

Question #1

How to best combine logic and drive for a big capacitive load?

Question #2

□ All of these are "decoders"

Which one is "best"?

Method to answer both of these questions

Extension of buffer sizing problem

Logical effort

Complex Gate Sizing

Complex Gate Sizing: NAND-2 Example

$$C_{gnand} = 4C_G = (4/3) C_{ginv}$$

$$C_{dnand} = 6C_D = 6\gamma C_G = 2\gamma C_{ginv}$$

$$f = C_L/C_{gnand} = (3/4) C_L/C_{ginv}$$

$$t_{pNAND} = kR_N(C_{dnand} + C_L)$$

= $kR_N(2\gamma C_{ginv} + C_L)$
= $kR_N C_{ginv} (2\gamma + C_L/C_{ginv})$
= $t_{inv} (2\gamma + (4/3)f)$

Logical Effort

- Defines ease of gate to drive external capacitance
- Inverter has the smallest logical effort and intrinsic delay of all static CMOS gates
- Logical effort LE is defined as:
 - $(R_{eq,gate}C_{in,gate})/(R_{eq,inv}C_{in,inv})$
 - Easiest way to calculate (usually):
 - Size gate to deliver same current as an inverter, take ratio of gate input capacitance to inverter capacitance
- □ LE increases with gate complexity

Logical Effort

$$t_{pgate} = t_{inv} \left(p + LEf \right)$$

Measure everything in units of t_{inv} (divide by t_{inv}):

p – intrinsic delay - gate parameter ≠ f(W) LE – logical effort – gate parameter ≠ f(W) f – electrical fanout = C_L/C_{in} = f (W)

Normalize everything to an inverter: $LE_{inv} = 1$, $p_{inv} = \gamma$

Delay of a Logic Gate

Logical effort is a function of topology, independent of sizing Effective fanout is a function of load/gate size

Logical Effort of Gates

Delay Of NOR-2 Gate

- 1. Size for same resistance as inverter
- 2. LE = ratio of input cap of gate versus inverter

Intrinsic capacitance $(C_{dnor}) = t_{pint} (NOR) =$

Any logic function can be implemented using NOR gates only or NAND gates only!

Which of the two approaches is preferable in CMOS (from a performance perspective)?

Logical Effort

Logical Effort Designing Past Chico Chemits

Ivan Sutherland Bob Sprcull David Harris

Gate Type	Number of Inputs			
	1	2	3	n
Inverter	1			
NAND		4/3	5/3	(n + 2)/3
NOR		5/3	7/3	(2n + 1)/3
Multiplexer		2	2	2
XOR		4	12	

[From Sutherland, Sproull, Harris]

Optimizing Complex Combinational Logic

Multistage Networks

$$Delay = \sum_{i=1}^{N} (p_i + LE_i \cdot f_i)$$

Effective fanout: $EF_i = LE_i f_i$

Only for tree networks

Path delay $D = \Sigma d_i = \Sigma p_i + \Sigma EF_i$

Path electrical fanout: $F = C_L/C_{in} = \Pi f_i$

Path logical effort: $\Pi LE = LE_1 LE_2 \dots LE_N$

Path effort: $PE = \prod LE F$

Adding branching

Branching effort:
$$b = \frac{C_{L,on-path} + C_{L,off-path}}{C_{L,on-path}}$$

Multistage Networks

$$Delay = \sum_{i=1}^{N} (p_i + LE_i \cdot f_i)$$

Effective fanout: $EF_i = LE_i f_i$ Path delay $D = \Sigma d_i = \Sigma p_i + \Sigma EF_i$ Path electrical fanout: $F = C_L / C_{in}$ Branching effort: $\Pi B = b_1 b_2 ... b_N$ $\Pi f_i = \Pi B F$ (assuming all paths in the tree are important) Path logical effort: $\Pi LE = LE_1 LE_2 ... LE_N$ Path effort: $PE = \Pi LE \Pi B F$

Optimum Effort per Stage

When each stage bears the same effort (effective fanout):

$$EF^N = PE$$

$$EF = \sqrt[N]{PE}$$

Effective fanouts: $LE_1f_1 = LE_2f_2 = \dots = LE_Nf_N$

Minimum path delay

$$\hat{D} = \sum_{i=1}^{N} (LE_i f_i + p_i) = N \cdot PE^{1/N} + \sum_{i=1}^{N} p_i$$

Optimal Number of Stages

For a given load, and given input capacitance of the first gate Find optimal number of stages and optimal sizing

$$D = N \cdot P E^{1/N} + \sum p_i$$

Remember: we can always add inverters to the end of the chain

The 'best effective fanout' $EF = PE^{1/\hat{N}}$ is still around 4 (3.6 with γ =1)

Method of Logical Effort: Summary

- □ Compute the path effort: $PE = (\Pi LE)BF$
- □ Find the best number of stages $N \sim \log_4 PE$
- Compute the effective fanout/stage EF = PE^{1/N}
 Sketch the path with this number of stages
- □ Work either from either end, find sizes: $C_{in} = C_{out}^* LE/EF$

Reference: Sutherland, Sproull, Harris, "Logical Effort", Morgan-Kaufmann 1999.

Optimizing Complex Combinational Logic: Examples

Example 1: No branching

Electrical fanout, F = II LE = PE = EF/stage = a = b = c =

Example 1: No branching

a, b, c are input capacitances normalized to the unit inverter

Electrical fanout, $F = 5$ $\Pi LE = 25/9$	
PE = 125/9	From the back
<i>EF/stage</i> = 1.93 <i>a</i> = 1.93	5/c = 1.93
b = 2.23	(5/3)c/b = 1.93 (5/3)b/a = 1.93
c = 2.59	(0/0)0/a = 1.90

Our old problem: which one is better?

LE=10/31LE=25/3LE=4/35/34/31 $\Pi LE = 10/3$ $\Pi LE = 10/3$ $\Pi LE = 80/27$ P = 8 + 1P = 4 + 2P = 2 + 2 + 2 + 1

Adding Branching

LE = 1 F = 90/5 = 18PE = 18 (wrong!)

$$EF_1 = (15+15)/5 = 6$$

 $FF_2 = 90/15 = 6$

$$EF_2 = 90/15 = 6$$

$$PE = 36, \text{ not } 18!$$

Better: $PE = F \cdot LE \cdot B = 18 \cdot 1 \cdot 2 = 36$

Example 2 with Branching

Select gate sizes y and z to minimize delaw from A to B

- Logical Effort: LE =
- Electrical Fanout: F =
- Branching Effort: B =
- Path Effort: PE =

Best Effective Fanout: *EF* = Delay: *D* =

Example 2 with Branching

