination : upf_object_handle;
                                 source      : upf_object_handle;
                                 after       : TIME := 0 ns )
  return Boolean;

  -- Creates a root supply driver than can be used to drive
198 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

  -- one or more supply nets from within an HDL model of a supply
  -- network component (HDL model of a bias generator, for example).
  -- The root supply driver is created within the scope of the parent.
  -- The parent and driver name information may be used for error reporting.
  -- Returns a valid object handle on success and an invalid object handle
  -- on failure.
  function create_root_supply_driver (
    driver_name : STRING;
    parent      : upf_object_handle )
  return upf_object_handle;

  -- Routines to query and set power states on various objects.

  -- There can be 0, 1 or many power states defined for a given
  -- object.  The iterator provides a mechanism to retrieve a
  -- an opaque list handled by the tool.
  -- If there are 0 power states, then the handle returned is
  -- an invalid handle.
  function get_iterator_for_all_ps ( handle : upf_object_handle )
  return upf_object_handle;

  -- Returns an iterator referencing all power states of the
  -- specified object that are active when the call is made.
  -- The returned handle is invalid if there are no power states
  -- defined for the specified handle or if none of the power
  -- states defined are active.
  function get_iterator_for_all_active_ps (
    handle : upf_object_handle )
  return upf_object_handle;

  -- If there are more items in the iterator, this routine
  -- will return the next item in the iterator.
  -- Otherwise, an invalid handle will be returned if there
  -- are no more objects to iterate over or if the iterator is
  -- invalid
  function iterate( iterator : upf_object_handle )
  return upf_object_handle;

  -- Returns the name of a power state kind of object.
  -- Returns the null string if the handle does not reference
  -- a power state object.
  function get_ps_name( power_state : upf_object_handle )
  return STRING;

  -- For a handle referencing a power state object,
  -- return the kind of power state.
  -- Returns ERROR if the handle is invalid or does
  -- not reference a power state object
  function get_ps_kind( power_state : upf_object_handle )
  return power_state_kind;

  -- For a handle referencing a power state object,
  -- return the simulation state associated with the power state.
  function get_ps_simstate( power_state : upf_object_handle )
  return power_state_simstate;

  -- Returns TRUE if the object to which this power state is
  -- attributed is in a state consistent with being in this
  -- power state.
Copyright © 2009 IEEE. All rights reserved. 199

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

  -- Returns FALSE otherwise (including if the power_state
  -- handle is invalid)
  function is_active( power_state : upf_object_handle )
  return Boolean;

  -- Returns TRUE if the object referenced by handle
  -- is in the power state referenced by the power state
  -- handle.  If either handle is invalid, it returns FALSE.
  function is_in ( handle      : upf_object_handle;
                   power_state : upf_object_handle )
  return Boolean;

  -- Set the object to the specified power state.
  -- This function returns TRUE on success.
  -- It returns FALSE on failure.
  -- The function will fail if any aspect of the power state definition
  -- that is fully implemented is not in the state required to match
  -- the specified power state.
  -- For example, if the power state is defined in terms of only
  -- symbolic supply sets, domain names (implied primary supply set of
  -- the domain) and isolation and retention strategy names (implied
  -- isolation and retention supply sets) and no supply nets have
  -- been created and associated with those supply sets, then this
  -- function can be freely used to change the symbolic power state
  -- of the object.
  -- If however, the power state is also defined in terms of:
  --   1. The state of a logic signal or port (e.g., for use to control
  --      a power switch), then that logic signal/port must already 
  --      have the value required by the power state.  That is, a check 
  --      is made to ensure the logic net has the required value.  The 
  --      logic net or port is not changed as a result of this command.
  --   2. The state of a supply port or net.  Then that supply must 
  --      already have the required net state as defined by the power 
  --      state.  A power state at this level of specification 
  --      indicates that the low power design has progressed to the 
  --      point of explicitly creating the supply net or port.  
  --      Therefore, the state of such explicitly created supply nets 
  --      and ports must be set outside of this command
  function set_power_state( object      : upf_object_handle;
                            power_state : upf_object_handle;
                            after       : TIME := 0 ns )
  return Boolean;

  -- Routines to facilitate type conversion of a supply net state to a 
  -- logic value; specifically, for use in connecting a supply net to a 
  -- logic port that is tied high or tied low.
  
  -- Returns 1 if the supply net is ON at any voltage level > 0.0.
  -- Returns X if the supply net is OFF or PARTIAL_ON.
  -- It is up to the user to ensure that a proper supply net is
  -- connected to a power net.
  function tie_hi ( supply_net : supply_net_type )
  return std_logic;
  
  -- Returns 0 if the supply net is OFF.
  -- Returns X if the supply net is ON or PARTIAL_ON.
  -- It is up to the user to ensure that a proper supply net is
  -- connected to a ground net.
  function tie_lo ( supply_net : supply_net_type )
200 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

  return std_logic;
end package UPF;

B.2 SystemVerilog

The following defines the SystemVerilog package for UPF.

package UPF;

  // Bit encoding of the state type is provided
  // for backward compatibility to UPF 1.0.
  typedef enum {OFF = 0,
                UNDETERMINED,
                PARTIAL_ON,
                FULL_ON} state;

  // The provided routines shall be used to ensure
  // the HDL code is independent of the details of the supply net
  // type implementation.  This ensures portability and forward
  // compatibility of the HDL.
  // The supply net type implementation is openly specified for
  // the following reasons:
  //   1.  Users know how supply net and port values will visually
  //       appear in tools such as wave windows.
  //   2.  C language access by user or 3rd party tools can depend
  //       on existing functionality to read and write supply
  //       values.
  //
  // Tools implementing this package may optimize the supply data
  // type as long as the 2 items above are preserved and the
  // supply value set and get routines are supported.
  typedef struct packed {
    state state;   // UPF reserves 32 bits
    int       voltage; // voltage in ?V
  } supply_net_type;

  // Types used to navigate and to find UPF objects in
  // the design hierarchy
  typedef chandle upf_object_handle;

  typedef enum {ERROR_KIND,
                SWITCH, ISOLATION_CELL, LEVEL_SHIFTER,
                SUPPLY_SET, SUPPLY_NET, SUPPLY_PORT,
                ROOT_SUPPLY_DRIVER,
                LOGIC_NET, LOGIC_PORT,
                INSTANCE,
                POWER_DOMAIN,
                UPF_POWER_STATE,
                ITERATOR,
                OTHER } object_kind;

  // NOTE:  UNDETERMINED is not defined as a power state kind as
  //        it is replaced during simulation with a determined state
  typedef enum
    {ERROR_PS, OPERATING, ILLEGAL, TRANSIENT} power_state_kind;
Copyright © 2009 IEEE. All rights reserved. 201

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

  typedef enum
    {NORMAL, CORRUPT, CORRUPT_ON_ACTIVITY, CORRUPT_STATE_ON_CHANGE,
     CORRUPT_STATE_ON_ACTIVITY} power_state_simstate;

  // SystemVerilog does not support subtype definitions
  // Therefore, there is no equivalent to the VHDL subtype
  // definition of supply_kind.

  // Voltage is a real value in volts that is converted into
  // an integer value normalized to microvolts
  // SystemVerilog does not support function overloading by
  // input parameter type.  Therefore, a 2nd version of functions
  // is specified.
  function bit supply_on( string pad_name, real value = 1.0);
  endfunction
  function bit supply_on_from_handle(
    upf_object_handle supply, real value = 1.0);
  endfunction

  function bit supply_off( string pad_name );
  endfunction

  function bit supply_partial_on( string pad_name, real value = 1.0 );
  endfunction

  function supply_net_type get_supply_value( string name );
  endfunction
  function supply_net_type get_supply_value_from_handle(
    upf_object_handle supply );
  endfunction

  function real get_supply_voltage( supply_net_type arg );
  endfunction

  function bit get_supply_on_state( supply_net_type arg );
  endfunction

  function state get_supply_state( supply_net_type arg );
  endfunction

  // Routines to navigate and find UPF objects in the design
  // hierarchy

  // The initial scope shall be the root of the simulation
  // which allows access to the testbench as well as design
  // under verification.
  // If inst_path is valid for the active scope, then
  // the function changes the scope to that instance.
  // The function returns TRUE on success, FALSE if the
  // the scope cannot be set as requested.
  function bit set_scope( string inst_path );
  endfunction

  // This function returns the active scope's complete
  // instance path from the root of the simulation.
  function string get_scope( );
  endfunction

  // Tests the handle and returns TRUE if the handle is valid
202 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

  // and FALSE if it is invalid
  function bit is_valid_handle( upf_object_handle handle );
  endfunction

  // Get a handle to a design object (either HDL or UPF
  // created).  If a qualifier is required to differentiate
  // objects in different name spaces at the same scope, then
  // the qualifier string shall not be null.  See section 7.x
  // for a list of valid qualifier strings.
  // Returns a valid handle on success; invalid handle on failure
  function upf_object_handle get_object(
    string inst_path, string qualifier = "" );
  endfunction

  // Returns the kind of object that the handle refers
  // to.
  // If the handle is not valid, ERROR object kind is
  // returned.
  function object_kind get_object_kind( upf_object_handle handle );
  endfunction

  // Returns TRUE if the kind of object referenced by
  // handle is a supply_net, supply_port or
  // root_supply_driver.
  // Returns FALSE otherwise.
  function bit is_supply_kind ( upf_object_handle handle );
  endfunction

  // For a supply kind of object referenced by handle,
  // return the state of that object.
  // It is the caller's responsibility to ensure that
  // the handle passed references a supply kind of object.
  // If the object is not a supply kind, the value returned
  // is UNDETERMINED
  function state get_supply_state_from_handle(
    upf_object_handle handle );
  endfunction

  // For a supply kind of object referenced by handle,
  // return the voltage of that object.
  // It is the caller's responsibility to ensure that
  // the handle passed references a supply kind of object.
  // If the object is not a supply kind, the value returned
  // is -1.0.
  function real get_supply_voltage_from_handle( upf_object_handle handle );
  endfunction

  // For a handle that references a supply kind object, sets
  // the net state and voltage of the supply.
  // Returns TRUE on success.
  // Returns FALSE if the supply state cannot be set or
  // if the object that handle references is not a supply
  // kind of object.
  function bit assign_supply_state(
    upf_object_handle handle,
    state state = OFF,
    real voltage = 0.0,
    time after := 0ns );
  endfunction
Copyright © 2009 IEEE. All rights reserved. 203

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

  // Quick checks for the information specified by the function name.
  // All functions return TRUE if the information/state
  // specified is true for the object referenced by handle.
  // Returns FALSE if it is not true or if the information/
  // state being compared or check is not applicable to the
  // kind of object that handle references.
  function bit is_supply_full_on ( upf_object_handle handle  );
  endfunction

  function bit is_supply_off ( upf_object_handle handle );
  endfunction

  function bit is_supply_partial_on ( upf_object_handle handle );
  endfunction

  function bit is_supply_undetermined ( upf_object_handle handle );
  endfunction

  function bit is_supply_equal (
    upf_object_handle handle,
    state         state,
    real              voltage );
  endfunction

  // Both handles must reference a supply kind of object.
  // Returns TRUE if states are the same and, if
  // state is not OFF, the voltages are the same.
  // This function does not check the root supply drivers of
  // the supplies or any other connectivity aspects of the supplies
  function bit are_supplies_equivalent (
    upf_object_handle handle1,
    upf_object_handle handle2 );
  endfunction

  // Assigns the source supply to the destination supply.
  // For purposes of supply net resolution, the destination
  // will be sourced by the same root supply driver as the source.
  // (The source may be a root supply driver.)
  // Returns TRUE on success, FALSE on failure.
  function bit assign_supply2supply(
    upf_object_handle destination,
    upf_object_handle source,
    time              after := 0ns );
  endfunction

  // Creates a root supply driver than can be used to drive
  // one or more supply nets from within an HDL model of a supply
  // network component (HDL model of a bias generator, for example).
  // The root supply driver is created within the scope of the parent.
  // The parent and driver name information may be used for error
  // reporting.
  // Returns a valid object handle on success and an invalid object
  // handle on failure.
  function upf_object_handle create_root_supply_driver (
    string            driver_name,
    upf_object_handle parent );
  endfunction
204 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

  // Routines to query and set power states on various objects.
  // There can be 0, 1 or many power states defined for a given
  // object.  The iterator provides a mechanism to retrieve a
  // an opaque list handled by the tool.
  // If there are 0 power states, then the handle returned is
  // an invalid handle.
  function upf_object_handle get_iterator_for_all_ps (
    upf_object_handle handle );
  endfunction

  // Returns an iterator referencing all power states of the
  // specified object that are active when the call is made.
  // The returned handle is invalid if there are no power states
  // defined for the specified handle or if none of the power
  // states defined are active.
  function upf_object_handle get_iterator_for_all_active_ps (
    upf_object_handle handle );
  endfunction

  // If there are more items in the iterator, this routine
  // will return the next item in the iterator.
  // Otherwise, an invalid handle will be returned if there
  // are no more objects to iterate over or if the iterator is
  // invalid
  function upf_object_handle iterate( upf_object_handle iterator );
  endfunction

  // Returns the name of a power state kind of object.
  // Returns the null string if the handle does not reference
  // a power state object.
  function string get_ps_name( upf_object_handle power_state );
  endfunction

  // For a handle referencing a power state object,
  // return the kind of power state.
  // Returns ERROR if the handle is invalid or does
  // not reference a power state object
  function power_state_kind get_ps_kind(
    upf_object_handle power_state );
  endfunction

  // For a handle referencing a power state object,
  // return the simulation state associated with the power state.
  function power_state_simstate get_ps_simstate(
    upf_object_handle power_state );
  endfunction

  // Returns TRUE if the object to which this power state is
  // attributed is in a state consistent with being in this
  // power state.
  // Returns FALSE otherwise (including if the power_state
  // handle is invalid)
  function bit is_active( upf_object_handle power_state );
  endfunction

  // Returns TRUE if the object referenced by handle
  // is in the power state referenced by the power state
  // handle.  If either handle is invalid, it returns FALSE.
Copyright © 2009 IEEE. All rights reserved. 205

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

function bit is_in (
    upf_object_handle handle,
    upf_object_handle power_state );
  endfunction

  // Set the object to the specified power state.
  // This function returns TRUE on success.
  // It returns FALSE on failure.
  // The function will fail if any aspect of the power state definition
  // that is fully implemented is not in the state required to match
  // the specified power state.
  // For example, if the power state is defined in terms of only
  // symbolic supply sets, domain names (implied primary supply set of
  // the domain) and isolation and retention strategy names (implied
  // isolation and retention supply sets) and no supply nets have
  // been created and associated with those supply sets, then this
  // function can be freely used to change the symbolic power state
  // of the object.
  // If however, the power state is also defined in terms of:
  //   1. The state of a logic signal or port (e.g., for use to control
  //      a power switch), then that logic signal/port must already 
  //      have the value required by the power state.  That is, a check 
  //      is made to ensure the logic net has the required value.  The 
  //      logic net or port is not changed as a result of this command.
  //   2. The state of a supply port or net.  Then that supply must 
  //      already have the required net state as defined by the power
  //      state.  A power state at this level of specification 
  //      indicates that the low power design has progressed to the 
  //      point of explicitly creating the supply net or port.   
  //      Therefore, thestate of such explicitly created supply nets 
  //      and ports must be set outside of this command
  function bit set_power_state(
    upf_object_handle object,
    upf_object_handle power_state,
    time              after = 0ns  );
  endfunction

  // Routines to facilitate type conversion of a supply net state to a 
  // logic value; specifically, for use in connecting a supply net to a 
  // logic port that is tied high or tied low.
  
  // Returns 1 if the supply net is ON at any voltage level > 0.0.
  // Returns X if the supply net is OFF or PARTIAL_ON.
  // It is up to the user to ensure that a proper supply net is
  // connected to a power net.
  function logic tie_hi ( supply_net_type supply_net );
  endfunction
  
  // Returns 0 if the supply net is OFF.
  // Returns X if the supply net is ON or PARTIAL_ON.
  // It is up to the user to ensure that a proper supply net is
  // connected to a ground net.
  function logic tie_lo ( supply_net_type supply_net );
  endfunction

endpackage : UPF
206 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

Annex C

(normative) 

Value conversion tables (VCTs)

The predefined value conversion tables (VCTs) are as follows:

C.1 VHDL_SL2UPF

create_hdl2upf_vct VHDL_SL2UPF
-hdl_type vhdl
-table { {'U' UNDETERMINED}
              {'X' UNDETERMINED}
              {'0' OFF}
              {'1' FULL_ON}
              {'Z' UNDETERMINED}
              {'L' OFF}
              {'H' FULL_ON}
              {'W' UNDETERMINED}
              {'-' UNDETERMINED}}

C.2 UPF2VHDL_SL

create_upf2hdl_vct UPF2VHDL_SL
-hdl_type vhdl
-table {{UNDETERMINED 'X'}
             {PARTIAL_ON 'X'}
             {FULL_ON '1'}
             {OFF '0'}}

C.3 VHDL_SL2UPF_GNDZERO

create_hdl2upf_vct VHDL_SL2UPF_GNDZERO
-hdl_type vhdl
-table { {'U' UNDETERMINED}
              {'X' UNDETERMINED}
              {'0' FULL_ON}
              {'1' OFF}
              {'Z' UNDETERMINED}
              {'L' FULL_ON}
              {'H' OFF}
              {'W' UNDETERMINED}
              {'-' UNDETERMINED}}

C.4 UPF_GNDZERO2VHDL_SL

create_upf2hdl_vct UPF_GNDZERO2VHDL_SL
-hdl_type vhdl
Copyright © 2009 IEEE. All rights reserved. 207

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

-table {{UNDETERMINED 'X'}
             {PARTIAL_ON 'X'}
             {OFF '1'}
             {FULL_ON '0'}}

C.5 SV_LOGIC2UPF

create_hdl2upf_vct SV_LOGIC2UPF
-hdl_type sv
-table {{'X UNDETERMINED}
            {'1 PARTIAL_ON }
            {'1 FULL_ON }
            {'0 OFF }}

C.6 UPF2SV_LOGIC

create_upf2hdl_vct UPF2SV_LOGIC
-hdl_type sv
-table {{UNDETERMINED 'X}
            {PARTIAL_ON 'X}
            {FULL_ON '1}
            {OFF '0}}

C.7 SV_LOGIC2UPF_GNDZERO

create_hdl2upf_vct SV_LOGIC2UPF_GNDZERO
-hdl_type sv
-table {{'X' UNDETERMINED}
              {'0' FULL_ON}
              {'1' OFF}
              {'Z' UNDETERMINED}}

C.8 UPF_GNDZERO2SV_LOGIC

create_upf2hdl_vct UPF_GNDZERO2SV_LOGIC
-hdl_type sv
-table {{UNDETERMINED 'X}
             {PARTIAL_ON 'X}
             {OFF '1}
             {FULL_ON '0}}

C.9 VHDL_TIED_HI

create_upf2hdl_vct VHDL_TIED_HI
-hdl_type vhdl
-table {{UNDETERMINED 'X'}
            {FULL_ON '1'}
            {PARTIAL_ON 'X'}
            {OFF 'X'}}
208 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

C.10 SV_TIED_HI

create_upf2hdl_vct SV_TIED_HI
-hdl_type sv 
-table {{UNDETERMINED 'X}
            {FULL_ON '1}
            {PARTIAL_ON 'X}
            {OFF 'X}}

C.11 VHDL_TIED_LO

create_upf2hdl_vct VHDL_TIED_LO
-hdl_type vhdl
-table {{UNDETERMINED 'X'}
            {FULL_ON '0'}
            {PARTIAL_ON '0'}
            {OFF 'X'}}

C.12 SV_TIED_LO

create_upf2hdl_vct SV_TIED_LO
-hdl_type sv
-table {{UNDETERMINED 'X}
            {FULL_ON '0}
            {PARTIAL_ON 'X}
            {OFF 'X}}
Copyright © 2009 IEEE. All rights reserved. 209

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



A
uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

Annex D

(informative) 

UPF procs

This annex contains Tcl procs developed to support the use of UPF.

load_protect_upf

proc load_protected_upf args {
  #
  # Default is to allow globals to be modified
  #
  set load_protected_hideGlobals 0

  #
  # Parse the command arguments
  #
  for {set i 0} {$i < [llength $args]} {incr i 1} {
    set arg [lindex $args $i]
    #
    # Handle options
    #
    if { [string index $arg 0] == "-" } {
      if { [string match "$arg*" "-version"] } {
        incr i 1
        set load_protected_version [lindex $args $i]
      } else {
        if { [string match "$arg*" "-scope"] } {
          incr i 1
          set load_protected_scope [lindex $args $i]
        } else {
          if { [string match "$arg*" "-params"] } {
            incr i 1
            set load_protected_params [lindex $args $i]
          } else {
            if { [string match "$arg*" "-hide_globals"] } {
              set load_protected_hideGlobals 1
            } else {
              puts "Error : load_protected_upf : 

Unrecognised option $arg to load_protected_upf"
              return 0
            }
          }
        }
      }
    } else {
      #
      # There must be exactly one fileName argument
      #
      if { [info exists load_protected_fileName] } {
        puts "Error : load_protected_upf : File name 

$load_protected_fileName already specified when parsing $arg"
        return 0
      }
Copyright © 2009 IEEE. All rights reserved. 211

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

      set load_protected_fileName $arg
    }
  }

  #
  # Must specify file to load
  #
  if { ![info exists load_protected_fileName] } {
    puts "Error : load_protected_upf : No file name specified"
    return 0
  }

  #
  # Problem in Tcl if the errorInfo global variable is unset
  #
  set load_protected_keepGlobalsList [list errorInfo]

  #
  # Add the names of any globals that the tool relies on
  #
#  lappend load_protected_keepGlobalsList toolGlobal

  #
  # Handle any params
  #
  if { [info exists load_protected_params] } {
    foreach load_protected_param $load_protected_params {
      set load_protected_par [split $load_protected_param]
      if { [llength $load_protected_par] > 2 } {
        puts "Error : load_protected_upf : Bad param '$load_protected_param'"
        return 0
      }
      if { [llength $load_protected_par] == 1 } {
        #
        # Just paramName so make it global
        #
        lappend load_protected_keepGlobalsList [lindex $load_protected_par 0]
        global [lindex $load_protected_par 0]
      } else {
        #
        # paramName and paramValue so initialise local variable
        #
        set [lindex $load_protected_par 0] [lindex $load_protected_par 1]
      }
    }
  }

  #
  # Are we protecting globals from modification ?
  #
  if { $load_protected_hideGlobals } {
    #
    # Save the active values of all the globals
    # Unset all the globals apart from the ones in keepGlobalsList
    #
    set load_protected_globalList [load_protected_save_globals 

$load_protected_keepGlobalsList]
  }
212 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

  #
  # Set the UPF version if requested
  #
  set load_protected_origVersion [set_upf_version]
  if { [info exists load_protected_version] } {
    set load_protected_origVersion [set_upf_version $load_protected_version]
  }

  #
  # Set the scope if requested
  #
  set load_protected_origScope [set_scope .]
  if { [info exists load_protected_scope] } {
    set load_protected_hierarchy_eparator [set_hierarchy_separator]
    set_scope $load_protected_scope
    if { [set_scope .] == $load_protected_hierarchy_separator && 

$load_protected_scope != $load_protected_hierarchy_separator } {
      puts "Error : load_protected_upf : failed to set scope to 

$load_protected_scope"
      set_scope $load_protected_origScope
      return 0
    }
  }

  #
  # Source the UPF file
  #
  if [catch {source $load_protected_fileName} load_protected_mssg] {
    #
    # Some error detected during sourcing the file
    #
    puts "Error : load_protected_upf : $load_protected_mssg"
    if { $load_protected_hideGlobals } {
      #
      # Restore the global variables if we unset them
      #
      load_protected_restore_globals $load_protected_globalList 

$load_protected_keepGlobalsList
    }
    set_scope $load_protected_origScope
    set_upf_version $load_protected_origVersion
    return 0
  }

  #
  # Restore the global variables if we unset them
  #
  if { $load_protected_hideGlobals } {
    load_protected_restore_globals $load_protected_globalList 

$load_protected_keepGlobalsList
  }

  #
  # Restore the scope in case it got changed
  #
  set_scope $load_protected_origScope

  #
  # Restore the version in case it got changed
Copyright © 2009 IEEE. All rights reserved. 213

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

  #
set_upf_version $load_protected_origVersion
  return 1
}

#
# Demonstration implementation of load_protected_save_globals
#
# Purpose :
#    Capture the active value of all global variables and unset them
#
# Usage :
#   load_protected_save_globals keepGlobalsList
#
#     keepGlobalsList list of global variable names that will not be unset
#
#    Returns list of names of variables that were unset plus a string that can
#    be evaluated to restore its original value
#
proc load_protected_save_globals 

{load_protected_save_globals_keepGlobalsList} {

  set load_protected_save_globals_globalList [list]

  #
  # Get list of all the global variable names
  #
  set load_protected_save_globals_infoList [info globals]
  for {set load_protected_save_globals_i 0} {$load_protected_save_globals_i < 

[llength $load_protected_save_globals_infoList]} {incr 
load_protected_save_globals_i 1} {

    set load_protected_save_globals_name [lindex 
$load_protected_save_globals_infoList $load_protected_save_globals_i]

    #
    # Skip the variable if it is in the keepGlobalsList
    #
    if { [lsearch $load_protected_save_globals_keepGlobalsList 

$load_protected_save_globals_name] >= 0 } {
      continue
    }

    #
    # Access its active value
    #
    global [lindex $load_protected_save_globals_infoList 

$load_protected_save_globals_i]

    #
    # Only need to save it if it exists
    #
    if { ![info exists $load_protected_save_globals_name] } {
      continue
    }

    if { [array exists $load_protected_save_globals_name] } {
      #
      # Array value. Convert to a list
      #
214 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

      set load_protected_save_globals_str "array set 
$load_protected_save_globals_name \[list [array get 
$load_protected_save_globals_name]]"

    } else {
      if { [llength [set [lindex $load_protected_save_globals_infoList 

$load_protected_save_globals_i]]] > 1 } {
        #
        # List value
        #
        set load_protected_save_globals_str "set 

$load_protected_save_globals_name \[list [set [lindex 
$load_protected_save_globals_infoList $load_protected_save_globals_i]]]"

      } else {
        #
        # Simple value
        #
        set load_protected_save_globals_str "set 

$load_protected_save_globals_name \"[set [lindex 
$load_protected_save_globals_infoList $load_protected_save_globals_i]]\""

      }
    }
    lappend load_protected_save_globals_globalList [list 

$load_protected_save_globals_name $load_protected_save_globals_str]

    #
    # Destroy the existing global variable
    #
    unset $load_protected_save_globals_name
  }
  return $load_protected_save_globals_globalList
}
#
# Demonstration implementation of load_protected_restore_globals
#
# Purpose :
#    Restore original values of global variables
#
# Usage :
#   load_protected_restore_globals globalList keepGlobalsList
#
#     globalList list of global variable names and string to be evaluated to set
#     the variables value
#     keepGlobalsList list of globals to be left untouched
#
proc load_protected_restore_globals 

{load_protected_restore_globals_globalList 
load_protected_restore_globals_keepGlobalsList} {

  # Destroy all the globals except the ones on the keepGlobalsList list
  set load_protected_restore_globals_infoList [info globals]
  for {set load_protected_restore_globals_i 0} 

{$load_protected_restore_globals_i < [llength 
$load_protected_restore_globals_infoList]} {incr 
load_protected_restore_globals_i 1} {

    set load_protected_restore_globals_name [lindex 
$load_protected_restore_globals_infoList 
$load_protected_restore_globals_i]

    #
Copyright © 2009 IEEE. All rights reserved. 215

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

    # Skip the variable if it is in the 
load_protected_restore_globals_keepGlobalsList

    #
    if { [lsearch $load_protected_restore_globals_keepGlobalsList 

$load_protected_restore_globals_name] >= 0 } {
      continue
    }

    #
    # Access its active value
    #
    global [lindex $load_protected_restore_globals_infoList 

$load_protected_restore_globals_i]

    #
    # Destroy the existing global variable
    #
    unset $load_protected_restore_globals_name
  }

  # Re-create the original globals
  foreach load_protected_restore_globals_globalVariable 

$load_protected_restore_globals_globalList {
    #
    # Make the variable global
    #
    global [lindex $load_protected_restore_globals_globalVariable 0]
    #
    # Set its value
    #
    eval [lindex $load_protected_restore_globals_globalVariable 1]
  }
}

216 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



VERIFICATION OF LOW POWER INTEGRATED CIRCUITS IEEE Std 1801-2009

A

Annex E

(informative) 

De-rating factor for inertial glitch

In 8.3.4, glitching activities are categorized into two types, transport glitches and inertial glitches, and
number of the glitch transitions are reported in the SAIF file. Transport glitches consume the same amount
of power as normal toggles, so power consumption can be accurately calculated based on the number of
transition. For inertial glitches, however, the number of transitions is not enough to accurately estimate the
inertial glitching power dissipation.

To improve the accuracy for inertial glitching power estimation, it is recommended that a simulator provide
a de-rating factor for each node in the circuit that has inertial glitches. As described below, this de-rating
factor can be used to scale the inertial glitch count to an effective count of normal toggle transition. Power
analysis tools can use the adjusted inertial glitch count to improve estimation accuracy.

Assume a gate has a total number of k delays, with a delay value of Ti (i = 1...k) for each delay.

Define Ni (i = 1...k) as the total number of inertial glitch pulses due to the delay Ti, and δij as the timing
difference of the input events that cause glitch j (j = 1...Ni) due to the delay Ti.

Define Ne as the total number of inertial glitch edges of the gate. It is easy to see that Ni and Ne satisfy
Equation (E.1).

(E.1)

NOTE—The total number of the glitch pulses is half of the total number of the glitch edges.

With the parameters defined above, a de-rating factor can be defined as shown in Equation (E.2).

(E.2)

Here is an example of how to use the de-rating factor. Consider again the example of the inverter shown in
Figure E.1. 

Figure E.1—Inverter

The power consumption at the output can be approximated as shown in Equation (E.3).

Ni

i 1=

k

∑
Ne

2
------=

K 2

δi j

Ti
-----

j

Ni

∑
i

k

∑

Ne
-------------------×=
Copyright © 2009 IEEE. All rights reserved. 217

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.



IEEE Std 1801-2009 IEEE STANDARD FOR DESIGN AND

A

(E.3)

where 
P0  is the power consumption of the gate during one normal full-level transition
δ is the timing difference of the two input events that cause the glitch
T is the delay of the inverter

This equation indicates that the inertial glitching power dissipation can be roughly modeled by the timing
difference of the input events that causes the glitch, and the delay of the gate beyond which there is no
inertial glitch.

Accordingly, for a node with a total of Ni number of inertial glitch pulses due to the delay Ti (i = 1...k), the
total power consumption can be estimated as shown in Equation (E.4).

(E.4)

Replace it with the de-rating factor K, the power consumption can be simplified as shown in Equation (E.5).

(E.5)

This suggests that the inertial glitching power can be calculated by converting the number of glitching
transitions into the number of normal transitions by applying a de-rating factor.

P δ
T
--- 2 P×× 0= 0 δ T≤ ≤

P
δij

Ti
-----

j 1=

Ni

∑
i 1=

k

∑ 2 P×× 0=

P K Ne P0××=
218 Copyright © 2009 IEEE. All rights reserved. 

uthorized licensed use limited to: ST Microelectronics. Downloaded on May 27, 2009 at 11:23 from IEEE Xplore.  Restrictions apply.


	IEEE Standard for Design and Verification of Low Power Integrated Circuits
	IEEE Std 1801-2009 title page
	Introduction
	Notice to users
	Copyrights
	Updating of IEEE documents
	Errata
	Interpretations
	Patents

	Participants
	CONTENTS
	Important Notice
	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Key characteristics of the Unified Power Format (UPF)
	1.4 Power supply network design intent
	1.5 Extending logic specification
	1.6 Conventions used
	1.7 Use of color in this standard
	1.8 Contents of this standard

	2. Normative references
	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. Power domains, supply sets, name spaces, and precedence
	4.1 Power domains
	4.2 Supply nets and ports
	4.3 Supply sets
	4.3.1 Explicit connection of supply nets
	4.3.2 Automatic connection of supply nets
	4.3.3 Implicit connection of supply nets
	4.3.4 Predefined supply set functions

	4.4 Naming rules
	4.5 Name space semantics
	4.6 Attributes and HDLs
	4.7 Precedence
	4.8 Lexical elements
	4.9 Units
	4.10 Boolean expressions

	5. Simulation semantics
	5.1 Supply network creation
	5.2 Supply network simulation semantics
	5.2.1 Supply network initialization
	5.2.2 Supply network update and evaluation

	5.3 Power switch modeling
	5.4 Power states
	5.4.1 Power states of supply nets and ports
	5.4.2 Power states of supply sets
	5.4.3 Power states of power domains
	5.4.4 Power states of systems and subsystems

	5.5 Power state name spaces
	5.6 Simstate simulation semantics
	5.6.1 NORMAL
	5.6.2 CORRUPT
	5.6.3 CORRUPT_ON_ACTIVITY
	5.6.4 CORRUPT_STATE_ON_CHANGE
	5.6.5 CORRUPT_STATE_ON_ACTIVITY
	5.6.6 NOT_NORMAL

	5.7 Transitioning from one simstate state to another
	5.7.1 Any state transition to CORRUPT
	5.7.2 Any state transition to CORRUPT_ON_ACTIVITY
	5.7.3 Any state transition to CORRUPT_STATE_ON_CHANGE
	5.7.4 Any state transition to CORRUPT_STATE_ON_ACTIVITY
	5.7.5 Any state transition to NORMAL
	5.7.6 Any state transition to NOT_NORMAL


	6. Commands
	6.1 Conventions used
	6.2 Generic UPF command semantics
	6.3 effective_element_list semantics
	6.3.1 Transitive TRUE
	6.3.2 Result

	6.4 Command refinement
	6.5 Error handling
	6.5.1 errorCode
	6.5.2 errorInfo

	6.6 add_domain_elements
	6.7 add_port_state
	6.8 add_power_state
	6.9 add_pst_state
	6.10 associate_supply_set
	6.11 bind_checker
	6.12 connect_logic_net
	6.13 connect_supply_net
	6.14 connect_supply_set
	6.15 create_composite_domain
	6.16 create_hdl2upf_vct
	6.17 create_logic_net
	6.18 create_logic_port
	6.19 create_power_domain
	6.20 create_power_switch
	6.21 create_pst
	6.22 create_supply_net
	6.22.1 Supply net resolution
	6.22.2 Resolutions methods
	6.22.3 Supply nets defined in HDL

	6.23 create_supply_port
	6.24 create_supply_set
	6.24.1 Predefined supply set functions
	6.24.2 Referencing supply set functions

	6.25 create_upf2hdl_vct
	6.26 describe_state_transition
	6.27 load_simstate_behavior
	6.28 load_upf
	6.29 load_upf_protected
	6.30 map_isolation_cell
	6.31 map_level_shifter_cell
	6.32 map_power_switch
	6.33 map_retention_cell
	6.34 merge_power_domains
	6.35 name_format
	6.36 save_upf
	6.37 set_design_attributes
	6.38 set_design_top
	6.39 set_domain_supply_net
	6.40 set_isolation
	6.41 set_isolation_control
	6.42 set_level_shifter
	6.43 set_partial_on_translation
	6.44 set_pin_related_supply
	6.45 set_port_attributes
	6.46 set_power_switch
	6.47 set_retention
	6.48 set_retention_control
	6.49 set_retention_elements
	6.50 set_scope
	6.51 set_simstate_behavior
	6.52 upf_version
	6.53 use_interface_cell

	7. Queries
	7.1 find_objects
	7.1.1 Pattern matching and wildcarding
	7.1.2 Wildcarding examples

	7.2 query_upf
	7.3 query_associate_supply_set
	7.4 query_bind_checker
	7.5 query_cell_instances
	7.6 query_cell_mapped
	7.7 query_composite_domain
	7.8 query_design_attributes
	7.9 query_hdl2upf_vct
	7.10 query_isolation
	7.11 query_isolation_control
	7.12 query_level_shifter
	7.13 query_map_isolation_cell
	7.14 query_map_level_shifter_cell
	7.15 query_map_power_switch
	7.16 query_map_retention_cell
	7.17 query_name_format
	7.18 query_net_ports
	7.19 query_partial_on_translation
	7.20 query_pin_related_supply
	7.21 query_port_attributes
	7.22 query_port_direction
	7.23 query_port_net
	7.24 query_port_state
	7.25 query_power_domain
	7.26 query_power_domain_element
	7.27 query_power_state
	7.28 query_power_switch
	7.29 query_pst
	7.30 query_pst_state
	7.31 query_retention
	7.32 query_retention_control
	7.33 query_retention_elements
	7.34 query_simstate_behavior
	7.35 query_state_transition
	7.36 query_supply_net
	7.37 query_supply_port
	7.38 query_supply_set
	7.39 query_upf2hdl_vct
	7.40 query_use_interface_cell

	8. Switching Activity Interchange Format (SAIF)
	8.1 Syntactic conventions
	8.2 Lexical conventions
	8.2.1 White space
	8.2.2 Comments
	8.2.3 Numbers
	8.2.4 Strings
	8.2.5 Parenthesis
	8.2.6 Operators
	8.2.7 Hierarchical separator character
	8.2.8 Identifiers
	8.2.9 Keywords
	8.2.10 Syntactic categories for token types

	8.3 Backward SAIF file
	8.3.1 SAIF file
	8.3.2 Header
	8.3.3 Simple timing attributes
	8.3.4 Simple toggle attributes
	8.3.5 State-dependent timing attributes
	8.3.6 State-dependent toggle attributes
	8.3.7 Path-dependent toggle attributes
	8.3.8 SDPD toggle attributes
	8.3.9 Net, port, and leakage switching specifications
	8.3.10 Backward SAIF info and instance data

	8.4 Library forward SAIF file
	8.4.1 The SAIF file
	8.4.2 State-dependent timing directive
	8.4.3 State-dependent toggle directive
	8.4.4 Path-dependent toggle directive
	8.4.5 SDPD toggle directives
	8.4.6 Module SDPD declarations
	8.4.7 Library SDPD information

	8.5 The RTL forward SAIF file
	8.5.1 The SAIF file
	8.5.2 Port and net mapping directives
	8.5.3 Instance declarations


	Annex A (informative) Bibliography
	Annex B (normative) Supply net logic type
	B.1 VHDL
	B.2 SystemVerilog

	Annex C (normative) Value conversion tables (VCTs)
	C.1 VHDL_SL2UPF
	C.2 UPF2VHDL_SL
	C.3 VHDL_SL2UPF_GNDZERO
	C.4 UPF_GNDZERO2VHDL_SL
	C.5 SV_LOGIC2UPF
	C.6 UPF2SV_LOGIC
	C.7 SV_LOGIC2UPF_GNDZERO
	C.8 UPF_GNDZERO2SV_LOGIC
	C.9 VHDL_TIED_HI
	C.10 SV_TIED_HI
	C.11 VHDL_TIED_LO
	C.12 SV_TIED_LO

	Annex D (informative) UPF procs
	Annex E (informative) De-rating factor for inertial glitch

