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Abstract 

As an important step of any design flow, technology mapping, 
expresses logic functions of a netlist using gates from a 
technology library, in the presence of various design constraints. 
This paper proposes a new approach to technology mapping, 
which relies and enhances upon several known techniques, 
integrated and fine tuned to work in a new way. The previous 
work on DAG mapping is extended, by proposing new methods 
for enumerating mapping choices and performing Boolean 
matching, which guarantees delay-optimum phase assignment at 
the gate boundaries. Two ways of capturing flexibility in 
technology mapping are explored and compared: supergates and 
choice nodes. An implementation based on these ideas 
significantly outperforms state-of-the-art mappers in terms of 
delay, area and run-time on academic and industrial benchmarks.  

1 Introduction and Previous Work 
The task of technology mapping in standard-cell logic synthesis 

is to express a given Boolean function as a network of gates 
chosen from a given standard-cell library so that some objective 
function, such as total area or delay, is optimized. In these general 
terms, technology mapping is intractable. However, the problem 
is usually simplified by first representing the Boolean function as 
a good initial multi-level network of simple gates called the 
subject graph. The subject graph is then transformed into a multi-
level network of library gates by means of local substitutions. 
Unfortunately, this simplification means that the structure of the 
subject graph dictates to a large extent the structure of the mapped 
network. This is commonly known as the problem of structural 
bias. Sometimes such a mapper could negate benefits gained 
during the technology independent decomposition phase. 

The problem of structural bias is tackled by on-going research. 
Research literature on technology mapping provides a spectrum 
of techniques that trade-off structural bias for computational 
complexity. The classical structural approaches, such as tree- and 
dag-covering [8][12], lie at one end of this spectrum. They have 
relatively short run-times but provide sub-optimal results since 
their mapping choices are completely constrainted by the given 
subject graph. Existing Boolean approaches (e.g. [10], [16]) lie 
closer to the other end of the spectrum. Although they do not 
depend as much on the structure of the subject graph, they are 
limited by the choice of their (heuristic) decomposition schemes. 
This limitation combined with long run-time makes them useful 
mostly in a re-synthesis flow after a mapped network has been 
obtained by some other means.  

The approach described by Lehman et al. [13] lies between 
these two extremes: a number of different local algebraic 
decompositions are encoded into the given subject graph as 
choices. This leads to less dependence on the original subject 

graph, but this method suffers from longer run-times. Wavefront 
mapping is a practical enhancement of this approach [19]. 

Our current effort was inspired observation that cut-based 
techniques found in technology mapping for FPGA look-up tables 
can be adapted to work for standard cell libraries using Boolean 
matching. Furthermore, this Boolean matching technique is faster 
than the classical structural matching based on subgraph-
isomorphism. It is also superior in terms of mapping quality, since 
in order to have fast run-times, structural matchers often do not 
exhaustively try all applicable matches. This is especially true for 
industrial libraries with large and complex gates. This matching 
technique is described in Section 2 of this paper. 

The runtime advantage afforded by our matching technique can 
be used to address the structural bias problem using two 
complementary approaches. In the first approach, which is 
applied as a preprocessing step before mapping, supergates are 
constructed out of library gates [16]. A supergate is a single-
output combinational network of a few gates which is treated as a 
single library gate by our algorithms. This allows the matching 
process to be less local and look deeper into the circuit for 
matching alternatives, by matching larger portions of the circuit at 
one time. In contrast, traditional technology mappers accept a 
biased subject graph and try mapping many small gates onto it 
greedily following its biased multi-level structure. Supergate 
generation and usage is described in Section 3. 

The second approach is based on explicitly storing 
decomposition choices in the subject graph [13]. Technology 
mapping over such a graph can be thought of as running multiple 
traditional mappings, one subject graph per choice combination, 
and then selecting the best overall mapping. These choices may 
be obtained in a number of ways, such as local rewriting of the 
subject graph or by combining intermediate networks. As we shall 
see in Section 4, choice nodes can be incorporated naturally in the 
cut-based Boolean matching methodology.  

In summary, this paper makes three main contributions: The 
first is a new locally-Boolean matching framework for ASICs 
which combines exhaustive cut function enumeration with 
Boolean matching ensuring optimal phase assignment. The 
algorithm was developed independently, though related to ideas in 
[22] and [23]. Second, we show how this framework can naturally 
accomodate supergates without any change to the core algorithm 
using library pre-processing. Third, we extend the matching 
algorithm to include choices in the mapping graph, and present a 
new way of generating choices leveraging ideas from 
combinational equivalence checking. 

A prototype of these ideas has been implemented in the MVSIS 
logic synthesis environment, and its experimental results (in 
Section 5) show significant improvements in both quality and run-
time over other state-of-the-art mappers.  
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2 New Mapping Flow 
In this section we present the basic working of the mapper first 

without considering supergates and choice nodes.  

2.1 Overview 
Although the techniques presented in this paper can be applied 

to a variety of mapping problems, for easy of exposition we focus 
on a specific mapping task. Our objective is to minimize the delay 
of the longest path in the mapped netlist. We assume a load-
independent delay model for the gates in accordance with a gain-
based logic synthesis flow. As shown by Kukimoto et al. [12], 
this problem can be optimally solved using dynamic programming 
for DAG-covering. The key difference of our method with the 
conventional approaches based on DAG-covering lies in the 
matching step: we use Boolean instead of structural matching. 

Our algorithm begins with the subject graph represented as an 
And-Inverter Graph (AIG). An AIG is a DAG whose nodes 
represent either And gates or primary inputs. Its edges represent 
wires. Inverters are represented by bubbles on the edges.  

Example. Figure 1 shows an AIG. We shall use this as a 
running example to illustrate the mapping process. 

The mapping is broken in to 5 steps. First, for every node, we 
compute all of its k-feasible cuts (defined in Section 2.2). Second, 
for every cut, we assign a formal variable to each node in the cut 
and compute the function of the corresponding node in terms of 
these variables. (The function is computed as a bit-vector 
representing the truth-table.) Third, these functions are looked up 
in a hash table and matched with gates from the library. Fourth, in 
topological order, starting with arrival times of the primary inputs, 
the best arrival time for each node is computed by choosing the 
library gate with minimum delay. Finally, in reverse topological 
order, the best covering is chosen.  (The last two steps are exactly 
the same as in traditional mapping.) As a post-processing step, 
area is recovered on the non-critical paths using the technique 
presented by Manohara-rajah et al. [14]. 

2.2 Computing k-feasible Cuts 
A feasible cut of a node N in the AIG is a set of nodes {xi} in 

the transitive fan-in cone of N such that an arbitrary assignment of 
values to xi  completely determines the value of N. A feasible cut 
is redundant if the value of a node in the cut is completely 
determined by an assignment of values to the other nodes in the 
cut. A k-feasible cut is a feasible cut of size at most k that is not 
redundant. The cut {N} composed of node N alone is always a k-
feasible cut of node N (for any k) and is called the trivial cut.  

Example. In the AIG of Figure 1, {n2}, {n4, n5}, {n4, x2, x3} 
{n5, x1, x2}, {x1, x2, x3} are all the 3-feasible cuts of n2.  

We compute all k-feasible cuts of every node in the network by 
the simple bottom-up traversal algorithm shown in Figure 2. 
Although in general a graph may have exponentially many cuts, 
most test-cases have between 20 and 30 5-feasible cuts per node.  

x1 x2 x3 x4 x5 

n1 

n2 n3 

n6 n5 n4 

 
Figure 1: An example of an AIG. 

Computation of all k-feasible cuts for all nodes in the network 
is performed in one pass over the nodes as shown in Figure 2. The 
cut set of the node is derived by merging the cut sets of the fanins. 
The trivial cut composed of the node itself, {n}, is added to the 
resulting set. Procedure MergeCutSets initializes the resulting cut 
set to be empty, and considers all pairs of cuts from the two sets. 
For each pair, the merged cut is found as the union of the nodes 
belonging to the generating cuts. If the size of the merged cut 
does not exceed k, and the cut is encountered for the first time, it 
is added to the resulting cut set.  

Example. The cut set of node n4 is {{x1,x2},{n4}}. The cut set 
of node n5 is {{x2,x3},{n5}}. Suppose we compute 2-feasible cuts 
of node n2 using procedure MergeCutSets. The four cut pairs yield 
the following cuts: {{x1,x2,x3}, {x1,x2,n5}, {x2,x3,n4}, {n4, n5}}. 
Only one cut is two-feasible. So the resulting cut set is {{n4, n5}}. 
vvooiidd  NNeettwwoorrkkKKFFeeaassiibblleeCCuuttss((  GGrraapphh  gg,,  iinntt  kk  ))    {{  
            ffoorr  eeaacchh  pprriimmaarryy  oouuttppuutt  nnooddee  nn  ooff  gg  
                      NNooddeeKKFFeeaassiibblleeCCuuttss((  nn,,  kk  ))  
}}  
ccuuttsseett  NNooddeeKKFFeeaassiibblleeCCuuttss((  NNooddee  nn,,  iinntt  kk  ))    {{  
          iiff  ((  nn  iiss  pprriimmaarryy  iinnppuutt  ))  rreettuurrnn  {{  {{  nn  }}  }}  
          iiff  ((  nn  iiss  vviissiitteedd  ))  rreettuurrnn  NNooddeeRReeaaddCCuuttSSeett((  nn  ))  
          mmaarrkk  nn  aass  vviissiitteedd  
          ccuuttsseett  SSeett11  ==  NNooddeeKKFFeeaassiibblleeCCuuttss((  NNooddeeRReeaaddCChhiilldd11((  nn  )),,  kk  ))  
          ccuuttsseett  SSeett22  ==  NNooddeeKKFFeeaassiibblleeCCuuttss((  NNooddeeRReeaaddCChhiilldd22((  nn  )),,  kk  ))  
          ccuuttsseett  RReessuulltt  ==  MMeerrggeeCCuuttSSeettss((  SSeett11,,  SSeett22,,  kk  ))  ∪∪  {{  nn  }}  
          NNooddeeWWrriitteeCCuuttSSeett((  nn,,  RReessuulltt  ))  
          rreettuurrnn  RReessuulltt  
}}       
ccuuttsseett  MMeerrggeeCCuuttSSeettss  ((  ccuuttsseett  SSeett11,,  ccuuttsseett  SSeett22,,  iinntt  kk  ))  {{  
          ccuuttsseett  RReessuulltt  ==  {{  }}  
          ffoorr  eeaacchh  ccuutt  CCuutt11  iinn  SSeett11  
                    ffoorr  eeaacchh  ccuutt  CCuutt22  iinn  SSeett22  
                                iiff  ((  ||  CCuutt11  ∪∪  CCuutt22  ||  ≤≤  kk  ))  tthheenn  RReessuulltt  ==  RReessuulltt  ∪∪  {{  CCuutt11  ∪∪  CCuutt22  }}  
          rreettuurrnn  RReessuulltt  
}}  

Figure 2. Computation of all k-feasible cuts. 

2.3 Computing Cut Functions 
The next step is to compute the local function of a node in terms 

of its cut. This is done for every k-feasible cut, other than the 
trivial, of every node in the network. Given a node N, and a cut 
{xi} of that node, formal variables are assigned to the each cut 
node. Using these variables, the functionality of the node is 
computed symbolically. Since usually only 5- or 6-feasible cuts 
are considered, this symbolic function computation can be 
performed efficiently using 32- or 64-bit integers to represent the 
truth-tables. In what follows we use the words ‘function’ and 
‘truth-table’ interchangeably.  

Example. In the AIG of Figure 1, consider the cut {n4, n5, n3} 
of node n1 viewed as a 4-feasible cut. We assign formal variables 
to each node in the cut. Thus the functions at the leaves are the 
elementary functions: n4 = 0101 0101 0101 0101, n5 = 0011 0011 
0011 0011 and n3 = 0000 1111 0000 1111. (Since this is only a 3-
cut, the fourth elementary function is not used.) Using these 
functions, by bit-parallel simulation we compute the function of 
node n1 as 0111 0000 0111 0000 in terms of the leaf nodes. 

2.4 Boolean Matching 
In the next step, an appropriate library gate is chosen to 

implement the cuts. However, for this step the library has to be 
pre-processed. For each gate in the library, we compute its truth 
table in terms of the variables assigned to the inputs of the gate. 
Since, in general, a gate may be asymmetric in its inputs, it is 
necessary to compute the truth tables for all possible assignments 
of formal variables to the inputs. Similar to the cut functions, 
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these truth tables are computed as 32- or 64-bit integers. As the 
final step of the pre-processing, a hash-table is created to maps a 
truth table into the library gates implementing that function. 

Example.  See Figure 2. The different truth tables generated 
using different input permuations for the library gate Or-And are 
added to the hash table during pre-processing.  

During the matching, the truth table for a cut is looked up in the 
hash-table. This gives a list of library gates that may be used to 
implement the cut. It is possible that no library gate implements 
the functionality of the cut. However, since every k-feasible cut of 
a node is computed, in particular, the 2-feasible cut of the node is 
also computed. Therefore, as long as library contains an AND-
gate or a NAND-gate, at least one cut of every node can be 
implemented, and a feasible mapping can be found. 

Example. In our example, for the cut {n4, n5, n3} of node n1 the 
function is 0111 0000 0111 0000. Using this to index the hash 
table, we obtain the library gate Or-And (Figure 2) as a possible 
implementation for this cut. 

Optimal Phase Assignment. The mapping quality can be 
improved by exploiting the additional flexibility of computing the 
mapping choices for each cut in both polarities: positive (as 
above) and negative. When the final mapping is selected, the 
appropriate polarity is choices to guarantee the shortest delay on 
each path. This can lead to area duplication because a node can be 
used in both negative and positive polarities on two different 
paths. The following example demonstrates this situation. 

Example. Consider a subgraph of an AIG with three AND-
nodes and two outputs: o1 = AND( a, x ), o2 = AND( x’, b ), x = 
AND( c, d ) . Node x is required in the positive polarity on the 
path to o1 and in the negative polarity on the path to o2. Suppose 
the library is composed of INV (delay 0.9), NAND2 (delay 1.0) 
and AND2 (delay 1.2). If x is mapped in only one polarity, the 
other polarity has to be produced using an inverter. However, 
adding an inverter with delay 0.9 creates longer delay than using 
the opposite polarity mapped directly into AND2 and NAND2.  

Observe that this “dual-rail” mapping also means that the inputs 
of a cut are available in either polarity. Consequently, the 
function of a cut is not precisely defined: it belongs to a class of 
functions, which differ (only) by complementation of inputs. This 
class is called the N-equivalence class. This leads to greater 
flexibility since the cut can be implemented by any function in 
this class. 

Boolean matching is extended to match N-equivalent classes. 
During library pre-processing, after computing the truth table of a 
function, the truth table of the representative of its N-canonical 
class is computed. Similarly, during matching, the N- 
representative of the cut is used to look up the hash table. 

2.5 Computing Best Matches 
In topological order, starting with the inputs, the best matches 

and their corresponding arrival times are selected for both phases 
of each cut. For every node, we do the following. For each cut of 
the node, we look at the list of library gates implementing that 
cut. From these, we pick the best gate to implement the node in 
positive and in negative polarity. (The best gate is the gate that 
leads to the earliest arrival time for the node.) Next across all the 
cuts of the node, the best gate for both polarities is selected. When 
this is done, the node is considered mapped.  

The arrival times can be accurately computed since we are 
proceeding in the topological order: so all nodes appearing in the 
cuts of this node have already been mapped. The only 
complication is due to the fact that inverters may need to be 
inserted at the outputs of some cuts, if one of the phases of the 
node is implemented using another phase. 

2.6 Choosing the Best Cover 
This final step is done in the usual manner. In the reverse 

topological order, the best gate for each primary output (in the 
positive polarity) is chosen. Next, the best gates implementing the 
inputs of these gates are chosen and so on until PIs are reached. 

3 Supergates 
3.1 Definition and Motivation 

A supergate is a single-output combinational network of a small 
number of library gates. This network is treated as a single gate 
by the mapping process described in Section 2. The use of these 
large gates addresses the structural bias problem as shown in the 
following example. 

Example. Figure 4 shows a supergate S composed of an Or gate 
and an And gate. In Figure 1, consider the cut {n4, n5, n6} of node 
n1. Observe that the function of n1 in terms of the cut nodes is (n4 
+ n5)(n5 + n6) i.e. n4n6 + n5. Thus this cut can be directly 
implemented by the supergate S. However, if we restrict ourselves 
to the library gates, we would never consider this implementation, 
since there is no node with the function n4n6 in the subject graph. 

As the above example shows, when supergates are used the 
mapping process looks deeper into the network and can find better 
matches because of overcoming the structural bias. 

For a library of gates, the supergate library is generated as a 
preprocessing step before mapping. The supergate generation is 
guarded by constraints and resource limits, such as the limit on 
the number of inputs, the limit on the number of levels, the limit 
on the total area and delay, and the runtime limit. The generation 
process is described in the following subsection. 

It is important that the supergate library is generated once, 
stored compactly in a file, and used when technology mapping is 
invoked. The supergates are recomputed only if changes are made 
to the original library. This is why the supergate generation has an 
additional advantage of reducing the total runtime of mapping by 
pre-computing and re-using the mapping information, which 
depends on the library but not on the netlist to be mapped. 

A supergate library can be viewed as an elementary gate library, 
which contains many gates with diverse functionality. A library of 
elementary gates can be viewed as a supergate library with 
supergates composed of one level of the elementary gates. The 
proposed algorithms work uniformly for both types of libraries. 

3.2 Generation 
The supergate generation is performed recursively. One 

recursive step adds one level of gates on top of the available 

Permute y1 y2 y3 
f(y1, y3, y2)  
= 0100 1100 0100 1100 

y1 y3 y2 
Library gate ... 

f(y1, y2, y3)  
  = 0111 0000 0111 0000 

Truth tables of the gate 
as bit vectors 

y1 = 0101 0101 0101 0101   y2 = 0011 0011 0011 0011     
y3 = 0000 1111 0000 1111   y4  = 0000 1111 0000 1111 

Figure 3: Example of library pre-processing.
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supergates. To avoid confusion, we use the term elementary gates 
to mean the actual gates in the library. 

At the beginning, the set of available supergates is the set of 
elementary variables. In the current implementation, their number 
may be up to six; it depends on the largest allowed support size of 
the generated supergate library. In each recursion step, all 
possible elementary gates are used as root gates, and the 
supergates already generated (at lower levels of recursion) are 
plugged into these root gates to create new supergate candidates. 

Example. The process generation process is illustrated in 
Figure 5. The root gate AOI21 is added on top of three 
supergates: S1 (the elementary variable a), S2 (the supergate 
composed of two NAND2 gates), and S3 (the OR2 gate). 

The resulting candidates have an additional level of elementary 
gates, compared to the starting set of supergates. Before accepting 
a candidate supergate, its truth table is computed and the hash 
table is checked for a supergate with the same functionality but 
better delay-area parameters. If such gate exists, the new 
supergate is discarded. If it does not exist, the new supergate is 
added to the set of supergates used to generate the next level. 

 

a b c d c e 

Root gate 

S1 S2 S3 

 
Figure 4: A supergate.  Figure 5: Supergate generation. 

Constraints. The runtime of supergate generation can be 
dramatically reduced by applying constraints on the candidates. 
The constraints on runtime of generation and on the number of 
logic levels of gates are obvious. Two other types of constraints 
are trickier to implement. These constraints include restrictions on 
the maximum area and on the maximum pin-to-pin delay of the 
resulting supergates. 

To ensure that a candidate with a pin-to-pin delay exceeding the 
given limit is never created, the available supergates are sorted by 
their maximum pin-to-pin delay. Now, when we consider a root 
gate with some value of the maximum pin-to-pin delay, we only 
try the supergates, whose delay, when added to the delay of the 
root gate, does not exceed the delay limit.  

Example. Consider the supergate candidate in Figure 5. 
Suppose AOI21 has delay 1.7, NAND2 has delay 1.0, and OR2 
has delay 1.5. Suppose the global delay limit imposed on the 
generated supergates is 4.0. In this case, the largest allowed 
maximum delay for the component supergates is equal to the 
global delay limit minus the delay of the root gate (4.0 – 1.7 = 
2.3). The supergate composed of two NANDs has delay 2.0. Both 
this supergate and OR2 have delay less than 2.3. Therefore, the 
supergate candidate in Figure 5 will be considered. Suppose the 
delay of NAND2 is 1.2. In this case, the supergate composed of 
two NANDs will have delay 2.4, which is larger than 2.3. 
Therefore, this supergate will not be allowed as a component 
when generating supergates with the root gate AOI21.  

A similar restriction can be developed for area. For each root 
gate, the available supergates are sorted by area. Now, while 
adding available supergates to the supergate under construction, 
the maximum area limit is checked. If the limit is exceeded, the 
supergate under construction is dropped and another one is tried. 

Storage. From the generation process it is seen that the 
supergates have a natural recursive structure: A supergate 
comprises an elementary gate and its fanins which are other 
(smaller) supergates. Therefore the set of supergates can be 
compactly represented as a DAG, whose leaves are the 
elementary variables. This representation is quite compact and 
can be used to quickly read and write large supergate libraries.  

4 Choice Nodes and Lossless Logic Synthesis  
Choice nodes provide an efficient way of encoding multiple 

decompositions of a network. We start with an arbitrary Boolean 
network, which contains multiple functionally equivalent points. 
When constructing the AIG from the network, we identify, on-
the-fly, all functionally equivalent nodes in the network and 
collect them into equivalence classes of AIG nodes. 

We note here that recent advances in combinational 
equivalence checking allow very efficient detection of 
functionally equivalent points by combining simulation and 
satisfiability testing. These techniques enable us to detect 
equivalent points in large industrial circuits, without constructing 
global BDDs. We refer the reader to [hidden] for details on the 
efficient implementation of these ideas for use in logic synthesis. 

4.1 Local Rewriting of the AIG 
One way to generate choices is by iteratively applying the Λ- 

and ∆-transformations described by Lehman et al. [13]. Given an 
AIG, we use the associativity of And to locally re-write the graph. 
If this process is done iteratively, it is equivalent to identifying the 
maximal multi-input And-gates in the AIG and to add all possible 
tree-decompositions. Similarly, the distributivity of And over Or 
provides another source of choices. 

4.2 Lossless Logic Synthesis 
In contrast to the re-writing procedure described above which 

generates local choices, lossless logic synthesis generates 
“global” choices. In conventional synthesis, the initial network is 
processed using a script which specifies a series of 
transformations. Only the network obtained at the end of this 
process is used for technology mapping; the intermediate 
networks are discarded. However, since the transformations are 
heuristic, there is no guarantee that the final network obtained in 
this process is the one with best delay. 

In lossless synthesis, some subset of the networks seen during 
synthesis is collected into one AIG. This AIG therefore has large 
classes of functionally equivalent nodes, and during mapping the 
best representative of each class is automatically selected. Thus 
lossless logic synthesis allows the “best” parts of each network to 
be used to synthesize the mapped result.  

4.3 Mapping with Choices 
The Boolean matching algorithm can be naturally extended to 

handle choice nodes, by modifying the k-feasible cut computation 
and the cut function computation. The cut computation is lifted to 
work on the (functional) equivalence classes of And nodes. The 
cut set of an equivalence class is the union of the cut set of each 
member node. The algorithm in Figure 2 can be used to compute 
the cut set of each member node with the proviso that the 
equivalence classes of the children be used (instead of the 
children themselves) when computing Set1 and Set2. 

If only the above extension is implemented, there is 
inefficiency in the cut function computation, since a cut could 
originate from any member in the equivalence class of the node. 
This inefficiency can be avoided by storing the pointers to the two 
“parents” of a cut. (The two parents are the two cuts merged in 
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MergeCutSets procedure in Figure 2.) The resultant DAG of cuts 
can be traversed quickly for the cut function computation. 

4.4 Comparison of Supergates and Choice Nodes 
Both supergates and choice nodes help increase the search space 

and overcome the structural bias. Our experiments indicate that 
supergates and choice nodes are the sources of flexibility that is 
largely orthogonal. Supergates are limited, by construction, to 
several logic levels of gates. As a result, the extended search 
space due to supergates is relatively “shallow”. However, the 
population of this space is “dense” because the generation process 
is exhaustive for the given number of logic levels. 

On the other hand, the choice nodes derived from different 
versions of the netlist lead to a search space extension, which is 
“deep” and “sparse”. This is because the structural differences 
between the netlists used to generate the choices may encompass 
several logic levels. Meanwhile, the number of the structural 
differences is relatively small because their enumeration is not 
exhaustive and is controlled by external resource limits. 

5 Experimental results  
The techniques described in this paper have been implemented 

in the MVSIS logic synthesis system. The implementation is 
freely available. We performed a large number of experiments to 
characterize the performance of the mapper in its various modes, 
and to benchmark it against other state-of-the-art mappers. In this 
paper, we present only four sets of data due to space limitations. 

Table 1 shows the performance of the mapper on some large 
circuits from the publicly available benchmark suites using the 
MCNC library. The benchmarks are optimized with script.rugged 
followed by balancing during technology independent synthesis. 
The mapper has the fastest run-time in the baseline mode (no 
choices, no supergates) where it runs 5 times faster than the tree 
mapper in SIS and produces 33% better delay without degrading 
area. The best delay (29% over baseline, 54% over SIS) is seen 
when choices generated by lossless synthesis (using intermediate 
networks generated by script.rugged) are used with supergates. 

Table 2: Comparison of various mapper modes. 

Mode Delay Area Run-time 
B (Baseline) 1.00 1.00 1.00
L (Local rewriting) 0.91 0.96 39.45
S (Supergates) 0.84 1.13 20.26
C (Lossless) 0.79 0.97 12.02
L-S 0.80 1.07 > 200
L-C 0.75 1.09 90.08
S-C 0.71 1.11 87.16
L-S-C 0.69 1.22 > 200

Table 2 shows the results (averaged over a set of MCNC 
benchmarks) of an experiment to quantify the relative benefits of 
using supergates verses local re-writing and lossless synthesis. If 
only one of the techniques is used, lossless synthesis produces the 
best results (21% better delay than baseline) at a 12x increase in 
run-time. When two techniques are used, the combination of 
supergates and lossless choices produces the best results (29% 
improvement in delay) with about 87X increase in run-time. Note 
that since the baseline mapper is extremely fast (Table 1), even a 
87X increase in run-time is still practical.  

 

Table 4: Comparison on large industrial circuits. 

Design DAG Mapper Baseline 
 area delay time area delay time 

ex1 25412 -171.11 406.30 18440 -162.29 5.99
ex2 28550 -167.27 600.10 23284 -159.33 7.29
ex3 22576 -89.70 283.30 17868 -90.92 5.69
ex4 8500 -296.64 26.80 6159 -272.78 3.14
ex5 1148 -252.15 99.40 6010 -203.52 2.66
ex6 4530 -344.63 105.70 2294 -272.17 3.80
Avg: 1.00 1.00 1.00 0.76 0.88 0.04

Table 3 shows a comparison of the mapper with two other 
state-of-the art mappers: the DAG mapper [12] and GraphMap 
which is an independent implementation of [13]. The comparison 
was done on a set of timing critical combinational blocks 
extracted from a high-performance microprocessor design using 
an industrial library. For both mappers, we first apply 
script.rugged followed by speed_up to obtain a good multi-level 
logic structure. It outperforms both Graph Map and DAG mapper 
in delay and area and has a significantly shorter runtime.  

Finally, Table 4 shows the performance of the mapper on some 
larger blocks from a microprocessor, in comparison with DAG 
mapper. Delay reduces by 12% while area reduces by 24%. Thus, 
with larger blocks, the improvement in area is greater. It was 
pointed in [12] that DAG mapper can produce significantly faster 
circuits compared to traditional tree mapping approach [18]. 
However, the area increase for DAG mapper sometimes can be 
quite significant. The significant area reduction by the new 
mapper makes DAG mapping approach much more practical, 
especially when power consumption is becoming an increasingly 
important consideration in high-performance designs. 

6 Conclusions and Future Work 
Our experiments demonstrate that the Boolean matching 

technique with optimal phase assignment is a better alternative to 
the graph matching since it produces superior results with shorter 
run-time. Supergates and choices fit nicely into this framework 
and greatly improve the quality of mapping by mitigating 
structural bias. Furthermore, the intermediate networks seen 
during technology independent synthesis are a useful source of 
choices for the final mapping.  

To give a balanced view of the techniques presented, we should 
point out their limitations. The exhaustive cut computation which 
works very well in baseline mode (when no choices are used) 
becomes a computational bottleneck when many choices are 
added. We have developed pruning heuristics to restrict the 
number of cuts considered for each node, but extensions of the 
techniques proposed in [22] to handle choices would be useful. 

The exhaustive nature of supergate generation (as presented in 
Section 3.2) is inefficient since (i) the generated functions may 
not correlate well with the actual cut functions in the circuits, and 
(ii) the same function may be generated multiple times. It would 
be interesting to explore methods for guided supergate generation 
where more computational effort is invested in finding the 
supergates for the frequently occurring cut functions. This 
suggests the intriguing possibility of a mapping procedure that 
learns from the previous runs how to guide supergate generation. 

For our current prototype within a gain-based methodology, 
sizing and buffering are performed after mapping during physical 
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synthesis. We plan to extend our mapper for use in a flow that 
combines logical and physical synthesis. 
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Table 1: Comparison with SIS on public benchmarks. 

Name Delay Area Runtime 
 SIS Baseline C-S SIS Baseline C-S SIS Baseline C-S 

C5315 1.51 26 0.76 1.02 3423 1.00 4.67 0.3 104.17
C7552 1.45 24.6 0.69 0.98 4668 1.00 3.16 0.57 62.77
dsip 1.39 9.2 0.75 1.26 5010 1.53 6.83 0.41 13.20
pj2 1.71 14.9 0.77 1.20 5151 1.15 4.44 0.63 55.52
bigkey 1.39 11.4 0.64 1.12 6149 1.26 8.11 0.37 88.32
s15850 1.48 32.9 0.80 1.12 6617 1.02 8.25 0.4 74.03
C6288 1.96 82.6 0.67 0.74 8590 1.21 2.92 0.96 79.60
b14 1.90 69.8 0.49 1.09 13775 0.83 3.64 1.62 109.57
b15 1.58 74.2 0.53 1.14 17646 1.01 4.97 1.57 110.13
s35932 1.49 9.2 0.83 1.12 17713 0.98 10.00 1.21 50.60
pj3 1.71 28.3 0.70 1.06 18700 1.15 3.40 2.56 134.39
s38417 1.58 22.2 0.71 1.09 20904 0.96 4.27 2.39 65.38
clmb 1.35 34.2 0.81 1.04 23886 1.15 4.51 2.53 135.92
clma 1.38 36.6 0.76 1.04 23937 1.11 6.65 1.67 337.02
pj1 1.68 41.1 0.62 1.10 29088 1.06 5.00 2.86 153.69
Ratio 1.57 1.00 0.70 1.07 1.00 1.10 5.39 1.00 104.95
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Table 3: Comparison with the other mappers on industrial benchmarks. 

Design DAG Mapper GraphMap C-S 
 area delay area delay area delay 

ex1 42.00  -124.90 49.00 -115.18 40.00 -89.74 
ex2 51.00  -92.64 59.00 -76.06 55.00 -75.03 

ex3 53.00  -92.44 61.00 -78.03 54.00 -72.71 

ex4 177.00  -177.89 208.00 -131.92 171.00 -123.45 

ex5 118.00  -162.49 156.00 -132.92 102.00 -129.81 

ex6 103.00  -123.02 103.00 -101.37 88.00 -93.16 

ex7 41.00  -56.45 47.00 -53.42 47.00 -53.96 

ex8 41.00  -56.45 47.00 -53.42 47.00 -53.96 

ex9 96.00  -146.78 154.00 -133.96 98.00 -111.62 

ex10 102.00  -48.11 92.00 -44.65 105.00 -44.55 

ex11 91.00  -74.80 85.00 -60.16 72.00 -60.89 
ex12 239.00  -225.11 323.00 -189.73 205.00 -209.11 
Average  1.00 1.00 1.20 0.85 0.94 0.81 

 


