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ABSTRACT 
This paper presents a fast global method for delay optimization 
after technology mapping. Timing analysis is used to identify 
timing-critical areas in the mapped network where new structures 
are synthesized to favor late-arriving signals. Unlike previous 
methods that make incremental local changes to the mapped 
network, the proposed method records many alternative structures 
and defers the final decision to the technology mapper. 
Experimental results for networks mapped into 6-input look-up 
tables (6-LUTs) show that the delay is, on average, improved 14% 
using a realistic delay library for LUTs with variable-pin delays 
and wire-delay estimation. The area penalty after the delay 
optimization is about 2% and can be eliminated by area-oriented 
resynthesis. When the algorithm is compared with DAOmap, the 
experimental results show 27% logic level reduction while the 
area is increased by only 1%.  The algorithm is also fast and 
applicable to very large networks. The runtime of the proposed 
algorithm is 16x and 3x faster than DAOmap for large industrial 
and academic designs, respectively. 

Categories and Subject Descriptors: B.6.3 [Logic Design]: 
Design Aids – Optimization; B.7.1 [Integrated Circuits]: Types 
and Design Styles – Gate Arrays; J.6 [Computer-Aided 
Engineering]: Computer-Aided Design (CAD) 
General Terms: Algorithms, Performance, Experimentation 
Keywords: FPGA, Technology Mapping, Logic Optimization, 
Windowing, Boolean Satisfiability, Interpolation 
1. INTRODUCTION 

Technology mapping converts a logic network, called the 
subject graph, into a network of logic nodes, which correspond to 
primitives in a particular technology. For example, technology 
mapping for FPGAs [4][6][7] transforms the network into K-input 
lookup tables (K-LUTs) that can implement any Boolean function 
of K or less variables. The subject graph is often an And-Inverter 
Graph (AIG), composed of two-input ANDs and inverters.  

Logic restructuring with the goal of reducing delay of a mapped 
network has long been an important part of both technology 
independent [17][2][12][16] and technology dependent synthesis 
[10][13][9][5]. However, existing methods for delay-oriented logic 
restructuring have the following drawbacks: 
• Numerous local changes to the network may be applied, but 

with no guarantee that the delay is globally improved or that 
area has been effectively spent for delay improvements.  

• Algorithms of high computational complexity are often used, 
leading to excessive runtime. Much effort is spent on 
deciding where to make the changes. 

• Structural flexibilities that may be available during mapping 
are typically not used during post-mapping resynthesis.  

The proposed method mitigates these limitations. Unlike the 
previous methods, it does not perform a sequence of local 
changes, each one updating the mapped network and then running 
incremental timing analysis after each change. It need not analyze 
cuts of a set of critical paths nor distribute slacks on off-critical 
paths. Instead, it computes timing information only once. This is 
analyzed and a set of new candidate structures, a subset of which 
may lead to reducing delay after the next iteration of mapping, are 
recorded in the subject graph using choice nodes [10][3].  

Decisions about which subset of structures to use are deferred to 
the technology mapper. The motivation is that the mapper has a 
global picture of both delay and area, as well as a good view of 
structural flexibilities presented during mapping, and thus can 
better decide what structures to use.  

The new logic structures are created by cofactoring logic cones, 
in timing critical regions, with respect to timing-critical variables. 
The cofactors are combined using multiplexers controlled by the 
critical variables and then decomposed and simplified as an AIG, 
resulting in a logic structure that favors the late-arriving variables. 
A similar method was discussed in [2] and called the generalized 
select transform (GST) [12][16]. This was used recently for timing 
optimization of sequential circuits [18]. The proposed algorithm 
can be extended to work for the sequential case as well. 

The rest of this paper is organized as follows. Section 2 
describes the background. Section 3 describes the algorithm. 
Section 4 reports experimental results. Section 5 concludes the 
paper and outlines future work. 

2. BACKGROUND 
A Boolean network is a directed acyclic graph (DAG) with 

nodes corresponding to logic gates and directed edges 
corresponding to wires connecting the gates. The terms Boolean 
network, netlist, and circuit are used interchangeably in this paper. 
If the network is sequential, the memory elements are assumed to 
be D-flip-flops with initial states.  

A node n has zero or more fanins, i.e. nodes that are driving n, 
and zero or more fanouts, i.e. nodes driven by n. The primary 
inputs (PIs) are nodes without fanins in the current network. The 
primary outputs (POs) are a subset of nodes of the network. A 
fanin (fanout) cone of node n is a subset of all nodes of the 
network, reachable through the fanin (fanout) edges of the node. 

A node is a logic component having a propagation delay. An 
edge, also called wire, is the pin-to-pin connection between two 
adjacent nodes. The delay of a path includes logic delays and wire 
delays.  The logic delay occurs in a logic component, such as a 
LUT.  The wire delay occurs on the edges. In modern FPGAs, the 
delay for each pin in a LUT is different, so a variable-pin-delay 
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model is used in this paper. Wire delays are usually not known 
until placement and routing. To approximate wire delays, a fixed 
delay is added to the delay of all pins of the LUTs in the library.     

3. ALGORITHM  
A self-explanatory pseudo-code is given in Figure 3.1. The 

algorithm takes the mapped netlist and the subject graph used for 
mapping. The netlist is analyzed to detect timing-critical areas for 
logic restructuring while the subject graph is used to accumulate 
the alternative logic structures for the next round of mapping. 
Several parameters are used in the computation: the timing 
window (w) determines the range of slacks of the near-timing-
critical nodes to be restructured; the logic depth (l) of cones 
selected for delay-oriented restructuring; and the limit (p) on the 
number of timing-critical edges of the cone to consider.   
   mapped netlist performSpeedup (  

 subject graph S,     // S is an And-Inverter Graph   
 mapped netlist M, // M was previously derived by tech-mapping of S  
 timing window w, // w is used to detect the critical path 
 logic depth l,        // l is used to detect a logic cone rooted at a node 
 edge count p         // p limits the number critical edges of the cone  { 
     perform timing analysis of M with unit-delay or LUT-library model; 
    detect the critical section of M as nodes n such that 0 ≤ slack(n) ≤ w; 
    detect timing-critical edges connecting these nodes;  
    for each timing critical node n   { 

             find cone C of M that extends l levels down from n;  
detect the set of timing-critical edges V feeding into C; 
if the number of edges in V exceeds p 
     continue;  
find logic cone C’ in S corresponding to C in M; 
find variables V’ in S corresponding to V in M; 
derive cofactors of the function of C’ w.r.t. variables in V’; 
build multiplexer tree C’’ of the cofactors using variables in V’; 
add structural choice C’= C’’ to the subject graph S; 

        } 
        derive netlist M’ by mapping subject graph S with added choices; 
        return M’;  

} 
Figure 3.1. Overall pseudo-code of the algorithm. 

The following subsections provide the details on timing analysis 
and identification of timing-critical edges (Section 3.1), logic 
restructuring for delay (Section 3.2), and using structural choices 
in technology mapping (Section 3.3). 

3.1 Timing analysis 
The purpose of timing analysis is to determine the critical nodes 

and critical edges by running a delay trace. Timing analysis for a 
mapped netlist consists in computing arrival times, required times, 
and slacks of all nodes and edges in the netlist. An arrival time of 
a node is the longest time for a signal to travel from a PI to the 
node. A required time of a node is the latest time for the node to 
produce its value, so that when it propagates to the POs, their 
arrival times there do not exceed the delay requirements. 

Timing analysis is performed in two passes. In the first pass, the 
arrival times are computed for each node and its fanin edges, in a 
topological order from the PIs to the POs. The arrival time of an 
edge is the arrival time of its driving (fanin) node plus the pin and 
wire delay. In the second pass, the required times are propagated 
in a reverse topological order from the POs to the PIs. The 
required time of an edge is the required time of its fanout node 
minus the pin and wire delay.  The required time of a node is the 
minimum required time of its fanout edges.   

The slack of a node (edge) is the difference between its required 
time and its arrival time. Nodes (edges) with the slack close to 

zero are called timing-critical.  A timing-critical edge is an edge, 
i.e., a fanin/fanout connection between two timing-critical nodes, 
such that reducing the arrival time of the fanin is necessary (but 
not sufficient) to reduce the arrival time of the fanout. Not every 
edge between two timing-critical nodes is timing-critical.  

3.2 Logic restructuring for delay 
Cone selection for logic structuring is governed by several 

heuristics aimed at maximizing the chances of improving delay. 
For each timing-critical node, we consider one cone rooted in 

the given node and reaching a fixed amount of logic levels 
towards the PIs. Considering more than one cone per node can 
lead to a large number of structural choices, which may degrade 
the quality of mapping. Limiting the number of levels included in 
the cone prevents restructuring from duplicating too much area. 

If the cone has more than a fixed number p (say, p=2) of timing-
critical edges, it is not considered because restructuring of this 
cone cannot give delay improvement. This is because the tree of 
2:1 MUXes added on top to assemble the cofactors has a delay 
that may offset the gains due to restructuring.  

Finally, the timing-critical edges of the cone are ordered in 
decreasing order of criticality. The variables corresponding to 
these edges are used for cofactoring and become control variables 
of the MUXes. The more timing-critical that a variable is, it is put 
closer to the output of the cone after restructuring. For example, if 
variable x arrives later than y, it is used to control the top-most 
multiplexer on the right of Figure 3.2. 

 
Figure 3.2. Illustration of the delay-oriented restructuring. 

3.3 Adding choices and re-mapping 
Multiple logic structures can be recorded in the AIG 

representing the network, using structural choices. A structural 
choice is a set of AIG nodes that are functionally equivalent, up to 
complementation. The first node in the topological order among 
the set is called the representative.  The representative is the only 
node in the set that has fanouts. In the implementation of the AIG 
package, each node belonging to a choice uses two additional 
pointers: the first gives the representative while the second is used 
to link-list the nodes belonging to the same choice.  

The choices added by the proposed delay-optimization 
algorithm are AIG structures derived by cofactoring with respect 
to timing-critical nodes. Given an AIG cone with N timing-critical 
nodes, 2N cofactors are computed. Next, a 2N-to-1 MUX is created 
with the cofactors as data-inputs and the cofactoring variables as 
controls, as shown in Figure 3.2. The root AIG node of the MUX 
is added as a choice of the root of the original cone. Structural 
hashing of the AIGs quickly removes structurally equivalent parts 
of the cofactor logic cones. Since logic synthesis and mapping are 
often iterated, a more elaborate logic synthesis of the cofactor 
logic cones is deferred to after the next round of synthesis. 

Structural FPGA technology mapping was pioneered in [8][6]. 
Technology mapping with structural choices was introduced in 
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[10] and recently developed in [3]. In the latter case, the subject 
graph is an AIG and efficient equivalence checking [11] is used to 
detect functionally-equivalent nodes. To use structural choices, 
only one aspect of the mapper needs to be modified, namely, cut 
enumeration. Whether complete [15] or partial [14] cut 
enumeration is used, cuts are computed in a topological order, by 
merging the fanins’ cut sets to produce the cut set of the choice 
node. In the presence of structural choices, the cut set of the 
representative node is computed as the union of cut sets of other 
nodes in the choice set. Recall that only the representative has 
fanout. Therefore, cuts computed for all nodes in a choice are 
propagated to the fanouts through the representative, and used to 
compute the cuts of the fanout nodes.  

The advantage of using choices is that technology mapping can 
favor delay-oriented choices on the critical path and area-oriented 
choices elsewhere. The total number of different structures 
explored is exponential in the number of choices because 
decisions at each choice are made independently by the mapper.  

4. EXPERIMENTAL RESULTS 
The proposed delay-optimization algorithm was implemented as 

command speedup in the synthesis and verification system ABC 
[1]. Its technology independent algorithms are based on rewriting 
AIGs and iterating this many times. Mapping is performed by the 
priority-cut-based LUT-mapper [14] (command if), which 
attempts to minimize delay and recover area off the critical paths. 
Experiments targeting FPGAs with 6-LUTs were run on an Intel 
Xeon 2-CPU 4-core computer with 8Gb RAM. The resulting 
networks were verified using a SAT-based combinational 
equivalence checker (command cec in ABC). 

The LUT library, for K = 6, used in the experiments is shown in 
Figure 4.1 using the ABC LUT-library format. The LUT sizes, 
listed first on each line, should be in increasing order. Listed next 
is the LUT area followed by the delays of each pin of the LUT, 
also in increasing order. There are as many delay numbers as there 
are input pins of the given LUT.  

Figure 4.1 shows the variable-pin-delay LUT library used in the 
experiments. To make the delay realistic, a constant value (0.2) 
was added to all the pin delays to simulate delays in the wires. If 
this value is not added, two 2-LUTs are faster than one 4-LUT, 
which is not true in practice. It can be observed that, as the added 
wire delay value is increased, the variable-pin-delay model 
becomes more like a unit-area unit-delay model.  For the unit-
delay mode, all pin delays have the same value, 1.0. 

We performed two experiments. In the first one, the results of 
the proposed algorithm, called speedup, are compared with the 
baseline flow using the variable-pin-delay model.  In the second 
experiment, speedup is compared with DAOmap [4], a state-of-
the-art mapper, using the unit- delay model. 

4.1 Speedup vs. Baseline 
Experiments on 20 industrial benchmarks ranging in size from 

1K to 50K 6-LUTs are reported in Table 4.1. The following 
notation is used: columns denoted “PI”, “PO”, and “Reg” list the 
number of primary inputs, primary outputs, and registers in the 
design. Columns “LUT”, “Lev”, and “Delay” report the number of 
6-LUTs, the maximum number of logic levels and the maximum 
delay. Columns “Time1” and “Time2” give, respectively, the 
runtime (seconds) of command speedup and the runtime of the 
total synthesis/mapping flow.  

The baseline synthesis/mapping flow reported in the table was 
done by the ABC script: (st; dchoice; if -C 16 -F 2)8, where the 

exponent (here, 8) shows how many times the script is iterated. At 
the end of the script, the best result is selected among all the 
results observed at the end of each iteration. The command st 
converts the circuit into an AIG and structurally hashes it. The 
command dchoice uses various methods for rewriting the AIG to 
minimize the number of AIG nodes while not increasing the 
number of its levels. In particular, dchoice strives for smaller delay 
by “balancing”, which decreases the number of AIG levels by 
decomposing “wide-input” AND gates in a balanced way. During 
its synthesis, dchoice saves three snapshots of the circuit seen 
during this flow, the initial, an intermediate and the final. The 
command if is a cut-based FPGA mapper, which first minimizes 
the delays along all paths, using the delay model in the library, and 
then executes several iterations to recover area on the off-critical 
paths. Thus, the baseline technology independent synthesis mostly 
targets small area while reducing the AIG level somewhat. Most 
of the delay optimization in the baseline script is in the mapper, 
which makes the choices between area and delay during the 
mapping phase using the library delay model.  

Delay-optimization (columns “Speedup”) was done with the 
following script: (st; dchoice; if -C 16 -F 2)4 (speedup; if -C 16 -F 
2)3 (st; dchoice; if -C 16 -F 2)4. The speedup command is our 
implementation of the algorithm described in Section 3. The three 
iterations of speedup were performed with parameter p equal to 1, 
2, and 3, respectively, which controls the number of timing critical 
edges allowed in the restructuring of a logic cone.        
       1   1.0   0.4 
       2   1.0   0.4 0.5 
       3   1.0   0.4 0.5 0.6 
       4   1.0   0.4 0.5 0.6 0.65 
       5   1.0   0.4 0.5 0.6 0.65 0.75 
       6   1.0   0.4 0.5 0.6 0.65 0.75 0.85 

Figure 4.1. A variable-pin-delay LUT library with wire-delays. 

The experimental results (Table 4.1) show that the delay, 
compared to the baseline result, was on average reduced by 14%. 
Area was increased by 2%; however, in a separate experiment, not 
shown, this area increase was eliminated by several iterations of 
area-oriented resynthesis (commands mfs and lutpack in ABC). 

The runtime of speedup is fast, only about 10-12% of the total 
runtime of the delay-optimization flow. The total runtime of this 
flow is dominated by command dchoice, which performs 15 
iterations of AIG-based logic synthesis, saves three snapshots of 
the network, derives structural choices, and uses them for 
technology mapping performed by command if. The total runtime 
the delay-optimization flow is roughly the same as that of the 
baseline plus the runtime of command speedup. This is because 
the number of additional choices produced by speedup is 
relatively small and does not impact the runtime of mapping. 
The total runtime of delay optimization, which included 8 
iterations of dchoice and 3 iterations of speedup, was about 6 
minutes for the largest reported benchmark with 50K 6-LUTs. 

5. CONCLUSIONS  
This paper proposes a simple and efficient algorithm for 

improving delay after technology mapping. The algorithm creates 
alternative structures for speeding up a circuit. The location of 
these structures is not as critical as in classical methods because 
their possible use is postponed until the next round of mapping. 
By iterating the speedup and technology mapping several times, 
subsequent delay improvements can be obtained. The algorithm is 
efficient because only one delay analysis is done during each 



speedup synthesis phase, while other methods iterate delay 
analysis during each new structure found.   

Future work should include: (a) quantifying the improvements 
in delay after place-and-route, (b) extending the algorithm to work 
for sequential circuits as suggested in [18], (c) applying similar 
optimizations for cost functions other than delay. Also, the 
algorithm should be equally applicable to mapping for standard 
cells as well as FPGAs, and this should be developed.  
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Table 4.1. Experimental evaluation of speedup on industrial circuits using variable-pin delay model. 

Design Profile Baseline Speedup 
  PI PO Reg LUT Lev Delay Total LUT Lev Delay Time1, s Time2, s 
1 2,420 1,243 1,963 4,956 17 7.00 40.28 5,175 11 4.80 4.12 45.79 
2 13,827 9,528 7,111 19,222 18 7.45 113.52 19,349 17 7.25 14.32 128.35 
3 37 28 9,829 11,775 8 3.65 47.00 12,134 8 3.50 8.92 57.38 
4 643 918 7,177 9,056 8 3.65 32.97 9,172 6 2.70 4.13 37.92 
5 8,927 10,761 26,246 38,734 8 3.45 151.46 39,030 7 3.05 17.77 171.06 
6 378 395 1,297 3,289 6 2.85 19.56 3,282 6 2.85 2.60 22.55 
7 730 583 3,330 5,532 16 6.70 36.66 5,859 14 6.35 5.87 43.06 
8 367 154 2,606 5,371 14 5.85 36.66 5,403 12 5.35 4.11 40.97 
9 966 1,434 12,733 18,258 8 3.75 88.15 18,302 8 3.45 10.62 97.65 
10 2,061 1,897 13,950 16,531 7 3.15 77.38 16,652 7 2.95 9.16 85.48 
11 2,061 1,897 13,950 16,531 7 3.15 77.70 16,652 7 2.95 9.33 87.95 
12 50 68 1,358 3,284 19 8.40 23.88 3,371 16 7.00 3.46 28.68 
13 1,044 1,098 2,074 7,147 23 9.35 74.39 7,789 16 6.65 7.37 86.71 
14 391 129 1,049 7,526 14 6.05 251.11 7,573 14 6.05 27.29 280.41 
15 749 777 7,348 16,086 10 4.35 169.25 16,097 9 4.00 18.48 188.00 
16 1,041 736 1,063 3,611 11 4.70 19.63 3,621 11 4.65 2.77 22.71 
17 3,512 2,992 3,425 12,533 20 8.45 178.58 12,830 17 7.40 13.19 199.36 
18 11,456 10,791 10,114 27,622 15 6.25 160.22 28,857 10 4.35 22.29 184.63 
19 11,292 11,454 20,184 49,871 12 5.00 317.79 50,283 9 3.75 37.83 355.19 
20 131 129 26258 13,811 8 3.65 72.17 14,186 5 2.45 8.23 81.60 

Geomean       10,804 11.49 4.99 72.13 11,023 9.80 4.29 8.77 82.29 
Ratio 1       1.000 1.000 1.000   1.020 0.854 0.860     
Ratio 2                     0.107 1.000 




