
EE141

EECS151/251A 
Spring	2019  
Digital	Design	and	
Integrated	Circuits
Instructors:		
John	Wawrzynek

Lecture 23: 
Constant Coefficient Multipliers, 
Counters, LFSRs, Shifters



EE141

Outline
❑ Constant Coefficient 

Multiplication 
❑ Shifters 
❑ Counters 
❑ LFSRs 

 2



EE141

Constant Multiplication
❑ Our multiplier circuits so far has assumed both the 

multiplicand (A) and the multiplier (B) can vary at runtime. 
❑ What if one of the two is a constant? 
    Y = C * X 
❑ “Constant Coefficient” multiplication comes up often in 

signal processing and other hardware.  Ex: 

   yi = αyi-1+ xi  

  where  α is an application dependent constant that is 
hard-wired into the circuit. 

❑ How do we build and array style (combinational) multiplier 
that takes advantage of the constancy of one of the 
operands?

xi yi
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Multiplication by a Constant
❑ If the constant C in C*X is a power of 2, then the multiplication is simply 

a shift of X.   
❑ Ex: 4*X 

❑ What about division? 

❑ What about multiplication by non- powers of 2?
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Multiplication by a Constant
❑ In general, a combination of fixed shifts and addition: 

▪ Ex: 6*X  =  0110 * X  =  (22 + 21)*X = 22 X + 21 X  

▪ Details:
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Multiplication by a Constant
❑ Another example: C = 2310 = 010111 

❑ In general, the number of additions equals one less than the number of 
1’s in the constant. 

❑ Using carry-save adders (for all but one of these) helps reduce the 
delay and cost, and using balanced trees helps with delay, but the 
number of adders is still the number of 1’s in C minus 2. 

❑ Is there a way to further reduce the number of adders (and thus the cost 
and delay)?
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Multiplication using Subtraction
❑ Subtraction is approximately the same cost and delay as 

addition. 
❑ Consider C*X where C is the constant value 1510 = 01111. 
        C*X requires 3 additions. 
❑ We can “recode” 15  
   from  01111 =  (23 + 22 + 21 + 20 ) 
   to      10001 = (24 - 20 ) 
 where 1 means negative weight. 
❑ Therefore, 15*X can be implemented with only one subtractor.
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Canonic Signed Digit Representation
❑ CSD represents numbers using 1, 1, & 0 with the least 

possible number of non-zero digits.   
▪ Strings of 2 or more non-zero digits are replaced. 
▪ Leads to a unique representation. 

❑ To form CSD representation might take 2 passes: 
▪ First pass: replace all occurrences of 2 or more 1’s:  
    01..10 by 10..10 
▪ Second pass: same as above, plus replace 0110 by 0010           

and 0110 by 0010  
❑ Examples: 

❑ Can we further simplify the multiplier circuits? 

0010111  =  23 
0011001 
0101001 = 32 - 8 - 1011101  =  29 

100101  =  32 - 4 + 1

0110110  =  54 
1011010 
1001010 = 64 - 8 - 2
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“Constant Coefficient Multiplication” (KCM)
Binary multiplier:  Y = 231*X = (27 + 26 + 25 + 22 + 21+20)*X 

❑ CSD helps, but the multipliers are limited to shifts followed by adds. 
▪ CSD multiplier:  Y = 231*X = (28 - 25 + 23 - 20)*X 

❑ How about shift/add/shift/add …? 
▪ KCM multiplier:  Y = 231*X = 7*33*X = (23 - 20)*(25 + 20)*X 

❑ No simple algorithm exists to determine the optimal KCM representation. 
❑ Most use exhaustive search method.
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Shifters
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Fixed Shifters / Rotators Defined

Logical 
Shift

Rotate

Arithmetic 
Shift
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Variable Shifters / Rotators
• Example:  X >> S, where S is unknown when we synthesize the circuit. 
• Uses: shift instruction in processors (ARM includes a shift on every 

instruction), floating-point arithmetic, division/multiplication by powers of 
2, etc.   

• One way to build this is a simple shift-register: 
a) Load word,  b) shift enable for S cycles,  c) read word. 

– Worst case delay O(N) , not good for processor design. 
– Can we do it in O(logN) time and fit it in one cycle?
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Log Shifter / Rotator
❑ Log(N) stages, each shifts (or not) by a power of 2 places, S=[s2;s1;s0]:

Shift by N/2

Shift by 2

Shift by 1
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LUT Mapping of Log shifter 

Efficient with 2to1 multiplexors, for instance, 3LUTs.

Virtex6 has 6LUTs.  Naturally makes 4to1 muxes:

Reorganize shifter to use 4to1 muxes.

Final stage 
uses F7 mux 
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“Improved” Shifter / Rotator
❑ How about this approach?  Could it lead to even less delay? 

❑ What is the delay of these big muxes? 
❑ Look a transistor-level implementation?
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Barrel Shifter
❑ Cost/delay? 

▪ (don’t forget the 
decoder)
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Connection Matrix

❑ Generally useful structure: 
▪ N2 control points.   
▪ What other interesting 

functions can it do?
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Cross-bar Switch
❑ Nlog(N) control 

signals. 
❑ Supports all 

interesting 
permutations 
▪ All one-to-one and 

one-to-many 
connections. 

❑ Commonly used in 
communication 
hardware (switches, 
routers).
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Counters



EE141

Counters
❑ Special sequential circuits (FSMs) that repeatedly 

sequence through a set of outputs.   
❑ Examples: 

▪ binary counter:  000, 001, 010, 011, 100, 101, 110, 111, 
000,  

▪ gray code counter:  
 000, 010, 110, 100, 101, 111, 011, 001, 000, 010, 110, … 
▪ one-hot counter: 0001, 0010, 0100, 1000, 0001, 0010, … 
▪ BCD counter: 0000, 0001, 0010, …, 1001, 0000, 0001 
▪ pseudo-random sequence generators:  10, 01, 00, 11, 10, 

01, 00, ... 
❑ Moore machines with “ring” structure in State 

Transition Diagram: 
S3

S0

S2

S1
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What are they used?
❑ Counters are commonly used in hardware designs because 

most (if not all) computations that we put into hardware 
include iteration (looping).  Examples: 
▪ Shift-and-add multiplication scheme. 
▪ Bit serial communication circuits (must count one “words worth” of 

serial bits. 
❑ Other uses for counter: 

▪ Clock divider circuits 

▪ Systematic inspection of data-structures 
– Example: Network packet parser/filter control. 

❑ Counters simplify “controller” design by: 
▪ providing a specific number of cycles of action, 
▪ sometimes used with a decoder to generate a sequence of timed 

control signals. 
▪ Consider using a counter when FSM has many states with few 

branches.

1/416MHz 16MHz
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Controller using Counters
❑ Example, Bit-serial multiplier (n2 cycles, one bit of result per n cycles): 

❑ Control Algorithm:
repeat n cycles {  // outer (i) loop 
 repeat n cycles{   // inner (j) loop 
  shiftA, selectSum, shiftHI 
 } 
 shiftB, shiftHI, shiftLOW, reset 
}

Note: The occurrence of a control 
signal x means x=1.  The absence 
of x means x=0.
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Controller using Counters
• State Transition Diagram: 

▪ Assume presence of two binary 
counters.  An “i” counter for the 
outer loop and “j” counter for 
inner loop.

TC is asserted when the counter 
reaches it maximum count value. 
CE is “count enable”.  The  counter 
increments its value on the rising  
edge of the clock if CE is asserted.
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Controller using Counters
• Controller circuit 

implementation:
• Outputs: 
  
 CEi = q2 

 CEj = q1 

 RSTi = q0 

 RSTj = q2 

 shiftA = q1 

 shiftB = q2 

 shiftLOW = q2 

 shiftHI = q1 + q2 

 reset = q2 

 selectSUM = q1
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How do we design counters?
❑ For binary counters (most common case) incrementer circuit 

would work: 

❑ In Verilog, a counter is specified as:  x = x+1; 
▪ This does not imply an adder 
▪ An incrementer is simpler than an adder 

❑ In general, the best way to understand counter design is to think 
of them as FSMs, and follow general procedure, however some 
special cases can be optimized.

register

+
1
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Synchronous Counters

❑ Binary Counter Design: 
 Start with 3-bit version and 

generalize:

c  b  a   c+ b+ a+ 

0  0  0   0  0  1 
0  0  1   0  1  0 
0  1  0   0  1  1 
0  1  1   1  0  0 
1  0  0   1  0  1 
1  0  1   1  1  0 
1  1  0   1  1  1 
1  1  1   0  0  0

a+ = a’ 
b+ = a ⊕ b 
  
  
c+ = abc’ + a’b’c + ab’c + a’bc 
    = a’c + abc’ + b’c 
    = c(a’+b’) + c’(ab) 
    = c(ab)’ + c’(ab) 
    = c ⊕ ab

All outputs change with clock edge.
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Synchronous Counters
❑ How do we extend to n-bits? 
❑ Extrapolate c+:  d+ = d ⊕ abc,  e+ = e ⊕ abcd 

❑ Has difficulty scaling (AND gate inputs grow with n) 

❑ CE is “count enable”, allows external control of counting,  
❑ TC is “terminal count”, is asserted on highest value, allows 

cascading, external sensing of occurrence of max value.

TC
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Synchronous Counters
TC

• How does this one scale? 
☹ Delay grows α n

• Generation of TC signals similar to 
generation of carry signals in adder.   

• “Parallel Prefix” circuit reduces delay: 

log2n

log2n

Alternative Parallel Prefix Circuit
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Odd Counts
❑ Extra combinational logic can be 

added to terminate count before 
max value is reached: 

❑ Example: count to 12

• Alternative loadable counter:
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Ring Counters
❑ “one-hot” counters 
0001, 0010, 0100, 1000, 0001, … 

“Self-starting” version:
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“Ripple” counters
A3 A2 A1 A0 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111

time

• Each stage is 1/2 of 
previous. 

• Look at output 
waveforms: 

• Often called 
“asynchronous” 
counters. 

• A “T” flip-flop is a 
“toggle” flip-flop.  Flips 
it state on cycles when 
T=1.

CLK
A0

A1

A2

A3

Usually 
forbidden in 
Synchronous 
Design
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LFSRs
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Linear Feedback Shift Registers (LFSRs)
❑ These are n-bit counters exhibiting pseudo-random behavior. 
❑ Built from simple shift-registers with a small number of xor gates. 
❑ Used for: 

▪ random number generation 
▪ counters 
▪ error checking and correction 

❑ Advantages: 
▪ very little hardware 
▪ high speed operation 

❑ Example 4-bit LFSR:
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4-bit LFSR

❑ Circuit counts through 24-1 different 
non-zero bit patterns. 

❑ Leftmost bit decides whether the 
“10011” xor pattern is used to 
compute the next value or if the 
register just shifts left. 

❑ Can build a similar circuit with any 
number of FFs, may need more xor 
gates. 

❑ In general, with n flip-flops, 2n-1 
different non-zero bit patterns.  

❑ (Intuitively, this is a counter that 
wraps around many times and in a 
strange way.)
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Applications of LFSRs
❑ Performance: 

▪ In general, xors are only ever 2-input 
and never connect in series. 

▪ Therefore the minimum clock period 
for these circuits is: 

  T > T2-input-xor + clock overhead 
▪ Very little latency, and independent 

of n! 
❑ This can be used as a fast counter, if 

the particular sequence of count 
values is not important.   
▪ Example: micro-code micro-pc

• Can be used as a random 
number generator.   

– Sequence is a pseudo-random 
sequence: 

• numbers appear in a random 
sequence 

• repeats every 2n-1 patterns 
– Random numbers useful in: 
• computer graphics 
• cryptography 
• automatic testing 
• Used for error detection and 

correction 
• CRC (cyclic redundancy codes) 
• Ethernet uses them
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Galois Fields - the theory behind LFSRs
❑ LFSR circuits performs 

multiplication on a field. 
❑ A field is defined as a set with the 

following: 
▪ two operations defined on it: 

– “addition” and “multiplication” 
▪ closed under these operations  
▪ associative and distributive laws 

hold 
▪ additive and multiplicative identity 

elements 
▪ additive inverse for every element 
▪ multiplicative inverse for every 

non-zero element

• Example fields: 
– set of rational numbers 
– set of real numbers 
– set of integers is not a field (why?) 
• Finite fields are called Galois 

fields.   
• Example:   
– Binary numbers 0,1 with XOR as 

“addition” and AND as 
“multiplication”. 

– Called GF(2).
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Galois Fields - The theory behind LFSRs
❑ Consider polynomials whose coefficients come from GF(2). 
❑ Each term of the form xn is either present or absent. 
❑ Examples: 0, 1, x, x2, and x7 + x6 + 1  
   = 1·x7 + 1· x6 + 0 · x5 + 0 · x4 + 0 · x3 + 0 · x2 + 0 · x1 + 1· x0  

❑ With addition and multiplication these form a field: 
❑ “Add”: XOR each element individually with no carry: 
   x4 + x3 +      + x + 1 
         +    x4  +     + x2  + x 
          x3  + x2        + 1  
❑ “Multiply”: multiplying by xn is like shifting to the left.  
  
   x2 + x + 1 
         ⋅            x + 1 
   x2 + x + 1 
         x3 + x2 + x 
         x3               + 1
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Galois Fields - The theory behind LFSRs
❑ These polynomials form a Galois 

(finite) field if we take the results 
of this multiplication modulo a 
prime polynomial p(x). 
▪ A prime polynomial is one that 

cannot be written as the product 
of two non-trivial polynomials 
q(x)r(x) 

▪ Perform modulo operation by 
subtracting a (polynomial) 
multiple of p(x) from the result.  If 
the multiple is 1, this 
corresponds to XOR-ing the 
result with p(x). 

❑ For any degree, there exists at 
least one prime polynomial. 

❑ With it we can form GF(2n)

• Additionally, … 
• Every Galois field has a primitive 

element, α, such that all non-zero 
elements of the field can be 
expressed as a power of α.  By 
raising α to powers (modulo p(x)), all 
non-zero field elements can be 
formed. 

• Certain choices of p(x) make the 
simple polynomial x the primitive 
element.  These polynomials are 
called primitive, and one exists for 
every degree. 

• For example, x4 + x + 1 is primitive.  
So α = x is a primitive element and 
successive powers of α will generate 
all non-zero elements of GF(16).  
Example on next slide.



EE141

Galois Fields - The theory behind LFSRs
α0  =                        1 
α1  =                 x 
α2  =         x2 

α3  = x3 

α4  =                x  + 1 
α5  =         x2 + x 
α6  = x3 + x2 

α7  = x3         + x  + 1 
α8  =         x2        + 1 
α9  = x3         + x 
α10 =         x2 + x  + 1 
α11 = x3 + x2 + x  

α12 = x3 + x2 + x  + 1 
α13 = x3 + x2        + 1 
α14 = x3                + 1 
α15 =                       1

• Note this pattern of coefficients 
matches the bits from our 4-bit LFSR 
example. 

• In general finding primitive 
polynomials is difficult.  Most people 
just look them up in a table, such as:

α4  = x4 mod x4 + x + 1 
     = x4 xor x4 + x + 1 
      = x + 1
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Primitive Polynomials
x2 + x +1 
x3 + x +1 
x4 + x +1 
x5 + x2 +1 
x6 + x +1 
x7 + x3 +1 
x8 + x4 + x3 + x2 +1 
x9 + x4 +1 
x10 + x3 +1 
x11 + x2 +1

x12 + x6 + x4 + x +1 
x13 + x4 + x3 + x +1 
x14 + x10 + x6 + x +1 
x15 + x +1 
x16 + x12 + x3 + x +1 
x17 + x3 + 1 
x18 + x7 + 1 
x19 + x5 + x2 + x+ 1 
x20 + x3 + 1 
x21 + x2 + 1

x22 + x +1 
x23 + x5 +1 
x24 + x7 + x2 + x +1 
x25 + x3 +1 
x26 + x6 + x2 + x +1 
x27 + x5 + x2 + x +1 
x28 + x3 + 1 
x29 + x +1 
x30 + x6 + x4 + x +1 
x31 + x3 + 1 
x32 + x7 + x6 + x2 +1

   Galois Field               Hardware 
Multiplication by x       ⇔ shift left 
Taking the result mod  p(x)  ⇔ XOR-ing with the coefficients of p(x) 
      when the most significant coefficient is 1. 
Obtaining all 2n-1 non-zero ⇔ Shifting and XOR-ing 2n-1 times. 
elements by evaluating xk 

for k = 1, …, 2n-1 
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Building an LFSR from a Primitive Polynomial
❑ For k-bit LFSR number the flip-flops with FF1 on the right. 
❑ Find the primitive polynomial of the form xk + … + 1. 
❑ The feedback path comes from the Q output of the leftmost FF, corresponding 

to the xk term. 
❑ The x0 = 1 term corresponds to connecting the feedback directly to the D input 

of FF 1. 
❑ Each term of the form xn corresponds to connecting an xor between FF n and 

n+1. 
❑ 4-bit example, uses x4 + x + 1 

▪  x4 ⇔ FF4’s Q output 
▪  x ⇔ xor between FF1 and FF2 
▪  1 ⇔ FF1’s D input 

❑ To build an 8-bit LFSR, use the primitive polynomial x8 + x4 + x3 + x2 + 1 and 
connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.


