
EE 371 Lecture 4 M Horowitz 1

Lecture 4

Adders 

Computer Systems Laboratory

Stanford University

horowitz@stanford.edu

Copyright © 2006 Mark Horowitz
Some figures from High-Performance Microprocessor Design © IEEE

EE 371 Lecture 4 M Horowitz 2

Overview

• Readings

• Today’s topics
– Fast adders generally use a tree structure for parallelism

– We will cover basic tree terminology and structures

– Look at a few example adder architectures

– Examples will spill into next lecture as well



EE 371 Lecture 4 M Horowitz 3

Adders

• Task of an adder is conceptually simple
– Sum[n:0]=A[n:0]+B[n:0]+C0

– Subtractors also very simple: -B = ~B+1, so invert B and set C0=1

• Per bit formulas
– Sumi = Ai XOR Bi XOR Ci

– Couti = Ci+1 = majority(Ai,Bi,Ci)

• Fundamental problem is calculating the carry to the nth bit
– All carry terms are dependent on all previous terms

– So LSB input has a fanout of n 
• And an absolute minimum of log4n FO4 delays without any logic

EE 371 Lecture 4 M Horowitz 4

Single-Bit Adders

• Adders are chock-full of XORs, which make them interesting
– One of the few circuits where pass-gate logic is attractive

– A complicated differential passgate logic (DPL) block from the text

a pair of inverters
Lousy way to draw



EE 371 Lecture 4 M Horowitz 5

• Most fast adders “G”enerate, “P”ropagate, or “K”ill the carry
– Usually only G and P are used; K only appears in some carry chains

• When does a bit Generate a carry out?
– Gi = Ai AND Bi

– If Gi is true, then Couti = Ci+1 is forced to be true

• When does a bit Propagate a carry in to the carry out?
– Pi = Ai XOR Bi

– If Pi is true, then Couti (=Ci+1) follows Ci

– Usually implemented as Pi = Ai OR Bi

• OR is cheaper/faster than an XOR

• If you are doing logic, Cout is still equal to Gi +PiCi

• Just beware that Sumi != Pi XOR Ci

G and P and K, Oh My!

EE 371 Lecture 4 M Horowitz 6

Using G and P

• We can combine Gi and Pi into larger blocks
– Call these “group generate” and “group propagate” terms

• When does a group Generate a carry out? (e.g., 4 bits)
– G3:0 = G3 + P3G2 + P3P2G1 + P3P2P1G0

• When does a group Propagate a carry in to the carry out?
– P3:0 = P3P2P1P0

• We can also combine groups of groups
– Gi:j = Gi:k + Pi:kGk-1:j

– Pi:j = Pi:kPk-1:j MSB LSB

i:k k-1:j



EE 371 Lecture 4 M Horowitz 7

Linear Adders Using P,G

• Simple adders ripple the carry; faster ones bypass it
– Better to try to work out the carry several bits at a time

• Best designs are around 11FO4 for 64b
– Useful for small adders (16b) and moderate performance long adders

• Example of carry bypass from the text

EE 371 Lecture 4 M Horowitz 8

Figure Is Not Quite Right

• How does the drawn critical path go down from the OR gate?!
– Fix: The OR gate output is the true input to the next group

• Subtle point: Each block spits out a G term for the OR
– Not simply a Couti term

– Avoids a nasty critical path (11…1 + 00…0 + Cin; Cin goes 1 0)



EE 371 Lecture 4 M Horowitz 9

Faster Carry Bypass (or Carry Skip) Adders

• We see the basic idea is to form multi-level carry chains
– Break the bits into groups

– Ripple the carry in each group, in parallel

– Ripple the global carry across the groups

• How big should each group be? (N bits total, k bits per group)
– If ripple time equals block skip time then delay = 2(N-1)+(N/k –2)

• Would groups of different sizes be faster? (yes)
– Middle groups have longer to generate carry outs; should be larger

– Early and late groups have ripples in critical path; should be shorter

– Called “Variable Block Adders”

EE 371 Lecture 4 M Horowitz 10

Carry Select Adders

• Why wait for the carry in? (If you can’t find parallelism, invent it!)
– Calculate answers for a group assuming Ci = 1 AND Ci = 0

– Use two adders, and rely on the fact that transistors are cheap

– Don’t do this on the full adder (too expensive), just the MSBs

Co,k-1

Setup

“0” carry propagate

“1” carry propagate

Mux

Sum generation

P,G

Carry vector
Co,k+3

“1”

“0”



EE 371 Lecture 4 M Horowitz 11

Many Papers on These Adders

• But no one builds them anymore
– Or rather, nobody publishes papers on them (or gets PhDs on them)

• These are all clever improvements on adders
– That tend to optimize transistors along with performance

– Or are best for narrow-width operands (n=64 is slow)

• But scaling is pushing these adders to the wayside
– We have very wide-word machines (media applications)

– We have more transistors than we know what to do with

• Question: As power density questions increase…
– … will these “simpler” adders make a comeback?

EE 371 Lecture 4 M Horowitz 12

Logarithmic, or Tree, Adders

• Fundamental problem: to know Ci, we need Ci-1

– So delay is linear with n, and this dominates for wide adders (n>16)

– Can we lookahead across multiple levels to figure out carry? Yes.

– Called “prefix computation” – turns delay into logarithmic with n 

• Notation is always an issue; everybody does it differently
– Here, Ai:j means the signal “A” for group the ith to jth position

– P = propagate (A+B)

– G = generate (AB)

– C = CarryIn to this bit/Group position



EE 371 Lecture 4 M Horowitz 13

Logic Stages For Logarithmic/Tree Adders 

1. Compute single bit values
0<=i<n Gi=AiBi Pi=Ai+Bi

2. Compute two-bit groups
0<=i<(n/2) G2i+1:2i=G2i+1+G2iP2i+1 P2i+1:2i=P2i+1P2i

3. Compute four-bit groups
0<=i<(n/4) G4i+3:4i=G4i+3:4i+2+G4i+1:4iP4i+3:4i+2 P4i+3:4i=P4i+3:4i+2P4i+1:4i

4. …Go down tree for G&P, then go back up for Cin…

5. Compute four-bit carries
0<=i<(n/8) C8i+7:8i+4 = G8i+3:8i + C8i+7:8iP8i+3:8i C8i+3:8i = C8i+7:8i

6. Compute two-bit carries
0<=i<(n/4) C4i+3:4i+2 = G4i+1:4i + C4i+3:4iP4i+1:4i C2i+1:2i = C2i+3:2i

7. Compute single-bit carries
0<=i<(n/2) C2i+1 = G2i + C2i+1:2iP2i C2i = C2i+1:2i

EE 371 Lecture 4 M Horowitz 14

An Eight-bit Example

• “Lines and dots” notation shows the tree structure clearly

• Takes log2n time to get the final carry-out (Cout7=G7:0)

7 6 5 4 3 2 1 0

P0G0P1G1P2G2P3G3P4G4P5G5P6G6P7G7

G1:0P3:2G3:2P5:4G5:4P7:6G7:6

G3:0P7:4 G7:4

G7:0



EE 371 Lecture 4 M Horowitz 15

• More common to line up the PG terms with their appropriate bits

An Eight-Bit Example, Redrawn

7 6 5 4 3 2 1 0

P0G0P1G1P2G2P3G3P4G4P5G5P6G6P7G7

G1:0

P3:2G3:2P5:4G5:4
P7:6G7:6

G3:0

P7:4 G7:4

G7:0

EE 371 Lecture 4 M Horowitz 16

Layout Of Our Example Tree Adder

• Logarithmic structures have somewhat ugly layout

• Worst wire length grows as n increases (n=64? 128?)

7 6 5 4 3 2 1 0



EE 371 Lecture 4 M Horowitz 17

That Was Half The Algorithm…

1. Compute single bit values
0<=i<n Gi=AiBi Pi=Ai+Bi

2. Compute two-bit groups
0<=i<(n/2) G2i+1:2i=G2i+1+G2iP2i+1 P2i+1:2i=P2i+1P2i

3. Compute four-bit groups
0<=i<(n/4) G4i+3:4i=G4i+3:4i+2+G4i+1:4iP4i+3:4i+2 P4i+3:4i=P4i+3:4i+2P4i+1:4i

4. …Go down tree for G&P, then go back up for Cin…

5. Compute four-bit carries
0<=i<(n/8) C8i+7:8i+4 = G8i+3:8i + C8i+7:8iP8i+3:8i C8i+3:8i = C8i+7:8i

6. Compute two-bit carries
0<=i<(n/4) C4i+3:4i+2 = G4i+1:4i + C4i+3:4iP4i+1:4i C2i+1:2i = C2i+3:2i

7. Compute single-bit carries
0<=i<(n/2) C2i+1 = G2i + C2i+1:2iP2i C2i = C2i+1:2i

EE 371 Lecture 4 M Horowitz 18

An Eight-Bit Example, Finished

• A Brent-Kung adder (1982): what’s the critical path?

7 6 5 4 3 2 1 0

C7 C6 C5 C4 C3 C2 C1 C0



EE 371 Lecture 4 M Horowitz 19

A 16b Brent-Kung Adder

• Limit fanout to 2 (can collapse some nodes with higher FO)

0123456789101112131415

Carry out for each bit position

EE 371 Lecture 4 M Horowitz 20

Many Kinds of Tree Adders

• We can vary some basic parameters
– Radix, tree depth, wiring density, and fanout

• Radix: how many bits are combined in each Pgroup, Gg term?
– Radix is generally < 4 (why not more?); prior example was 2

– Radix-n can just compute the Pg and Gg terms directly

– Or it can compute the intermediate P# and G# terms as well

Radix-2 block Radix-3 block Radix-4 block

Radix-2 block Radix-3 block Radix-4 block



EE 371 Lecture 4 M Horowitz 21

Building Multiple-Bit PG blocks

• Radix-4 Pg, Gg block that generates intermediate terms
– Spits out “P3:0” and “G3:0” terminology

– Also spits out P3, G3, P2, G2 and passes along P1, G1

– Allows for quick computation of the various carries, once we know Cin

– How do we build this block?

P
3:0,G

3:0

P
2:0,G

2:0

P
1:0,G

1:0

P
0,G

0

EE 371 Lecture 4 M Horowitz 22

Building Multiple-Bit PG blocks, con’t

• Can we use dynamic logic to build fast blocks?
– A Manchester carry chain can “gather” the multiple-bit G terms

– For C, since we already have Pgs and Ggs we can do better

G1

P1

G2

P2

Gn

Pn

G0

Gn

G0

P0

G1:0

P1:0

Gn:0

Pn:0

Cin



EE 371 Lecture 4 M Horowitz 23

Dynamic Logic for 4-Bit PG Block

• Motorola design
C

lk

EE 371 Lecture 4 M Horowitz 24

• Vary radices at different tree levels because n may not be (radix)k

32b Mixed-Radix Brent-Kung Adder



EE 371 Lecture 4 M Horowitz 25

32b Mixed-Radix, Redrawn As Folded Tree

• PG goes “down” and Carry goes back “up”

EE 371 Lecture 4 M Horowitz 26

64b Radix-4 Brent-Kung Adder

• Takes longer to draw in Powerpoint than it does to design!



EE 371 Lecture 4 M Horowitz 27

Radix 4 PG and Carry Trees

(Argh! Why do people put the LSB on the left side?)

EE 371 Lecture 4 M Horowitz 28

Tree Depth, Wiring Density, and Fanout

• Previous slides have all examined changing the adder radix

• We can also change the tree depth, wire density, and/or fanout
– These usually get changed together; one affects the others

– Density: How many wires criss-cross the tree?

– Depth: How many stages of logic?

– Fanout: How far is the reach of each stage?

• Reduce depth by chopping trees
– Many adders use carry select at the final stage

• Compute two results, and use a carry to select right result

– Eliminate the carry tree altogether
• Increasing wiring density or increasing fanout



EE 371 Lecture 4 M Horowitz 29

• Eliminate the carry out tree by computing a group for each bit
– Kogge-Stone architecture (1973)

• Lots of wires, but minimizes the number of logic levels

• We can use this for a quick swag at the minimum delay

A Very Dense 16b Tree

EE 371 Lecture 4 M Horowitz 30

Minimum 64b Adder Delay

• Make a few assumptions
– Output load is equal to the load on each input

– Use static gates; very aggressive domino logic may change results

• Simple approximation
– Need to compute Sumi = Ai XOR Bi XOR Ci

– Cin (LSB) must fanout to all bits for a fanout of 64

– Extra logic in chain raises effective fanout to about 128 3.5 FO4

• More complicated approximation
– At each stage, P drives 3 gates, G drives 2; effective fanout ¼ 3.5

– Total fanout = 1.5 (first NAND/NOR) * 3.56 * 1-ish (final mux)

– 5.7 FO4, not really accounting for parasitic delay correctly



EE 371 Lecture 4 M Horowitz 31

Higher Radix Still Possible

• Radix-4 Kogge-Stone tree
– Trades off two layers of logic for lots and lots of wires

• Not a good idea in CMOS – it tends to increase stage efforts >> 4
– Not bad, though, for domino – much lower logical effort

EE 371 Lecture 4 M Horowitz 32

Reduce Depth With Fanout

• Can also reduce tree depth by increasing the stage fanouts
– Sklansky (1960) called this a “divide-and-conquer” tree

– Fanouts increase the further from the start you go



EE 371 Lecture 4 M Horowitz 33

A Taxonomy

• Following Harris’s 2003 paper
– Assume 16b radix-2 adder families for this discussion

– We can modify tree’s depth, fanout, and wiring density

• What we’ve seen already
– Brent-Kung: 7 logic levels, fanout of 2, one wiring track enough

– Kogge-Stone: 4 logic levels, fanout of 2, eight wiring tracks

– Sklansky: 4 logic levels, fanout of up to 9, one wiring track enough

• Formalism: Use a triplet (l,f,t) to represent the adders
– Logic levels = log2N + l Brent-Kung: (3,0,0)

– Fanout = 2f+1 Kogge-Stone: (0,0,3)

– Wiring tracks = 2t Sklansky: (0,3,0)

EE 371 Lecture 4 M Horowitz 34

Points on a plane?

• All major adder architectures fall onto the same plane
– Defined by l+f+t=log2N-1

• Using this, we may expect a Han-Carlson adder to…
– Trade off logic layers for some increased wiring



EE 371 Lecture 4 M Horowitz 35

• Think of this as a sparse Kogge-Stone
– Called a sparse tree with sparseness of 2

Han-Carlson Adder (1987)

EE 371 Lecture 4 M Horowitz 36

Adder Tradeoffs



EE 371 Lecture 4 M Horowitz 37

Other Sparse Trees

Mathew, VLSI’02


