
A Regular Layout for Parallel Adders∗

Richard P. Brent †

MEMBER, IEEE

H.T. Kung ‡

MEMBER, IEEE

Abstract

With VLSI architecture, the chip area and design regularity represent a better mea-
sure of cost than the conventional gate count. We show that addition of n-bit binary
numbers can be performed on a chip with a regular layout in time proportional to
log n and with area proportional to n.

Index Terms: Addition, area-time complexity, carry lookahead, circuit design, com-
binational logic, models of computation, parallel addition, parallel polynomial eval-
uation, prefix computation, VLSI.

1 Introduction

We are interested in the design of parallel “carry lookahead” adders suitable for implementation
in VSLI architecture. The addition problem has been considered by many other authors. See,
for example, [1, 4, 6, 7, 11, 13, 14]. Much attention has been paid to the tradeoff between time
and the number of gates, but little attention has been paid to the problem of connecting the
gates in an economical and regular way to minimise chip area and design costs. In this paper
we show that a simple and regular design for a parallel adder is possible.

In §2 we briefly describe our computational model. §3 contains a description of the addition
problem and shows how it reduces to a carry computation problem. The basis of our method,
the reduction of carry computation to a “ prefix” computation, is described in §4. Although the
same idea was used by Ladner and Fischer [8], their results are not directly applicable because
they ignored fan out restrictions and used the gate count rather than area as a complexity
measure.

In §5 we use the results of §4 to give a simple and regular layout for carrying computation.
Our construction demonstrates that the addition of n-bit numbers can be performed in time
O(log n) , using area O(n log n) . The implied constants are sufficiently small that the method
is quite practical, and it is especially suitable for a pipelined adder. In §6 we generalize the
result of §5, and show that n-bit numbers can be added in time O(n/w + log w) , using area
O(w log w + 1) , if the input bits from each operand are available w at a time (for 1 ≤ w ≤ n).
Choosing w ∼ n/ log n gives the result that n-bit addition can be performed in time O(log n)
and area O(n) .
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2 The Computational Model

Our model is intended to be general, but at the same time realistic enough to apply (at least
approximately) to current VLSI technology. We assume the existence of circuit elements or
“gates” which compute a logical function of two inputs in constant time. An output signal can
be divided (“fanned out”) into two signals in constant time. Gates have constant area, and the
wires connecting them have constant minimum width (or, equivalently, must be separated by at
least some minimal spacing). At most two wires can cross at any point.

We assume that a signal travels along a wire of any length in constant time. This is realistic
as propagation delays are limited by line capacitancies rather than the velocity of light. A longer
wire will generally have a larger capacitance, and thus require a larger driver, but we can neglect
the driver area as it typically need not exceed a fixed percentage of the wire area [10].

The computation is assumed to be performed in a convex planar region, with inputs and
outputs available on the boundary of the region. Our measure of the cost of a design is the area
rather than the number of gates required. This is an important difference between our model
and earlier models of Brent [1], Winograd [14], and others. For further details of our model,
see [3]; for motivation and discussion of models similar to ours, see [9] and [12]. A feature of our
approach is that we strive for regular layouts in order to reduce design and implementation costs.
For VSLI, regularity is one of the most important design critertia; so we shall not compromise
the regularity of a design for the sake of efficiency. Since “regularity” is difficult to quantize, we
have not included it in our theoretical cost measure, although this would be desirable.

3 Outline of the General Approach

Let anan−1 . . . a1 and bnbn−1 . . . b1 be n-bit binary numbers with sum sn+1sn . . . s1 . The usual
method for addition computes the si by

c0 = 0 ,

ci = (ai ∧ bi) ∨ (ai ∧ ci−1) ∨ (bi ∧ ci−1) ,

si = ai ⊕ bi ⊕ ci−1, i = 1, . . . , n ,

sn+1 = cn

where ⊕ means the sum mod 2 and ci is the carry from bit position i .
It is well known that the ci can be determined using the following scheme:

c0 = 0 ,

ci = gi ∨ (pi ∧ ci−1) , (1)
where gi = ai ∧ bi

and pi = ai ⊕ bi

for i = 1, 2, . . . , n . One can view the gi and pi as the carry generate and carry propagate
conditions at bit position i . The relation (1) corresponds to the fact that the carry ci is either
generated by ai and bi or propagated from the previous carry ci−1. This is illustrated in Fig. 1.

� � � �. . . . . .
cn ci ci−1 c1 c0(= 0)

gn, pn gi, pi g1, p1

Figure 1: Carry chain
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In §5 we present a regular and area-efficient layout design for computing all the carries in
parallel assuming that the gi and pi are given. The design of a parallel adder is then straight-
forward and is illustrated in Fig. 2. Notice that in Fig. 2(b) the bottom rectangle represents the
combinational logic that transforms the ai and bi into the gi and pi. For computing the si we
use the fact that si = pi ⊕ ci−1 for i = 1, . . . , n .
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Figure 2: (a) Abstraction of a parallel carry chain computation, and
(b) abstraction of a parallel adder based on the design for

the carry chain computation.

4 Reformulation of the Carry Chain Computation

We define an operator “o” as follows:

(g, p)o(ĝ, p̂ ) = (g ∨ (p ∧ ĝ ), p ∧ p̂ )

for any Boolean variables g, p, ĝ and p̂.

Lemma 1: Let

(Gi, Pi) =

{
(g1, p1) if i = 1 ,
(gi, pi)o(Gi−1, Pi−1) if 2 ≤ i ≤ n .

Then
ci = Gi for i = 1, 2, . . . , n .

Proof: We prove the lemma by induction on i . Since c0 = 0 , (1) above gives

c1 = g1 ∨ (p1 ∧ 0) = g1 = G1

so the result holds for i− 1 . If i > 1 and ci−1 = Gi−1 , then

(Gi, Pi) = (gi, pi)o(Gi−1, Pi−1)
= (gi, pi)o(ci−1, Pi−1)
= (gi ∨ (pi ∧ ci−1), pi ∧ Pi−1) .

Thus Gi = gi ∨ (pi ∧ ci−1)
and from (1) we have Gi = ci .

The result now follows by induction. 2
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Lemma 2: The operator “o” is associative.

Proof: For any (g3, p3), (g2, p2), (g1, p1) , we have

[(g3, p3)o(g2, p2)]o(g1, p1) = [g3 ∨ (p3 ∧ g2), p3 ∧ p2]o(g1, p1)
= [g3 ∨ (p3 ∧ g2) ∨ (p3 ∧ p2 ∧ g1), p3 ∧ p2 ∧ p1]

and (g3, p3)o[(g2, p2)o(g1, p1)] = (g3, p3)o[g2 ∨ (p2 ∧ g1), p2 ∧ p1]
= [g3 ∨ (p3 ∧ (g2 ∨ (p2 ∧ g1))), p3 ∧ p2 ∧ p1] .

One can check that the right-hand sides of the above two expressions are equal using the dis-
tributivity of “∧” over “∨”. (The dual distributive law is not required.) 2

To compute the ci it suffices to compute all the (Gi, Pi), but by Lemmas 1 and 2

(Gi, Pi) = (gi, pi)o(gi−1, pi−1)o · · · o(g1, p1)

can be evaluated in any order from the given gi and pi. This is the motivation for the introduction
of the operator “o”. (Intuitively, Gi may be regarded as a “block carry generate” condition, and
Pi as a “block carry propagate” condition.)

5 A Layout for the Carry Chain Computation

Consider first the simpler problem of computing (Gi, Pi) for i = n only. Since the operator “o”
is associative, (Gn, Pn) can be computed in the order defined by a binary tree. This is illustrated
in Fig. 3 for the case n = 16 . In the figure each black processor performs the function defined
by the operator “o” and each white processor simply transmits data. The white and black
processors are depicted in Fig. 4. Note that for Fig. 3 each processor is required to produce only
one of its two identical outputs, and the units of time are such that one computation by a black
processor and propagation of the result takes unit time.
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Figure 3: Computation of (G16, P16) using a tree structure
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Figure 4: (a) White processor and (b) black processor

Consider now the general problem of computing the (Gi, Pi) for all 1 ≤ i ≤ n . This
computation can be performed by using the tree structure of Fig. 3 once more, this time inverted
(that is, the root is visited first). We illustrate the computation, for the case n = 16 , in Fig. 5.
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Figure 5: Computation of all the carries for n = 16

It is easy to check that at time T = 7 , all the (Gi, Pi) are computed along the top boundary
of the network. As the final outputs, we only keep the Gi, which are the carries ci . From the
layout shown in Fig. 5, we have the following results.

Theorem 3: For n ≥ 2, all the carries in an n-bit addition can be computed in time proportional
to log n and in area proportional to n log n, and so can the addition.

6 A Pipeline Scheme for Addition of Long Integers

We define the width w of a parallel adder to be the number of bits it accepts at one time from
each operand. For the parallel adder corresponding to the network in Fig. 5, w = 16 . We have
hitherto assumed that the width of a network is equal to the number n of bits in each operand.
Here we consider the case w < n . We show that this case can be handled efficiently using a
pipeline scheme on a network which is a modification of the one depicted in Fig. 5.

For simplicity, assume that n is divisible by w . One can partition an n-bit integer into n/w
segments, each consisting of w consecutive bits. To illustrate the idea, suppose that w = 16 .
Then the carry chain computation corresponding to each segment can be done on the network
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in Fig. 5, and the computations for all the segments can be pipelined, starting from the least
significant segment. The results coming out from the top of the network are not the final so-
lutions, though. Results corresponding to the ith least significant segment (i > 1) have to be
modified by applying (G(i−1)w, P(i−1)w) on the right using the operator “o”. To facilitate this
modification, we superimpose another tree structure on the top half of the network, as shown
in Fig. 6.
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Figure 6: Additional tree structure to be superimposed on the
top half of the network in Fig. 5

Using this additional tree, the contents of the “square” processor (denoted by “2”) are sent to all
the leaves, which are black processors. The square processor, shown in Fig. 7, is an accumulator
which initially has value (g, p) = (0, 1) , and successively has values (g, p) = (G(i−1)w, P(i−1)w) for
i = 2, 3, . . . At the time when a particular (G(i−1)w, P(i−1)w) reaches the leaves, it is combined
with the results just coming out from the old network there.
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@@I
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gout = gin ∨ (pin ∧ g)
pout = pin ∧ p

(g, p) = (gout, pout)

Figure 7: The “square” processor that accumulates (G(i−1)w, P(i−1)w)

By this pipeline scheme, we have the following result.

Theorem 4: Let 1 ≤ w ≤ n . Then all the carries in an n-bit addition can be computed in time
proportional to (n/w) + log w and in area proportional to w log w + 1 , and so can the addition.
When w = 1 , the method outlined in this section is essentially the usual serial carry-chain
computation. From Theorem 4 we have the following.

Corollary 1: The area-time product for n-bit addition is O(n log w + w log2 w + 1) , which is
O(n log2 n) when w = n , O(n log n) when w = n/ log n , and O(n) when w is a constant.

One can similarly obtain an upper bound on ATα (where A and T stand for area and time,
respectively) for any α ≥ 0 , and for each α one can choose w to minimise the upper bound [2].
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7 Summary and Conclusions

The preliminary and final stages of binary addition with our scheme (generation of (gi, pi) and
computation of si = pi⊕ ci−1 respectively) are straightforward. Figs. 4 and 5 illustrate that the
intermediate phase (fast carry computation) is conceptually simple, and the layout illustrated
in Fig. 5 is regular. The design of the white processor is trivial, and the black processor is about
as complex as a one-bit adder. After these two basic processors are designed, we can simply
replicate them and connect their copies in the regular way illustrated in Fig. 5. We conclude
that using the approach of this paper, parallel adders with carry lookahead are well-suited for
VLSI implementation.

Mead and Conway [10] considered several lookahead schemes, but concluded that “they
added a great deal of complexity to the system without too much gain in performance”. To
show that this comment does not apply to our scheme, suppose that the operations “∧ ”, “∨”
and “⊕” take unit time. Table 1 gives the computation time for our scheme and for a straight-
forward serial scheme, where the ci are computed from (1) for various n . (n is the number of
bits in each operand.) For n = 2k the general formulas are 4k and 2n− 1 respectively.

TABLE 1
COMPARISON OF PARALLEL AND SERIAL ADDITION TIMES

n Time Time
(parallel) (serial)

8 12 15
16 16 31
32 20 63
64 24 127

Based on our scheme, Guibas and Vuillemin [5] have designed a 32-bit parallel adder and
implemented it on a chip using NMOS. They estimate that with the particular technology they
used, their 32-bit parallel adder is about 4 times faster that a 32-bit straightforward serial adder.

In this paper we assumed a binary number system and restricted our attention to two’s
complement arithmetic. Only minor modifications of our results are required to deal with one’s
complement arithmetic or sign and magnitude representations of signed integers.

Brent and Kung [3] consider the problem of multiplying n-bit integers, and show that the
area A and time T for any method satisfy

AT ≥ K1n
3/2

and AT 2 ≥ K2n
2

for certain constants Ki > 0 (assuming the model of §2 with some mild additional restrictions).
For binary addition we can achieve

AT = O(n) by a trivial serial method,
and AT 2 = O(n log2 n) by the results in §6.

Thus, asymptotically speaking, implementing binary multiplication is harder that implementing
binary addition if either AT or AT 2 is used as the complexity measure. More discussions on the
area-time complexity of binary arithmetic can be found in [2], where a general measure ATα for
any α ≥ 0 is used.

In deriving the layout of Fig. 5 we used only one distributive law. Thus, the layout could be
used to evaluate arithmetic expressions of the form

gn + pn{gn−1 + pn−1[ . . . p3(g2 + p2g1) . . . ]} (2)
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where the gi, pi are numbers and the black processor in Fig. 4(b) now computes gout = gin+pinĝin

and pout = pinp̂in . Note that when p2 = · · · = pn = x expression (2) corresponds to the
polynomial

gn + gn−1x + · · ·+ g1x
n−1 .
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