
EE141

EECS151/251A 
Spring	2019  
Digital	Design	and	
Integrated	Circuits
Instructors:		
John	Wawrzynek

Lecture 23: 
Constant Coefficient Multipliers,
Counters, LFSRs, Shifters

EE141

Outline
❑ Constant Coefficient

Multiplication
❑ Shifters
❑ Counters
❑ LFSRs

 2

EE141

Constant Multiplication
❑ Our multiplier circuits so far has assumed both the

multiplicand (A) and the multiplier (B) can vary at runtime.
❑ What if one of the two is a constant?
 Y = C * X
❑ “Constant Coefficient” multiplication comes up often in

signal processing and other hardware. Ex:

 yi = αyi-1+ xi

 where α is an application dependent constant that is
hard-wired into the circuit.

❑ How do we build and array style (combinational) multiplier
that takes advantage of the constancy of one of the
operands?

xi yi

 3

EE141

Multiplication by a Constant
❑ If the constant C in C*X is a power of 2, then the multiplication is simply

a shift of X.
❑ Ex: 4*X

❑ What about division?

❑ What about multiplication by non- powers of 2?

 4

EE141

Multiplication by a Constant
❑ In general, a combination of fixed shifts and addition:

▪ Ex: 6*X = 0110 * X = (22 + 21)*X = 22 X + 21 X

▪ Details:

 5

EE141

Multiplication by a Constant
❑ Another example: C = 2310 = 010111

❑ In general, the number of additions equals one less than the number of
1’s in the constant.

❑ Using carry-save adders (for all but one of these) helps reduce the
delay and cost, and using balanced trees helps with delay, but the
number of adders is still the number of 1’s in C minus 2.

❑ Is there a way to further reduce the number of adders (and thus the cost
and delay)?

 6

EE141

Multiplication using Subtraction
❑ Subtraction is approximately the same cost and delay as

addition.
❑ Consider C*X where C is the constant value 1510 = 01111.
 C*X requires 3 additions.
❑ We can “recode” 15
 from 01111 = (23 + 22 + 21 + 20)
 to 10001 = (24 - 20)
 where 1 means negative weight.
❑ Therefore, 15*X can be implemented with only one subtractor.

 7

 <<4

EE141

Canonic Signed Digit Representation
❑ CSD represents numbers using 1, 1, & 0 with the least

possible number of non-zero digits.
▪ Strings of 2 or more non-zero digits are replaced.
▪ Leads to a unique representation.

❑ To form CSD representation might take 2 passes:
▪ First pass: replace all occurrences of 2 or more 1’s:
 01..10 by 10..10
▪ Second pass: same as above, plus replace 0110 by 0010

and 0110 by 0010
❑ Examples:

❑ Can we further simplify the multiplier circuits?

0010111 = 23
0011001
0101001 = 32 - 8 - 1011101 = 29

100101 = 32 - 4 + 1

0110110 = 54
1011010
1001010 = 64 - 8 - 2

 8

EE141

“Constant Coefficient Multiplication” (KCM)
Binary multiplier: Y = 231*X = (27 + 26 + 25 + 22 + 21+20)*X

❑ CSD helps, but the multipliers are limited to shifts followed by adds.
▪ CSD multiplier: Y = 231*X = (28 - 25 + 23 - 20)*X

❑ How about shift/add/shift/add …?
▪ KCM multiplier: Y = 231*X = 7*33*X = (23 - 20)*(25 + 20)*X

❑ No simple algorithm exists to determine the optimal KCM representation.
❑ Most use exhaustive search method.

 9

EE141

Shifters

EE141

Fixed Shifters / Rotators Defined

Logical
Shift

Rotate

Arithmetic
Shift

 11

EE141

Variable Shifters / Rotators
• Example: X >> S, where S is unknown when we synthesize the circuit.
• Uses: shift instruction in processors (ARM includes a shift on every

instruction), floating-point arithmetic, division/multiplication by powers of
2, etc.

• One way to build this is a simple shift-register:
a) Load word, b) shift enable for S cycles, c) read word.

– Worst case delay O(N) , not good for processor design.
– Can we do it in O(logN) time and fit it in one cycle?

 12

EE141

Log Shifter / Rotator
❑ Log(N) stages, each shifts (or not) by a power of 2 places, S=[s2;s1;s0]:

Shift by N/2

Shift by 2

Shift by 1

EE141

LUT Mapping of Log shifter

Efficient with 2to1 multiplexors, for instance, 3LUTs.

Virtex6 has 6LUTs. Naturally makes 4to1 muxes:

Reorganize shifter to use 4to1 muxes.

Final stage
uses F7 mux

EE141

“Improved” Shifter / Rotator
❑ How about this approach? Could it lead to even less delay?

❑ What is the delay of these big muxes?
❑ Look a transistor-level implementation?

 15

EE141

Barrel Shifter
❑ Cost/delay?

▪ (don’t forget the
decoder)

 16

EE141

Connection Matrix

❑ Generally useful structure:
▪ N2 control points.
▪ What other interesting

functions can it do?

EE141

Cross-bar Switch
❑ Nlog(N) control

signals.
❑ Supports all

interesting
permutations
▪ All one-to-one and

one-to-many
connections.

❑ Commonly used in
communication
hardware (switches,
routers).

 18

EE141

Counters

EE141

Counters
❑ Special sequential circuits (FSMs) that repeatedly

sequence through a set of outputs.
❑ Examples:

▪ binary counter: 000, 001, 010, 011, 100, 101, 110, 111,
000,

▪ gray code counter:
 000, 010, 110, 100, 101, 111, 011, 001, 000, 010, 110, …
▪ one-hot counter: 0001, 0010, 0100, 1000, 0001, 0010, …
▪ BCD counter: 0000, 0001, 0010, …, 1001, 0000, 0001
▪ pseudo-random sequence generators: 10, 01, 00, 11, 10,

01, 00, ...
❑ Moore machines with “ring” structure in State

Transition Diagram:
S3

S0

S2

S1

EE141

What are they used?
❑ Counters are commonly used in hardware designs because

most (if not all) computations that we put into hardware
include iteration (looping). Examples:
▪ Shift-and-add multiplication scheme.
▪ Bit serial communication circuits (must count one “words worth” of

serial bits.
❑ Other uses for counter:

▪ Clock divider circuits

▪ Systematic inspection of data-structures
– Example: Network packet parser/filter control.

❑ Counters simplify “controller” design by:
▪ providing a specific number of cycles of action,
▪ sometimes used with a decoder to generate a sequence of timed

control signals.
▪ Consider using a counter when FSM has many states with few

branches.

1/416MHz 16MHz

EE141

Controller using Counters
❑ Example, Bit-serial multiplier (n2 cycles, one bit of result per n cycles):

❑ Control Algorithm:
repeat n cycles { // outer (i) loop
 repeat n cycles{ // inner (j) loop
 shiftA, selectSum, shiftHI
 }
 shiftB, shiftHI, shiftLOW, reset
}

Note: The occurrence of a control
signal x means x=1. The absence
of x means x=0.

EE141

Controller using Counters
• State Transition Diagram:

▪ Assume presence of two binary
counters. An “i” counter for the
outer loop and “j” counter for
inner loop.

TC is asserted when the counter
reaches it maximum count value.
CE is “count enable”. The counter
increments its value on the rising
edge of the clock if CE is asserted.

EE141

Controller using Counters
• Controller circuit

implementation:
• Outputs:

 CEi = q2

 CEj = q1

 RSTi = q0

 RSTj = q2

 shiftA = q1

 shiftB = q2

 shiftLOW = q2

 shiftHI = q1 + q2

 reset = q2

 selectSUM = q1

EE141

How do we design counters?
❑ For binary counters (most common case) incrementer circuit

would work:

❑ In Verilog, a counter is specified as: x = x+1;
▪ This does not imply an adder
▪ An incrementer is simpler than an adder

❑ In general, the best way to understand counter design is to think
of them as FSMs, and follow general procedure, however some
special cases can be optimized.

register

+
1

EE141

Synchronous Counters

❑ Binary Counter Design:
 Start with 3-bit version and

generalize:

c b a c+ b+ a+

0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

a+ = a’
b+ = a ⊕ b

c+ = abc’ + a’b’c + ab’c + a’bc
 = a’c + abc’ + b’c
 = c(a’+b’) + c’(ab)
 = c(ab)’ + c’(ab)
 = c ⊕ ab

All outputs change with clock edge.

EE141

Synchronous Counters
❑ How do we extend to n-bits?
❑ Extrapolate c+: d+ = d ⊕ abc, e+ = e ⊕ abcd

❑ Has difficulty scaling (AND gate inputs grow with n)

❑ CE is “count enable”, allows external control of counting,
❑ TC is “terminal count”, is asserted on highest value, allows

cascading, external sensing of occurrence of max value.

TC

EE141

Synchronous Counters
TC

• How does this one scale?
☹ Delay grows α n

• Generation of TC signals similar to
generation of carry signals in adder.

• “Parallel Prefix” circuit reduces delay:

log2n

log2n

Alternative Parallel Prefix Circuit

EE141

Odd Counts
❑ Extra combinational logic can be

added to terminate count before
max value is reached:

❑ Example: count to 12

• Alternative loadable counter:

EE141

Ring Counters
❑ “one-hot” counters
0001, 0010, 0100, 1000, 0001, …

“Self-starting” version:

EE141

“Ripple” counters
A3 A2 A1 A0

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

time

• Each stage is 1/2 of
previous.

• Look at output
waveforms:

• Often called
“asynchronous”
counters.

• A “T” flip-flop is a
“toggle” flip-flop. Flips
it state on cycles when
T=1.

CLK
A0

A1

A2

A3

Usually
forbidden in
Synchronous
Design

EE141

LFSRs

EE141

Linear Feedback Shift Registers (LFSRs)
❑ These are n-bit counters exhibiting pseudo-random behavior.
❑ Built from simple shift-registers with a small number of xor gates.
❑ Used for:

▪ random number generation
▪ counters
▪ error checking and correction

❑ Advantages:
▪ very little hardware
▪ high speed operation

❑ Example 4-bit LFSR:

EE141

4-bit LFSR

❑ Circuit counts through 24-1 different
non-zero bit patterns.

❑ Leftmost bit decides whether the
“10011” xor pattern is used to
compute the next value or if the
register just shifts left.

❑ Can build a similar circuit with any
number of FFs, may need more xor
gates.

❑ In general, with n flip-flops, 2n-1
different non-zero bit patterns.

❑ (Intuitively, this is a counter that
wraps around many times and in a
strange way.)

EE141

Applications of LFSRs
❑ Performance:

▪ In general, xors are only ever 2-input
and never connect in series.

▪ Therefore the minimum clock period
for these circuits is:

 T > T2-input-xor + clock overhead
▪ Very little latency, and independent

of n!
❑ This can be used as a fast counter, if

the particular sequence of count
values is not important.
▪ Example: micro-code micro-pc

• Can be used as a random
number generator.

– Sequence is a pseudo-random
sequence:

• numbers appear in a random
sequence

• repeats every 2n-1 patterns
– Random numbers useful in:
• computer graphics
• cryptography
• automatic testing
• Used for error detection and

correction
• CRC (cyclic redundancy codes)
• Ethernet uses them

EE141

Galois Fields - the theory behind LFSRs
❑ LFSR circuits performs

multiplication on a field.
❑ A field is defined as a set with the

following:
▪ two operations defined on it:

– “addition” and “multiplication”
▪ closed under these operations
▪ associative and distributive laws

hold
▪ additive and multiplicative identity

elements
▪ additive inverse for every element
▪ multiplicative inverse for every

non-zero element

• Example fields:
– set of rational numbers
– set of real numbers
– set of integers is not a field (why?)
• Finite fields are called Galois

fields.
• Example:
– Binary numbers 0,1 with XOR as

“addition” and AND as
“multiplication”.

– Called GF(2).

EE141

Galois Fields - The theory behind LFSRs
❑ Consider polynomials whose coefficients come from GF(2).
❑ Each term of the form xn is either present or absent.
❑ Examples: 0, 1, x, x2, and x7 + x6 + 1
 = 1·x7 + 1· x6 + 0 · x5 + 0 · x4 + 0 · x3 + 0 · x2 + 0 · x1 + 1· x0

❑ With addition and multiplication these form a field:
❑ “Add”: XOR each element individually with no carry:
 x4 + x3 + + x + 1
 + x4 + + x2 + x
 x3 + x2 + 1
❑ “Multiply”: multiplying by xn is like shifting to the left.

 x2 + x + 1
 ⋅ x + 1
 x2 + x + 1
 x3 + x2 + x
 x3 + 1

EE141

Galois Fields - The theory behind LFSRs
❑ These polynomials form a Galois

(finite) field if we take the results
of this multiplication modulo a
prime polynomial p(x).
▪ A prime polynomial is one that

cannot be written as the product
of two non-trivial polynomials
q(x)r(x)

▪ Perform modulo operation by
subtracting a (polynomial)
multiple of p(x) from the result. If
the multiple is 1, this
corresponds to XOR-ing the
result with p(x).

❑ For any degree, there exists at
least one prime polynomial.

❑ With it we can form GF(2n)

• Additionally, …
• Every Galois field has a primitive

element, α, such that all non-zero
elements of the field can be
expressed as a power of α. By
raising α to powers (modulo p(x)), all
non-zero field elements can be
formed.

• Certain choices of p(x) make the
simple polynomial x the primitive
element. These polynomials are
called primitive, and one exists for
every degree.

• For example, x4 + x + 1 is primitive.
So α = x is a primitive element and
successive powers of α will generate
all non-zero elements of GF(16).
Example on next slide.

EE141

Galois Fields - The theory behind LFSRs
α0 = 1
α1 = x
α2 = x2

α3 = x3

α4 = x + 1
α5 = x2 + x
α6 = x3 + x2

α7 = x3 + x + 1
α8 = x2 + 1
α9 = x3 + x
α10 = x2 + x + 1
α11 = x3 + x2 + x

α12 = x3 + x2 + x + 1
α13 = x3 + x2 + 1
α14 = x3 + 1
α15 = 1

• Note this pattern of coefficients
matches the bits from our 4-bit LFSR
example.

• In general finding primitive
polynomials is difficult. Most people
just look them up in a table, such as:

α4 = x4 mod x4 + x + 1
 = x4 xor x4 + x + 1
 = x + 1

EE141

Primitive Polynomials
x2 + x +1
x3 + x +1
x4 + x +1
x5 + x2 +1
x6 + x +1
x7 + x3 +1
x8 + x4 + x3 + x2 +1
x9 + x4 +1
x10 + x3 +1
x11 + x2 +1

x12 + x6 + x4 + x +1
x13 + x4 + x3 + x +1
x14 + x10 + x6 + x +1
x15 + x +1
x16 + x12 + x3 + x +1
x17 + x3 + 1
x18 + x7 + 1
x19 + x5 + x2 + x+ 1
x20 + x3 + 1
x21 + x2 + 1

x22 + x +1
x23 + x5 +1
x24 + x7 + x2 + x +1
x25 + x3 +1
x26 + x6 + x2 + x +1
x27 + x5 + x2 + x +1
x28 + x3 + 1
x29 + x +1
x30 + x6 + x4 + x +1
x31 + x3 + 1
x32 + x7 + x6 + x2 +1

 Galois Field Hardware
Multiplication by x ⇔ shift left
Taking the result mod p(x) ⇔ XOR-ing with the coefficients of p(x)
 when the most significant coefficient is 1.
Obtaining all 2n-1 non-zero ⇔ Shifting and XOR-ing 2n-1 times.
elements by evaluating xk

for k = 1, …, 2n-1

EE141

Building an LFSR from a Primitive Polynomial
❑ For k-bit LFSR number the flip-flops with FF1 on the right.
❑ Find the primitive polynomial of the form xk + … + 1.
❑ The feedback path comes from the Q output of the leftmost FF, corresponding

to the xk term.
❑ The x0 = 1 term corresponds to connecting the feedback directly to the D input

of FF 1.
❑ Each term of the form xn corresponds to connecting an xor between FF n and

n+1.
❑ 4-bit example, uses x4 + x + 1

▪ x4 ⇔ FF4’s Q output
▪ x ⇔ xor between FF1 and FF2
▪ 1 ⇔ FF1’s D input

❑ To build an 8-bit LFSR, use the primitive polynomial x8 + x4 + x3 + x2 + 1 and
connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.

