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Outline

• ABC System
• And-Inverter Graph (AIG)

– AIG construction
– AIG optimization

• Rewriting
• Substitution
• Redundancy removal

• Technology mapping
– Boolean matching
– Cut-based mapping

• Sequential optimization
– Integration: logic optimization + mapping + retiming
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What Is Berkeley ABC?

• A system for logic synthesis and verification
– Fast
– Scalable
– High quality results (industrial quality)
– Exploits synergy between synthesis and verification

• A programming environment
– Open-source
– Evolving and improving over time
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Design Flow

System Specification

RTL

Logic synthesis

Technology mapping

Physical synthesis

Manufacturing

ABC Verification
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Areas Addressed by ABC

• Combinational synthesis
– AIG rewriting
– technology mapping
– resynthesis after mapping

Sequential synthesis
retiming
structural register sweep
merging seq. equiv. nodes

• Formal verification
– combinational equivalence checking
– bounded sequential verification
– unbounded sequential verification
– equivalence checking using synthesis history
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ABC vs. Other Tools

§ Industrial 
+ well documented, fewer bugs
- black-box, push-button, no source code, often expensive

§ SIS
+ traditionally very popular
- data structures / algorithms outdated, weak sequential synthesis

§ VIS 
+ very good implementation of BDD-based verification algorithms
- not meant for logic synthesis, does not feature the latest SAT-based 

implementations
§ MVSIS

+ allows for multi-valued and finite-automata manipulation
- not meant for binary synthesis, lacking recent implementations
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Existing Capabilities 

ABC

Combinational logic 
synthesis
Fast, scalable, good quality

Technology mapping 
with structural choices
Cut-based, heuristic, good 
area/delay, flexible

Sequential synthesis
Innovative, scalable, 
verifiable

Sequential verification
Integrated, interacts with 
synthesis
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Formal Verification
• Equivalence checking

– Takes two designs and makes a miter 
(AIG)

• Model checking safety properties
– Takes design and property and makes 

a miter (AIG)

The goals are the same: to transform AIG until 
the output is proved constant 0

ABC won a model checking competition at CAV 
in August 2008

D2D1

Equivalence checking

0

D1

Property checking

0
p
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ECE 667 Synthesis & Verification - ABC system

And-Inverter Graphs
(AIG)
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And-Invert Graph (AIG)
• AIG is a Boolean network with two types of nodes: 

– two-input ANDs, nodes
– Inverters (NOT)

• Any Boolean function can be expressed using AIGs
– For many practical functions AIGs are smaller than BDDs
– Efficient graph representation (structural)
– Very good correlation with design size

• AIGs are not canonical
– For one function, there may be many structurally-different AIGs
– Functional reduction and structural hashing can make them 

“canonical enough” 
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Terminology

• Logic network
– Primary inputs/outputs (PIs/POs)
– Logic nodes
– Fanins/fanouts
– Transitive fanin/fanout cone 

(TFI/TFO)

• Structural cut of a node
– Cut is a boundary in the network 

separating the node from the PIs
– Boundary nodes are the leaves
– The node is the root of the cut
– k-feasible cut has k or less leaves
– Function of the cut is function of 

the root in terms of the leaves

Primary inputs

Primary outputs

Fanins

Fanouts
TFO

TFI

Primary inputs

Leaves

Root

Cut
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Create Starting AIG
• AIGs are constructed from the Boolean 

network and reduced to FRAIGs to 
minimize the AIG size.

• Constructed from the netlist available  from 
technology independent logic synthesis 
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AIG Non-canonicity
• AIGs are not canonical

– same function represented by two functionally equivalent AIGs 
with different structures

– BDDs – canonical for same variable ordering
– But they are “canonical enough” (A. Mishchenko)

6 nodes
4 levels

b ca c

a b d
7 nodes
3 levels

a c b d b c a d
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AIG Example
cd

ab 00 01 11 10

00 0 0 1 0
01 0 0 1 1
11 0 1 1 0
10 0 0 1 0

F(a,b,c,d) = ab + d(ac’+bc)

cd
ab 00 01 11 10

00 0 0 1 0
01 0 0 1 1
11 0 1 1 0
10 0 0 1 0

6 nodes
4 levels

b ca c

a b d

F(a,b,c,d) = ac’(b’d’)’ + cb(a’d’)’ 
= ac’(b+d) + bc(a+d)

7 nodes
3 levels

a c b d b c a d
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Basic Logic Operations 

• Converting logic function into AIG graph
– Inversion         ¬a ¬a
– Conjunction     a ^ b (ab)               a^b
– Disjunction       a v b (a+b)          ¬(¬a^¬b)
– Implication       a Þ b ¬(a^¬b)
– Equivalence    a Û b ¬(a^¬b)^¬(¬a^b)
– a XOR b ¬(¬(a^¬b)^¬(¬a^b))
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AIG Attributes

• AIG size
– Measured by number of AND nodes

• AIG depth
– Number of logic levels = number of AND-gates on longest path from a 

primary input to a primary output
– The inverters are ignored when counting nodes and logic levels

6 nodes
4 levels

b ca c

a b d
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Structural Hashing (Strashing)
• When building AIGs, always add AND node

– When an AIG is constructed without strashing, AND-gates are added one at a 
time without checking whether AND-gate with the same fanins already exists

• One-level strashing 
– when adding a new AND-node, check the hash table for a node with the same 

input pair (fanin)
– if it exists, return it; otherwise, create a new node

a b

c d

a b

c d
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Two-Level Structural Hashing

• When adding a new AND-node
– Consider two levels of its predecessors
– Hash the three AND-gates into a representative (“canonical”) form
– This offers partial canonicity

b c

a

a b

c

“canonical” form

Ü

ca b

Þ
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F = abc     G = (abc)’     H = abc’

Initial AIG AIG after strashing

Strashing- example
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Functional Reduction

• AIGs are not canonical – may contain syntactically distinct but 
functionally equivalent (redundant) internal nodes.

• Operations on such AIGs are inefficient and time consuming.
• Detecting and merging functionally equivalent nodes is called 

functional reduction.
• Achieved by bit-parallel simulation + SAT (explain !) 

“DAG-Aware AIG Rewriting A Fresh Look at Combinational Logic Synthesis” - Alan Mishchenko, Satrajit Chatterjee, Roland Jiang, 
Robert Brayton, DAC’06 Proceedings of the 43rd annual Design Automation Conference
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AIG Functional Reduction - Previous Work 

• BDD Sweeping [1]
– Constructs BDDs of the network nodes in terms of primary inputs (PI) and 

intermediate variables
– A pair of network nodes with same BDDs are merged
– Resource limits restrict BDD size

• SAT Sweeping [2]
– Achieves the same by solving topologically ordered SAT problems designed to 

prove or disprove equivalence of cut-point pairs
– Equivalence candidate pairs are detected using random or exhaustive simulation

(bit-parallel)

[1] A. Kuehlmann, et.al., “Robust boolean reasoning for equivalence checking and functional property
verification”, IEEE Trans. CAD, Vol. 21(12), 2002

[2] A. Kuehlmann, “Dynamic Transition Relation Simplification for Bounded Property Checking”. Proc.
ICCAD ‘04.

AIGs are first built using structural hashing (strashing) and post-
processed optionally to enforce functional reduction.
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Functional Reduction (FRAIG)

• Outline of the algorithm:
– When a new AND-node is added, perform structural hashing
– When a new node is created, check for the node with the same 

functionality (up to complementation)
• If such a node exists, return it
• If the node does not exist, return the new node

• The resulting functionally-reduced AIGs are “canonical” in the 
following sense
– Each node has a unique functionality 
– Structural representation of each function is not fixed

• Adding nodes in different order may lead to a different graph
• They can be always mapped to a representative form
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AIG Rewriting

Fast greedy algorithm to minimize AIG size (# nodes)
• Iteratively selects AIG subgraphs up to cut size 4
• Replaces each subgraph by precomputed subgraphs (same funcion

and number of levels)
• Uses NPN classes, hashed by truth table

Use of 4-input cuts
• The cut computation starts at the PIs and proceeds in topological order
• For an internal node n with two fanins, a and b, the cuts C(n) are 

computed by merging the cuts of a and b.
• For each cut, all pre-computed subgraphs are considered . The new 

subgraph that leads to the largest improvement at a node if chosen.
Delay-aware AIG rewriting
• AIG refactoring; AIG balancing
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Combinational Synthesis

a b a c

Subgraph 1

b c
a

Subgraph 2

• Pre-computing AIG subgraphs
– Consider function f = abc

a c
b

Subgraph 3

Rewriting AIG subgraphs

Rewriting node A

Rewriting node B

Þ

a b a c

Þ

a b a c

A

Subgraph 1
b c

a

A

Subgraph 2

b c
a

B

Subgraph 2

a b a c

B

Subgraph 1

In both cases one node is saved

• AIG rewriting minimizes the number of AIG nodes without increasing 
the number of AIG levels
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AIG Optimization

(a+b)(b+d) = ad+b

• AIG optimization is  based on AIG rewriting, from one form to a 
simpler form
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Level -1 Optimization

a * 1 = 1 a * 0 = 0

a * a = a a * ¬a = 0
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Level 2 Optimization

(¬a+b)b = b ((¬a+b)b) d = bd
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Resubstitution
• Express the function of the node using other nodes (divisors).
• 0-level resubstitution: replace a logic cone (MFFC) by another node
• 1-level resubstitution: replace  function of the node by two existing nodes 

+ new node (AND). Example:
– Replace function  g = a(b+c+d)  by  f ‘ = n + m = a(b+c) + (a d) = a(b+c+d)    

in the context of the network where n = a (b+c)  and m = a d.

AIG is reduced by 1 node (p)
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Redundancy Removal
• Fast bit-parallel, random simulation used for early detection of non-redundancy
• SAT used to prove or disprove redundancy (equivalence)
• Edge g ® f is redundant (remove it, set g=0)

h = f’bc = (ab + b’cde)bc = abc

g=b’cde

0: unSAT (equiv)

1: SAT (not-equiv)
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How Is ABC Different From SIS?

Equivalent AIG in ABC

a b c d

f

e

x y

z

Boolean network in SIS

a b c d

e

x y

f

z

AIG is a Boolean network of 2-input 
AND nodes and invertors (dotted lines)
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Comparison of Two Synthesis Systems
“Classical” synthesis (SIS)

• Boolean network
• Network manipulation (algebraic)

– Elimination
– Factoring/Decomposition
– Speedup 

• Node minimization
– Espresso
– Don’t cares computed using BDDs
– Resubstitution 

• Technology mapping
– Tree based

ABC “contemporary” synthesis (ABC)

AIG network
DAG-aware AIG rewriting (Boolean)

Several related algorithms
Rewriting
Refactoring
Balancing
Speedup 

Node minimization
Boolean decomposition
Don’t cares computed using simulation and 

SAT
Resubstitution with don’t cares

Technology mapping
Cut based with choice nodes
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ECE 667 Synthesis & Verification - ABC system

Cut-based 
Technology Mapping
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Technology Mapping

Input: A Boolean network 
(And-Inverter Graph)

Output: A netlist of K-LUTs implementing 
AIG and optimizing some cost function

The subject graph The mapped netlist

Technology
Mapping

a b c d

f

e a b c d e

f
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Mapping in a Nutshell

• AIGs represent logic functions
– A good subject graph for mapping

• Technology mapping expresses logic functions 
to be implemented

– Uses a description of the technology
• Technology

– Primitives with delay, area, etc

• Structural mapping
– Computes a cover of AIG using primitives of the 

technology (standard cell or LUT)
• Cut-based structural mapping

– Computes cuts for each AIG node
– Associates each cut with a primitive
– Selects a cover with a minimum cost

• Structural bias
– Good mapping cannot be found because of the 

poor AIG structure
• Overcoming structural bias

– Need to map over a number of AIG structures 
(leads to choice nodes)

Primary inputs

Primary outputs

Choice node

a b c d

f

e

AIG Mapped network

Þ

a b c d e

f

LUT

LUT

LUT
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LUT Mapping Algorithm (min delay)

Input: Structural representation of the circuit
(AIG or Boolean network)

1. Compute all k-feasible cuts for each node and match them 
against gates from library
• FPGA: structural matching (k-input LUTs)
• ASIC: functional matching (truth tables)

2. Compute best arrival time at each node
• In topological order (from PI to PO)

compute the depth of all cuts and choose the best one
3. Perform area recovery
4. Chose the best cover 

• In reverse topological order (from PO to PI) choose best cover

Output: Mapped netlist



ECE 667 Synthesis & 36

Structural Cuts in AIG

A cut of node n is a set of nodes 
in transitive fanin such that:
every path from the node to PIs 
is blocked by nodes in the cut.

A k-feasible cut has no more 
than k leaves. a b c

p q

n

The set {pbc} is a 3-feasible cut of 
node n. (It is also a 4-feasible cut.)

k-feasible cuts are important in LUT mapping because the logic between 
root n and the cut leaves {pbc} can be replaced by a 3-LUT.
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Exhaustive Cut Enumeration

{ p, ab } { q, bc }

{ a } { c }{ b }

a b c

p q

n
{ n, pq, pbc, abq, abc }

Computation is done bottom-up, from PIs to Pos.
Any cut that is of size greater than k is discarded

• All k-feasible cuts are computed in one pass 
over the AIG
– Assign elementary cuts for primary inputs
– For each internal node

• merge the cut sets of children
• remove duplicate cuts
• add the elementary cut composed of the 

node itself
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Cut Filtering

x

a cb

d e

f { .. {dbc} .. {abc} .. }

{ .. {adbc} .. {abc} .. }

Bottom-up cut computation in the presence of re-convergence might 
produce dominated cuts

Cut {a, b, c} dominates cut {a, d, b, c}

• The “good” cut {abc} is present 

• But the “bad” cut {adbc} may be propagated further (a run-time issue)

• It is important to discard dominated cuts quickly
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One AIG Node – Many Cuts

Combinational AIG

a b c d

f

e

• Manipulating AIGs in ABC
– Each node in an AIG has many cuts
– Each cut is a different SIS node
– There are no a priori fixed boundaries

• Implies that AIG manipulation with cuts is 
equivalent to working on many Boolean 
networks at the same time

Different cuts for the same node
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Delay-Optimal Mapping

• Input:
– AIG and k-cuts computed for all nodes

• Algorithm:
– For all nodes in a topological order

• Compute arrival time of each cut 
using fanin arrival times

• Select one cut with min arrival time
• Set the arrival time of the node to 

be the arrival time of this cut
• Output: 

– Delay-optimal mapping for all nodes

c d e fa b

c d e fa b

1

3

1 1 2

f

q rp

s Cut {pqr} of node f
has arrival time 3

Cut {stu} of node f
has arrival time 2

11

1

2
f

t

s

u

Cut size k = 3
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Selecting Delay Optimal Cuts
• Computing Boolean function of a cut

– Express the root of the cut as f (leaves)

• Matching cuts with the target device
– ASIC: associate the cut with a gate from the 

library and look up its delay 
– FPGA: assign a k-feasible cut with a k-input LUT 

(delay and area are const)
• Assigning arrival times:

for each node, from PIs to POs
– Compute the arrival times of each cut
– Select the best cut for optimum delay
– When arrival times are equal, use area as 

a tie-breaker
– Compute arrival times at the outputs

c1 c2
c3

c4

If  Tc2 < Tc3 < Tc1 < Tc4

C2 is the best cut
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Boolean Matching (standard cells)
• Comparing the Boolean function of the cut with those of the 

library gates
– Represent the function of the cut output as truth table disregarding 

interconnect structure of internal nodes
– Compare to truth tables of gates from library
– Uses phase assignment

• All Boolean function with k variables are divided into N-
equivalence classes

• NPN equivalence
– Two Boolean function are NPN equivalent if one of them can be 

derived from another by selectively complementing inputs (N), 
permuting inputs (P) and optionally complementing output (N)

f = x1x’3 + x2 and  g = x3x’1 + x2

are N-equivalent (input complementation)
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NPN equivalence

• Functions F and G are NPN equivalent if 
F can be derived from G by selectively complementing the inputs (N), 
permuting the inputs (P), and optionally complementing the output (N).

Examples:

F1 = (a b) c’  and F2 = (a c’) b
are P-equivalent (permutation)

f = x1x’3 + x2 and g = x3x’1 + x2

are N-equivalent (input complementation)
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N-Equivalence
Function f = x1x’3 + x2
represented by bit-string 
<00111011>

Canonical form: representative of N-equivalence class, phase assignment with smallest 
integer value (here <00110111>=55)

ABC pre-computes truth tables of all gates from the library and their N canonical forms.

Phase <001> transforms the 
truth table <00111011> into 
<00110111>
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Selecting Final Mapping (Covering)

• Once the best matches are assigned 
to each node

• Going from POs to PIs, extract the 
final mapping
– Select the best match for each 

primary output node
– Recursively, for each fanin of a 

selected match, select its best 
matches

z1 z2 z3

x5x4x3x2x1
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Area Recovery During Mapping
• Delay-optimal mapping is performed first

– Best match is assigned at each node
– Some nodes are used in the mapping; others are not used

• Arrival and required times are computed for all AIG nodes
– Required time for all used nodes is determined
– If a node is not used, its required time is set to +¥

• Slack is a difference between required time and arrival time
• If a node has positive slack, its current best match can be updated to 

reduce the total area of mapping
– This process is called area recovery

• Exact area recovery is exponential in the circuit size
– A number of area recovery heuristics can be used

• Heuristic area recovery is iterative
– Typically involved 3-5 iterations

• Next, we discuss cost functions used during area recovery
– They are used to decide what is the best match at each node  
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How to Measure Area?

c d e fa b

q r

x

p

y

c d e fa b

q r

x

p

y

Area of cut {pcd}
= 1 + [1 + 0 + 0] = 2

Area of cut {abq}
= 1 + [ 0 + 0 + 1]  = 2

Suppose we use the naïve definition: 
Area (cut) = 1 + [ Σ area (fanin) ]

(assuming that each LUT has one unit of area)

Naïve definition says both cuts are equally good in area

But this ignores sharing due to multiple fanouts
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Area-flow

c d e fa b

q r

x

p

y

c d e fa b

q r

x

p

y

Area-flow of cut {pcd}
= 1 + [1 + 0 + 0] = 2

Area-flow of cut {abq}
= 1 + [ 0/1 + 0/1 + ½] = 1.5

Area-flow (cut) = 1 + [ Σ ( area-flow ( fanin ) / fanout_num( fanin ) ) ]

Area-flow “correctly” accounts for sharing
Area-flow recognizes that cut {abq} is better

(Cong ’99, Manohara-rajah ’04)



ECE 667 Synthesis & 49

Exact Local Area

db c e fa

s t

p

q

f

db c e fa

s t

p

q

f

Cut {stq}
Area flow = 1+ [.25+.25 +1] = 2.5
Exact area = 1 + 1 = 2 (due to q)
Area flow will choose this cut.

Cut {pef}
Area flow = 1+ [(.25+.25+3)/2] = 2.75
Exact area = 1 + 0 (p is used elsewhere)
Exact area will choose this cut.

6 66 6

Exact-local-area (cut) = 1 + [ Σ exact-local-area (fanin with no other fanout) ]
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Area Recovery Summary
• Area recovery heuristics

– Area-flow (global view)
• Chooses cuts with better logic sharing

– Exact local area (local view)
• Minimizes the number of LUTs by looking one node at a time

• The results of area recovery depends on
– The order of processing nodes
– The order of applying two passes
– The number of iterations
– Implementation details

• This scheme works for the constant-delay model
– Any change off the critical path does not affect critical path
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Structural Bias

Technology
Mapping

The mapped netlist very closely resembles the subject graph

Every input of every LUT in the mapped netlist must be present in the subject 
graph - otherwise technology mapping will not find the match

a b c d

f

e

m

p

a b c d e

f

p

m

LUT

LUT

LUT
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Example of Structural Bias
A better match may not be found

This match is not found

Since the point q is not present in the subject graph, 
the match on the right is not found 

a b c d

f

e

p

m

a b c d e

f

p

m

LUT

LUT

LUT

a b c d e

f

q

LUT

LUT
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Example of Structural Bias
The better match can be found with a different  subject graph

a b c d

f

e

p

m

Þ

a b c d e

f

q

LUT

LUTsynthesis

a b c d

f

q

e

p
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Summary

Tech Mapping for Combinational Logic Circuits
• Derive balanced AIG
• Compute k-feasible cuts
• Compute Boolean functions of all cuts (truth tables)

– needed only for standard cell designs

• Find matching for each cut
• Assign optimal matches at each node (from PIs to POs)

– LUTs: delay optimal
– Gates: area optimal

• Recover area on non-critical paths
• Choose the final mapping
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To Learn More

• Visit ABC webpage http://www.eecs.berkeley.edu/~alanmi/abc

• Read recent papers http://www.eecs.berkeley.edu/~alanmi/publications

• Send email                                      
– alanmi@eecs.berkeley.edu
– brayton@eecs.berkeley.edu


