Lecture 4

Adders

Computer Systems Laboratory
Stanford University
horowitz@stanford.edu

Cop%right © 2006 Mark Horowitz
Some figures from High-Performance Microprocessor Design © IEEE

M Horowitz EE 371 Lecture 4

Overview

* Readings

» Today’s topics
— Fast adders generally use a tree structure for parallelism
— We will cover basic tree terminology and structures
— Look at a few example adder architectures

Examples will spill into next lecture as well

M Horowitz EE 371 Lecture 4

Adders

» Task of an adder is conceptually simple
— Sum[n:0]=A[n:0]+B[n:0]+C,
— Subtractors also very simple: -B = ~B+1, so invert B and set C,=1

+ Per bit formulas

« Fundamental problem is calculating the carry to the nt bit
— All carry terms are dependent on all previous terms

— S0 LSB input has a fanout of n
* And an absolute minimum of log,n FO4 delays without any logic

M Horowitz EE 371 Lecture 4

Single-Bit Adders

» Adders are chock-full of XORs, which make them interesting
— One of the few circuits where pass-gate logic is attractive
— A complicated differential passgate logic (DPL) block from the text

‘3L A 'IZII-;4 HC o || 94|
o= =1 .'?:" _E_,_,j Lousy way to draw
g t”, C PuC| | Pe C | IRHC] a pair of inverters

KORKNOR Multiplexer Buifer
ANIYNAND

s 34

s b

tlc
A
]|

Multiplexer Bulfer

a— | L] || (g
5| #HC I |

M Horowitz EE 371 Lecture 4

G and P and K, Oh My!

* Most fast adders “G”enerate, “P"ropagate, or “K”ill the carry
— Usually only G and P are used; K only appears in some carry chains

* When does a bit Generate a carry out?
— If G is true, then Cout, = C,,, is forced to be true

* When does a bit Propagate a carry in to the carry out?
— P,= A, XOR B,
— If P, is true, then Cout; (=C,,,) follows C,
— Usually implemented as P, = A, OR B,
* OR is cheaper/faster than an XOR
« If you are doing logic, Cout is still equal to G; +P,C;
« Just beware that Sum, != P; XOR C;

M Horowitz EE 371 Lecture 4

Using G and P

We can combine G; and P, into larger blocks
— Call these “group generate” and “group propagate” terms

When does a group Generate a carry out? (e.g., 4 bits)
— G390 = G5 + P3G, + P3P,G, + P3P,P, G,

When does a group Propagate a carry in to the carry out?
= P30 = P3P2P1 Py

We can also combine groups of groups
= G =Gy + PGy
= Pij = PiPry

MSB LSB

M Horowitz EE 371 Lecture 4

Linear Adders Using P,G

» Simple adders ripple the carry; faster ones bypass it

— Better to try to work out the carry several bits at a time
» Best designs are around 11FO4 for 64b

— Useful for small adders (16b) and moderate performance long adders
» Example of carry bypass from the text

]
Ay By g Py L L

Critical path, delay A=2(k-1)+(N/k-2)

M Horowitz EE 371 Lecture 4 7

Figure Is Not Quite Right

* How does the drawn critical path go down from the OR gate?!
— Fix: The OR gate output is the true input to the next group

» Subtle point: Each block spits out a G term for the OR
— Not simply a Cout; term

— Avoids a nasty critical path (11...1 + 00...0 + C;,; C,, goes 1->0)

in’

gy by @y by

B
LT LT R PR

o LT TR

¢ ¢
Sl r-1k-1 Serak

AND AND

Critical path, delay A=2(k-1)+(N/k-2)

M Horowitz EE 371 Lecture 4 8

Faster Carry Bypass (or Carry Skip) Adders

* We see the basic idea is to form multi-level carry chains
— Break the bits into groups
— Ripple the carry in each group, in parallel
— Ripple the global carry across the groups

* How big should each group be? (N bits total, k bits per group)
— If ripple time equals block skip time then delay = 2(N-1)+(N/k —2)

* Would groups of different sizes be faster? (yes)
— Middle groups have longer to generate carry outs; should be larger
— Early and late groups have ripples in critical path; should be shorter
— Called “Variable Block Adders”

M Horowitz EE 371 Lecture 4 9

Carry Select Adders

» Why wait for the carry in? (If you can’t find parallelism, invent it!)
— Calculate answers for a group assuming C;=1 AND C;=0
— Use two adders, and rely on the fact that transistors are cheap
— Don’t do this on the full adder (too expensive), just the MSBs

Setup

e I

— “0” carry propagate

"Ry

—| “1” carry propagate

1
I \/

—_ Mux e

Coka iL Carry vector Coxsa

Sum generation

M Horowitz EE 371 Lecture 4 10

Many Papers on These Adders

But no one builds them anymore
— Or rather, nobody publishes papers on them (or gets PhDs on them)

These are all clever improvements on adders
— That tend to optimize transistors along with performance
— Or are best for narrow-width operands (n=64 is slow)

But scaling is pushing these adders to the wayside
— We have very wide-word machines (media applications)
— We have more transistors than we know what to do with

Question: As power density questions increase...
— ... will these “simpler” adders make a comeback?

M Horowitz EE 371 Lecture 4 11

Logarithmic, or Tree, Adders

» Fundamental problem: to know C;, we need C,_,
— So delay is linear with n, and this dominates for wide adders (n>16)
— Can we lookahead across multiple levels to figure out carry? Yes.
— Called “prefix computation” — turns delay into logarithmic with n

* Notation is always an issue; everybody does it differently
— Here, A;; means the signal “A” for group the i to j* position
— P = propagate (A+B)
— G = generate (AB)
— C = Carryln to this bit/Group position

M Horowitz EE 371 Lecture 4 12

Logic Stages For Logarithmic/Tree Adders

1. Compute single bit values

0<=i<n G=AB, P=A+B,
2. Compute two-bit groups
0<=i<(n/2) Gpis1:7Giis1tGoPoiy Pais1:2=P2ir1Poi
3. Compute four-bit groups
0<=i<(n/4) Glir3.4=Cuirzais2TCuir1aiP aivz.aive P 4ir3:4=Paisz.ain2Paisrai

4. ...Go down tree for G&P, then go back up for Cin...
5. Compute four-bit carries

0<=i<(n/8) Cgir7:giva = Ggivagi t Cainz:8iPsisasi Csirasi = Caisrsi
6. Compute two-bit carries
0<=i<(n/4) Clirzaivz = Guivrai t CainzaiPaivrai Cairr:2i = Coivzui
7. Compute single-bit carries
0<=i<(n/2) Cair1 = Gy + Coir10iPai Cui = Coinra
M Horowitz EE 371 Lecture 4 13

An Eight-bit Example

* “Lines and dots” notation shows the tree structure clearly

5| (4] [3] 2] [1]
P7G7 GGG PSGS P4G4 P3G3 ZGZ lGl OGO
\ / \ /

G3:0

l G7:0

» Takes log,n time to get the final carry-out (Cout,=G,.;)

M Horowitz EE 371 Lecture 4 14

An Eight-Bit Example, Redrawn

* More common to line up the PG terms with their appropriate bits

[7]
P7G7 PGGG PSGS PAGA P3G3 PZGZ PlGl POGO
: Gl:O

P5:4(55:4 P3'ZG3 2

F,7:6(-"“7:6

G3:0
I:’7:4 G7:4
G7:0
M Horowitz EE 371 Lecture 4 15

Layout Of Our Example Tree Adder

» Logarithmic structures have somewhat ugly layout
e 0

!

» Worst wire length grows as n increases (n=647? 128?)

M Horowitz EE 371 Lecture 4

16

That Was Half The Algorithm...

Compute single bit values

0<=i<n G=AB, P=AtB;

Compute two-bit groups

0<=i<(n/2) G2it1:2=Goir1tGoiPoin P2ir1:2=P2i41Pa
Compute four-bit groups

0<=i<(n/4) G iv3:47Cgirz:aiv2 T Caiv1:4iP sivz:4i2 P 4i3:4= P 4i+3:41+2P 4i+1.:4i

...Go down tree for G&P, then go back up for Cin...
. Compute four-bit carries

0<=i<(n/8) Cgir7:giva = Ggivagi t Cainz:8iPsisasi Csirasi = Caisrsi
. Compute two-bit carries
O<=i<(n/4) Clirzaivz = Guivrai t CainzaiPaivrai Cairr:2i = Coivzui
. Compute single-bit carries
0<=i<(n/2) Cair1 = Gy + Coir10iPai Cui = Coinra
M Horowitz EE 371 Lecture 4 17

An Eight-Bit Example, Finished

» A Brent-Kung adder (1982): what'’s the critical path?

afiajjo

C,;t Cev Cs¢ Cuq Cyv Cpv Civ Cyi

M Horowitz EE 371 Lecture 4 18

A 16b Brent-Kung Adder

 Limit fanout to 2 (can collapse some nodes with higher FO)

15 14 13 12 11

& 6 6 : 6 : 6 o6 o
N R A 2N 2 T S S S A A A
Carry out for each bit position

M Horowitz EE 371 Lecture 4 19

Many Kinds of Tree Adders

* We can vary some basic parameters
— Radix, tree depth, wiring density, and fanout

» Radix: how many bits are combined in each Pgroup, Gg term?
— Radix is generally < 4 (why not more?); prior example was 2
— Radix-n can just compute the Pg and Gg terms directly

N N

Radix-2 block Radix-3 block Radix-4 block

— Or it can compute the intermediate P# and G# terms as well

W @

Radix-2 block Radix-3 block Radix-4 block

M Horowitz EE 371 Lecture 4 20

Building Multiple-Bit PG blocks

» Radix-4 Pg, Gg block that generates intermediate terms
— Spits out “P,.,” and “G;.,” terminology
— Also spits out P3, G3, P2, G2 and passes along P1, G1

¥

09'0d

0:€9'0:ed
0:¢9°0:¢d
0:190:1d

— Allows for quick computation of the various carries, once we know C
— How do we build this block?

M Horowitz EE 371 Lecture 4 21

Building Multiple-Bit PG blocks, con’t

e Can we use dynamic logic to build fast blocks?
— A Manchester carry chain can “gather” the multiple-bit G terms

Py Py Poy
Gy 1 IJ_\ X
g lag b

— For C, since we already have Pgs and Ggs we can do better
Cin

Gn

POy 1 1

EL e

M Horowitz EE 371 Lecture 4 22

Dynamic Logic for 4-Bit PG Block

* Motorola design

-
= —~
= o)

o]
Yo 0

‘0

AID

H
|
H
H—
H
|..

| I 1]
e e T + + 1+ T T

)
n_E}o—
sl 9 3
B s g s I S s s s s
ad L L Ly ad L L1, QJ_LI_%_I_,
L]
AIH YQ Y.LT &
o e }—I - -)
pala S B B
L o L
_|"j 'I":} _";-:' v v
M Horowitz EE 371 Lecture 4 23

32b Mixed-Radix Brent-Kung Adder

 Vary radices at different tree levels because n may not be (radix)*

M Horowitz EE 371 Lecture 4 24

32b Mixed-Radix, Redrawn As Folded Tree

* PG goes “down” and Carry goes back “up”

Individual adders
gmf’mrmg 8,P; b,
and sum S; *
C4 ???? ????(1 Cy
Cin

Carry-lookahead Su per-blocks of Carry-lookahead blocks of
4-bits blocks generating: 4-bits generating:
G}, P%, and C,, for the 4-bit G, P,, and C,, for the

blocks - adders
Group producing final

carry G, and Cig

Critical path delay = 1A (for g..p,)+2 %2 A(for G,P)+3x2A (for C; +1XOR-A (for Sum) = appx. 12 Aof delay

M Horowitz EE 371 Lecture 4 25

64b Radix-4 Brent-Kung Adder

» Takes longer to draw in Powerpoint than it does to design!
5

M Horowitz EE 371 Lecture 4 26

Radix 4 PG and Carry Trees

(Argh! Why do people put the LSB on the left side?)

2 OTOSATAT O T o4 N I~ I

[R Q- O -

e 2 omOoTo=mO™
" z geerda

g L 111131111 J.J.J.J:IJ.
(zz== | e O Y |

ol | = af =

Pl E

T AN PG BLOCK

(277 7R | | | | |

cif | =
|2

EEr PG hlock

=] o

g

P ;//h‘7‘7‘79’79"

Critical path: A, B - Gy- G - G -G - C - C €8

M Horowitz EE 371 Lecture 4 27

Tree Depth, Wiring Density, and Fanout

* Previous slides have all examined changing the adder radix

» We can also change the tree depth, wire density, and/or fanout
— These usually get changed together; one affects the others
— Density: How many wires criss-cross the tree?

Depth: How many stages of logic?

Fanout: How far is the reach of each stage?

* Reduce depth by chopping trees
— Many adders use carry select at the final stage
« Compute two results, and use a carry to select right result
— Eliminate the carry tree altogether
* Increasing wiring density or increasing fanout

M Horowitz EE 371 Lecture 4 28

A Very Dense 16b Tree

» Eliminate the carry out tree by computing a group for each bit
— Kogge-Stone architecture (1973)

* Lots of wires, but minimizes the number of logic levels
* We can use this for a quick swag at the minimum delay

M Horowitz EE 371 Lecture 4

29

Minimum 64b Adder Delay

» Make a few assumptions
— Output load is equal to the load on each input
— Use static gates; very aggressive domino logic may change results

e Simple approximation
— Need to compute Sum; = A; XOR B; XOR C,
— C;, (LSB) must fanout to all bits for a fanout of 64
— Extra logic in chain raises effective fanout to about 128 - 3.5 FO4

* More complicated approximation
— At each stage, P drives 3 gates, G drives 2; effective fanout % 3.5
— Total fanout = 1.5 (first NAND/NOR) * 3.56 * 1-ish (final mux)
— 5.7 FO4, not really accounting for parasitic delay correctly

M Horowitz EE 371 Lecture 4

30

Higher Radix Still Possible

* Radix-4 Kogge-Stone tree
— Trades off two layers of logic for lots and lots of wires

* Not a good idea in CMOS - it tends to increase stage efforts >> 4
— Not bad, though, for domino — much lower logical effort

M Horowitz EE 371 Lecture 4 31

Reduce Depth With Fanout

» Can also reduce tree depth by increasing the stage fanouts
— Sklansky (1960) called this a “divide-and-conquer” tree
— Fanouts increase the further from the start you go

© 000

M Horowitz EE 371 Lecture 4 32

A Taxonomy

* Following Harris’'s 2003 paper
— Assume 16b radix-2 adder families for this discussion
— We can modify tree’s depth, fanout, and wiring density

* What we've seen already
— Brent-Kung: 7 logic levels, fanout of 2, one wiring track enough
— Kogge-Stone: 4 logic levels, fanout of 2, eight wiring tracks
— Sklansky: 4 logic levels, fanout of up to 9, one wiring track enough

» Formalism: Use a triplet (1,f,t) to represent the adders

— Logic levels = log,N + | Brent-Kung: (3,0,0)
— Fanout = 2+1 Kogge-Stone: (0,0,3)
— Wiring tracks = 2t Sklansky: (0,3,0)
M Horowitz EE 371 Lecture 4 33

Points on a plane?

» All major adder architectures fall onto the same plane
— Defined by |+f+t=log,N-1

Kogge-
i EYU

I {Wira Tracks)
¥ig. 5. Tezsnomy of pretiz graphs

« Using this, we may expect a Han-Carlson adder to...
— Trade off logic layers for some increased wiring

M Horowitz EE 371 Lecture 4 34

Han-Carlson Adder (1987)

» Think of this as a sparse Kogge-Stone
— Called a sparse tree with sparseness of 2

?

M Horowitz EE 371 Lecture 4 35
m T T T
omino Sklansky Ling 2-bit Sum select
Static CMOS Sklansky
10°t
e
B
-
o
2
w Dual Rail Sklansky Ling
10°-
Cout =100fF
1 1 1 L 1 1
1 2 3 4 5 6 7 8 9 10
delay in 100ps
M Horowitz EE 371 Lecture 4

36

Other Sparse Trees

Delay

1lps

Hps

2lps

18ps

29ps

ok EII mmmmmmmmmmmmmmmmmmm’m en

HWJWJ’J
.,Il;r-!a,!.

C#

Gout Sum[31:28] &lm[??ﬂ] Sum[23:20] Sum(19:18] Sum{15:12] Sum(11:8] Sum[7:4]

Sumi3:0)
*~ou t
e e Mathew, VLSI'02

M Horowitz

EE 371 Lecture 4

37

