
 Global Delay Optimization using Structural Choices
 Alan Mishchenko Robert Brayton Stephen Jang
 Department of EECS non-affiliated
 University of California, Berkeley San Jose, CA
 {alanmi, brayton}@eecs.berkeley.edu stephenjang@yahoo.com

ABSTRACT
This paper presents a fast global method for delay optimization
after technology mapping. Timing analysis is used to identify
timing-critical areas in the mapped network where new structures
are synthesized to favor late-arriving signals. Unlike previous
methods that make incremental local changes to the mapped
network, the proposed method records many alternative structures
and defers the final decision to the technology mapper.
Experimental results for networks mapped into 6-input look-up
tables (6-LUTs) show that the delay is, on average, improved 14%
using a realistic delay library for LUTs with variable-pin delays
and wire-delay estimation. The area penalty after the delay
optimization is about 2% and can be eliminated by area-oriented
resynthesis. When the algorithm is compared with DAOmap, the
experimental results show 27% logic level reduction while the
area is increased by only 1%. The algorithm is also fast and
applicable to very large networks. The runtime of the proposed
algorithm is 16x and 3x faster than DAOmap for large industrial
and academic designs, respectively.

Categories and Subject Descriptors: B.6.3 [Logic Design]:
Design Aids – Optimization; B.7.1 [Integrated Circuits]: Types
and Design Styles – Gate Arrays; J.6 [Computer-Aided
Engineering]: Computer-Aided Design (CAD)
General Terms: Algorithms, Performance, Experimentation
Keywords: FPGA, Technology Mapping, Logic Optimization,
Windowing, Boolean Satisfiability, Interpolation
1. INTRODUCTION

Technology mapping converts a logic network, called the
subject graph, into a network of logic nodes, which correspond to
primitives in a particular technology. For example, technology
mapping for FPGAs [4][6][7] transforms the network into K-input
lookup tables (K-LUTs) that can implement any Boolean function
of K or less variables. The subject graph is often an And-Inverter
Graph (AIG), composed of two-input ANDs and inverters.

Logic restructuring with the goal of reducing delay of a mapped
network has long been an important part of both technology
independent [17][2][12][16] and technology dependent synthesis
[10][13][9][5]. However, existing methods for delay-oriented logic
restructuring have the following drawbacks:
• Numerous local changes to the network may be applied, but

with no guarantee that the delay is globally improved or that
area has been effectively spent for delay improvements.

• Algorithms of high computational complexity are often used,
leading to excessive runtime. Much effort is spent on
deciding where to make the changes.

• Structural flexibilities that may be available during mapping
are typically not used during post-mapping resynthesis.

The proposed method mitigates these limitations. Unlike the
previous methods, it does not perform a sequence of local
changes, each one updating the mapped network and then running
incremental timing analysis after each change. It need not analyze
cuts of a set of critical paths nor distribute slacks on off-critical
paths. Instead, it computes timing information only once. This is
analyzed and a set of new candidate structures, a subset of which
may lead to reducing delay after the next iteration of mapping, are
recorded in the subject graph using choice nodes [10][3].

Decisions about which subset of structures to use are deferred to
the technology mapper. The motivation is that the mapper has a
global picture of both delay and area, as well as a good view of
structural flexibilities presented during mapping, and thus can
better decide what structures to use.

The new logic structures are created by cofactoring logic cones,
in timing critical regions, with respect to timing-critical variables.
The cofactors are combined using multiplexers controlled by the
critical variables and then decomposed and simplified as an AIG,
resulting in a logic structure that favors the late-arriving variables.
A similar method was discussed in [2] and called the generalized
select transform (GST) [12][16]. This was used recently for timing
optimization of sequential circuits [18]. The proposed algorithm
can be extended to work for the sequential case as well.

The rest of this paper is organized as follows. Section 2
describes the background. Section 3 describes the algorithm.
Section 4 reports experimental results. Section 5 concludes the
paper and outlines future work.

2. BACKGROUND
A Boolean network is a directed acyclic graph (DAG) with

nodes corresponding to logic gates and directed edges
corresponding to wires connecting the gates. The terms Boolean
network, netlist, and circuit are used interchangeably in this paper.
If the network is sequential, the memory elements are assumed to
be D-flip-flops with initial states.

A node n has zero or more fanins, i.e. nodes that are driving n,
and zero or more fanouts, i.e. nodes driven by n. The primary
inputs (PIs) are nodes without fanins in the current network. The
primary outputs (POs) are a subset of nodes of the network. A
fanin (fanout) cone of node n is a subset of all nodes of the
network, reachable through the fanin (fanout) edges of the node.

A node is a logic component having a propagation delay. An
edge, also called wire, is the pin-to-pin connection between two
adjacent nodes. The delay of a path includes logic delays and wire
delays. The logic delay occurs in a logic component, such as a
LUT. The wire delay occurs on the edges. In modern FPGAs, the
delay for each pin in a LUT is different, so a variable-pin-delay

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’10, February 21–23, 2010, Monterey, California, USA.
Copyright 2010 ACM 978-1-60558-911-4/10/02...$10.00.

model is used in this paper. Wire delays are usually not known
until placement and routing. To approximate wire delays, a fixed
delay is added to the delay of all pins of the LUTs in the library.

3. ALGORITHM
A self-explanatory pseudo-code is given in Figure 3.1. The

algorithm takes the mapped netlist and the subject graph used for
mapping. The netlist is analyzed to detect timing-critical areas for
logic restructuring while the subject graph is used to accumulate
the alternative logic structures for the next round of mapping.
Several parameters are used in the computation: the timing
window (w) determines the range of slacks of the near-timing-
critical nodes to be restructured; the logic depth (l) of cones
selected for delay-oriented restructuring; and the limit (p) on the
number of timing-critical edges of the cone to consider.
 mapped netlist performSpeedup (

 subject graph S, // S is an And-Inverter Graph
 mapped netlist M, // M was previously derived by tech-mapping of S
 timing window w, // w is used to detect the critical path
 logic depth l, // l is used to detect a logic cone rooted at a node
 edge count p // p limits the number critical edges of the cone {
 perform timing analysis of M with unit-delay or LUT-library model;
 detect the critical section of M as nodes n such that 0 ≤ slack(n) ≤ w;
 detect timing-critical edges connecting these nodes;
 for each timing critical node n {

 find cone C of M that extends l levels down from n;
detect the set of timing-critical edges V feeding into C;
if the number of edges in V exceeds p
 continue;
find logic cone C’ in S corresponding to C in M;
find variables V’ in S corresponding to V in M;
derive cofactors of the function of C’ w.r.t. variables in V’;
build multiplexer tree C’’ of the cofactors using variables in V’;
add structural choice C’= C’’ to the subject graph S;

 }
 derive netlist M’ by mapping subject graph S with added choices;
 return M’;

}
Figure 3.1. Overall pseudo-code of the algorithm.

The following subsections provide the details on timing analysis
and identification of timing-critical edges (Section 3.1), logic
restructuring for delay (Section 3.2), and using structural choices
in technology mapping (Section 3.3).

3.1 Timing analysis
The purpose of timing analysis is to determine the critical nodes

and critical edges by running a delay trace. Timing analysis for a
mapped netlist consists in computing arrival times, required times,
and slacks of all nodes and edges in the netlist. An arrival time of
a node is the longest time for a signal to travel from a PI to the
node. A required time of a node is the latest time for the node to
produce its value, so that when it propagates to the POs, their
arrival times there do not exceed the delay requirements.

Timing analysis is performed in two passes. In the first pass, the
arrival times are computed for each node and its fanin edges, in a
topological order from the PIs to the POs. The arrival time of an
edge is the arrival time of its driving (fanin) node plus the pin and
wire delay. In the second pass, the required times are propagated
in a reverse topological order from the POs to the PIs. The
required time of an edge is the required time of its fanout node
minus the pin and wire delay. The required time of a node is the
minimum required time of its fanout edges.

The slack of a node (edge) is the difference between its required
time and its arrival time. Nodes (edges) with the slack close to

zero are called timing-critical. A timing-critical edge is an edge,
i.e., a fanin/fanout connection between two timing-critical nodes,
such that reducing the arrival time of the fanin is necessary (but
not sufficient) to reduce the arrival time of the fanout. Not every
edge between two timing-critical nodes is timing-critical.

3.2 Logic restructuring for delay
Cone selection for logic structuring is governed by several

heuristics aimed at maximizing the chances of improving delay.
For each timing-critical node, we consider one cone rooted in

the given node and reaching a fixed amount of logic levels
towards the PIs. Considering more than one cone per node can
lead to a large number of structural choices, which may degrade
the quality of mapping. Limiting the number of levels included in
the cone prevents restructuring from duplicating too much area.

If the cone has more than a fixed number p (say, p=2) of timing-
critical edges, it is not considered because restructuring of this
cone cannot give delay improvement. This is because the tree of
2:1 MUXes added on top to assemble the cofactors has a delay
that may offset the gains due to restructuring.

Finally, the timing-critical edges of the cone are ordered in
decreasing order of criticality. The variables corresponding to
these edges are used for cofactoring and become control variables
of the MUXes. The more timing-critical that a variable is, it is put
closer to the output of the cone after restructuring. For example, if
variable x arrives later than y, it is used to control the top-most
multiplexer on the right of Figure 3.2.

Figure 3.2. Illustration of the delay-oriented restructuring.

3.3 Adding choices and re-mapping
Multiple logic structures can be recorded in the AIG

representing the network, using structural choices. A structural
choice is a set of AIG nodes that are functionally equivalent, up to
complementation. The first node in the topological order among
the set is called the representative. The representative is the only
node in the set that has fanouts. In the implementation of the AIG
package, each node belonging to a choice uses two additional
pointers: the first gives the representative while the second is used
to link-list the nodes belonging to the same choice.

The choices added by the proposed delay-optimization
algorithm are AIG structures derived by cofactoring with respect
to timing-critical nodes. Given an AIG cone with N timing-critical
nodes, 2N cofactors are computed. Next, a 2N-to-1 MUX is created
with the cofactors as data-inputs and the cofactoring variables as
controls, as shown in Figure 3.2. The root AIG node of the MUX
is added as a choice of the root of the original cone. Structural
hashing of the AIGs quickly removes structurally equivalent parts
of the cofactor logic cones. Since logic synthesis and mapping are
often iterated, a more elaborate logic synthesis of the cofactor
logic cones is deferred to after the next round of synthesis.

Structural FPGA technology mapping was pioneered in [8][6].
Technology mapping with structural choices was introduced in

C00 C01 C10 C11

x y

x

y
⇒

F F

[10] and recently developed in [3]. In the latter case, the subject
graph is an AIG and efficient equivalence checking [11] is used to
detect functionally-equivalent nodes. To use structural choices,
only one aspect of the mapper needs to be modified, namely, cut
enumeration. Whether complete [15] or partial [14] cut
enumeration is used, cuts are computed in a topological order, by
merging the fanins’ cut sets to produce the cut set of the choice
node. In the presence of structural choices, the cut set of the
representative node is computed as the union of cut sets of other
nodes in the choice set. Recall that only the representative has
fanout. Therefore, cuts computed for all nodes in a choice are
propagated to the fanouts through the representative, and used to
compute the cuts of the fanout nodes.

The advantage of using choices is that technology mapping can
favor delay-oriented choices on the critical path and area-oriented
choices elsewhere. The total number of different structures
explored is exponential in the number of choices because
decisions at each choice are made independently by the mapper.

4. EXPERIMENTAL RESULTS
The proposed delay-optimization algorithm was implemented as

command speedup in the synthesis and verification system ABC
[1]. Its technology independent algorithms are based on rewriting
AIGs and iterating this many times. Mapping is performed by the
priority-cut-based LUT-mapper [14] (command if), which
attempts to minimize delay and recover area off the critical paths.
Experiments targeting FPGAs with 6-LUTs were run on an Intel
Xeon 2-CPU 4-core computer with 8Gb RAM. The resulting
networks were verified using a SAT-based combinational
equivalence checker (command cec in ABC).

The LUT library, for K = 6, used in the experiments is shown in
Figure 4.1 using the ABC LUT-library format. The LUT sizes,
listed first on each line, should be in increasing order. Listed next
is the LUT area followed by the delays of each pin of the LUT,
also in increasing order. There are as many delay numbers as there
are input pins of the given LUT.

Figure 4.1 shows the variable-pin-delay LUT library used in the
experiments. To make the delay realistic, a constant value (0.2)
was added to all the pin delays to simulate delays in the wires. If
this value is not added, two 2-LUTs are faster than one 4-LUT,
which is not true in practice. It can be observed that, as the added
wire delay value is increased, the variable-pin-delay model
becomes more like a unit-area unit-delay model. For the unit-
delay mode, all pin delays have the same value, 1.0.

We performed two experiments. In the first one, the results of
the proposed algorithm, called speedup, are compared with the
baseline flow using the variable-pin-delay model. In the second
experiment, speedup is compared with DAOmap [4], a state-of-
the-art mapper, using the unit- delay model.

4.1 Speedup vs. Baseline
Experiments on 20 industrial benchmarks ranging in size from

1K to 50K 6-LUTs are reported in Table 4.1. The following
notation is used: columns denoted “PI”, “PO”, and “Reg” list the
number of primary inputs, primary outputs, and registers in the
design. Columns “LUT”, “Lev”, and “Delay” report the number of
6-LUTs, the maximum number of logic levels and the maximum
delay. Columns “Time1” and “Time2” give, respectively, the
runtime (seconds) of command speedup and the runtime of the
total synthesis/mapping flow.

The baseline synthesis/mapping flow reported in the table was
done by the ABC script: (st; dchoice; if -C 16 -F 2)8, where the

exponent (here, 8) shows how many times the script is iterated. At
the end of the script, the best result is selected among all the
results observed at the end of each iteration. The command st
converts the circuit into an AIG and structurally hashes it. The
command dchoice uses various methods for rewriting the AIG to
minimize the number of AIG nodes while not increasing the
number of its levels. In particular, dchoice strives for smaller delay
by “balancing”, which decreases the number of AIG levels by
decomposing “wide-input” AND gates in a balanced way. During
its synthesis, dchoice saves three snapshots of the circuit seen
during this flow, the initial, an intermediate and the final. The
command if is a cut-based FPGA mapper, which first minimizes
the delays along all paths, using the delay model in the library, and
then executes several iterations to recover area on the off-critical
paths. Thus, the baseline technology independent synthesis mostly
targets small area while reducing the AIG level somewhat. Most
of the delay optimization in the baseline script is in the mapper,
which makes the choices between area and delay during the
mapping phase using the library delay model.

Delay-optimization (columns “Speedup”) was done with the
following script: (st; dchoice; if -C 16 -F 2)4 (speedup; if -C 16 -F
2)3 (st; dchoice; if -C 16 -F 2)4. The speedup command is our
implementation of the algorithm described in Section 3. The three
iterations of speedup were performed with parameter p equal to 1,
2, and 3, respectively, which controls the number of timing critical
edges allowed in the restructuring of a logic cone.
 1 1.0 0.4
 2 1.0 0.4 0.5
 3 1.0 0.4 0.5 0.6
 4 1.0 0.4 0.5 0.6 0.65
 5 1.0 0.4 0.5 0.6 0.65 0.75
 6 1.0 0.4 0.5 0.6 0.65 0.75 0.85

Figure 4.1. A variable-pin-delay LUT library with wire-delays.

The experimental results (Table 4.1) show that the delay,
compared to the baseline result, was on average reduced by 14%.
Area was increased by 2%; however, in a separate experiment, not
shown, this area increase was eliminated by several iterations of
area-oriented resynthesis (commands mfs and lutpack in ABC).

The runtime of speedup is fast, only about 10-12% of the total
runtime of the delay-optimization flow. The total runtime of this
flow is dominated by command dchoice, which performs 15
iterations of AIG-based logic synthesis, saves three snapshots of
the network, derives structural choices, and uses them for
technology mapping performed by command if. The total runtime
the delay-optimization flow is roughly the same as that of the
baseline plus the runtime of command speedup. This is because
the number of additional choices produced by speedup is
relatively small and does not impact the runtime of mapping.
The total runtime of delay optimization, which included 8
iterations of dchoice and 3 iterations of speedup, was about 6
minutes for the largest reported benchmark with 50K 6-LUTs.

5. CONCLUSIONS
This paper proposes a simple and efficient algorithm for

improving delay after technology mapping. The algorithm creates
alternative structures for speeding up a circuit. The location of
these structures is not as critical as in classical methods because
their possible use is postponed until the next round of mapping.
By iterating the speedup and technology mapping several times,
subsequent delay improvements can be obtained. The algorithm is
efficient because only one delay analysis is done during each

speedup synthesis phase, while other methods iterate delay
analysis during each new structure found.

Future work should include: (a) quantifying the improvements
in delay after place-and-route, (b) extending the algorithm to work
for sequential circuits as suggested in [18], (c) applying similar
optimizations for cost functions other than delay. Also, the
algorithm should be equally applicable to mapping for standard
cells as well as FPGAs, and this should be developed.

6. ACKNOWLEDGMENTS
This work is supported in part by SRC contracts 1361.001 and

1444.001, NSF grant CCF-0702668, and the industrial sponsors
Actel, Altera, Atrenta, Calypto, IBM, Intel, Intrinsity, Magma,
Mentor Graphics, Synopsys, Synplicity (Synopsys), Tabula,
Verific, and Xilinx.

7. REFERENCES
[1] Berkeley Logic Synthesis and Verification Group. ABC: A System for

Sequential Synthesis and Verification. http://www-
cad.eecs.berkeley.edu/~alanmi/abc

[2] C. L. Berman, D. J. Hathaway, A. S. LaPaugh, and L. H. Trevillyan,
“Efficient techniques for timing correction”, Proc. ISCAS ’90.

[3] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
“Reducing structural bias in technology mapping”, ICCAD '05.

[4] D. Chen and J. Cong, “DAOmap: A depth-optimal area optimization
mapping algorithms for FPGA designs”, Proc. ICCAD’04

[5] L. Cheng, D. Chen, and D.F. Wong, “DDBDD: Delay-driven BDD
synthesis for FPGAs”, Proc. DAC’07, pp. 910-915.
http://www.icims.csl.uiuc.edu/~dchen/ddbdd.pdf

[6] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA
designs”, IEEE Trans. CAD, vol. 13(1), Jan. 1994, pp. 1-12.

[7] J. Cong, J. Peck, and Y. Ding, "RASP: A General Logic Synthesis
System for SRAM-based FPGAs," Proc. FPGA, pp. 137-143, 1996.

[8] R. J. Francis, J. Rose, and K. Chung, ”Chortle: A technology
mapping program for lookup table-based field programmable gate
arrays”, Proc. DAC ’90, pp. 613-619.

[9] V. N. Kravets and P. Kudva, “Implicit enumeration of structural
changes in circuit optimization”, Proc. DAC ’04, pp. 438-441.

[10] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic
decomposition during technology mapping,” IEEE Trans. CAD, Vol.
16(8), Aug. 1997, pp. 813-833.

[11] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust
boolean reasoning for equivalence checking and functional property
verification”, IEEE TCAD, Vol. 21(12), Dec. 2002, pp. 1377-1394.

[12] P. McGeer, R. K. Brayton, A. L. Sangiovanni-Vincentelli, and S. K.
Sahni, “Performance enhancement through the generalized bypass
transform”, Proc. ICCAD‘91, pp. 184-187.

[13] A. Mishchenko, X. Wang, and T. Kam, "A new enhanced
constructive decomposition and mapping algorithm", DAC '03.

[14] A. Mishchenko, S. Cho, S. Chatterjee, R. Brayton, “Combinational
and sequential mapping with priority cuts”, Proc. ICCAD ’07.

[15] P. Pan and C.-C. Lin, “A new retiming-based technology mapping
algorithm for LUT-based FPGAs,” Proc. FPGA ’98, pp. 35-42.

[16] A. Saldanha, H. Harkness, P.C. McGeer, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli, “Performance optimization using exact
sensitization”, Proc. DAC’94, pp. 425-429.

[17] K. J. Singh, A. R. Wang, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Timing optimization of combinational logic”. Proc.
ICCAD ‘88, pp. 282- 285.

[18] C. Soviani, O. Tardieu, and S. A. Edwards, “Optimizing sequential
cycles through Shannon decomposition and retiming”, IEEE Trans.
CAD, Vol. 26(3), March 2007, pp. 456-467.

Table 4.1. Experimental evaluation of speedup on industrial circuits using variable-pin delay model.

Design Profile Baseline Speedup
 PI PO Reg LUT Lev Delay Total LUT Lev Delay Time1, s Time2, s
1 2,420 1,243 1,963 4,956 17 7.00 40.28 5,175 11 4.80 4.12 45.79
2 13,827 9,528 7,111 19,222 18 7.45 113.52 19,349 17 7.25 14.32 128.35
3 37 28 9,829 11,775 8 3.65 47.00 12,134 8 3.50 8.92 57.38
4 643 918 7,177 9,056 8 3.65 32.97 9,172 6 2.70 4.13 37.92
5 8,927 10,761 26,246 38,734 8 3.45 151.46 39,030 7 3.05 17.77 171.06
6 378 395 1,297 3,289 6 2.85 19.56 3,282 6 2.85 2.60 22.55
7 730 583 3,330 5,532 16 6.70 36.66 5,859 14 6.35 5.87 43.06
8 367 154 2,606 5,371 14 5.85 36.66 5,403 12 5.35 4.11 40.97
9 966 1,434 12,733 18,258 8 3.75 88.15 18,302 8 3.45 10.62 97.65
10 2,061 1,897 13,950 16,531 7 3.15 77.38 16,652 7 2.95 9.16 85.48
11 2,061 1,897 13,950 16,531 7 3.15 77.70 16,652 7 2.95 9.33 87.95
12 50 68 1,358 3,284 19 8.40 23.88 3,371 16 7.00 3.46 28.68
13 1,044 1,098 2,074 7,147 23 9.35 74.39 7,789 16 6.65 7.37 86.71
14 391 129 1,049 7,526 14 6.05 251.11 7,573 14 6.05 27.29 280.41
15 749 777 7,348 16,086 10 4.35 169.25 16,097 9 4.00 18.48 188.00
16 1,041 736 1,063 3,611 11 4.70 19.63 3,621 11 4.65 2.77 22.71
17 3,512 2,992 3,425 12,533 20 8.45 178.58 12,830 17 7.40 13.19 199.36
18 11,456 10,791 10,114 27,622 15 6.25 160.22 28,857 10 4.35 22.29 184.63
19 11,292 11,454 20,184 49,871 12 5.00 317.79 50,283 9 3.75 37.83 355.19
20 131 129 26258 13,811 8 3.65 72.17 14,186 5 2.45 8.23 81.60

Geomean 10,804 11.49 4.99 72.13 11,023 9.80 4.29 8.77 82.29
Ratio 1 1.000 1.000 1.000 1.020 0.854 0.860
Ratio 2 0.107 1.000

