
Multiplexer Restructuring for FPGA Implementation Cost
Reduction

Paul Metzgen

Altera European Technology Center
High Wycombe

Buckinghamshire, UK

pmetzgen@altera.com

Dominic Nancekievill
Altera European Technology Center

High Wycombe
Buckinghamshire, UK

dnanceki@altera.com

ABSTRACT
This paper presents a novel synthesis algorithm that reduces the
area needed for implementing multiplexers on an FPGA by an
average of 18%. This is achieved by reducing the number of
Lookup Tables (LUTs) needed to implement multiplexers. The
algorithm relies on reimplementing 2:1 multiplexer trees using
efficient 4:1 multiplexers. The key to the algorithm’s
performance lies in exploiting the observation that most
multiplexers occur in busses. New optimizations are employed
which pay a small cost in logic that is shared across the bus to
achieve a reduction in the logic required for every bit of the bus.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – Automatic Synthesis,
Optimization; J.6 [Computer-Aided Engineering]: Computer-
aided design (CAD).

General Terms
Algorithms, Performance, Theory.

Keywords
FPGA, Multiplexers, Restructuring, Recoding, Busses, Logic
Optimization, Synthesis.

1. INTRODUCTION
Multiplexers are a common building block for data-paths, and are
used extensively in a number of applications including
processors[1], processor busses, network switches, and even DSP
designs with resource sharing. Analysis of the Altera Benchmark
set of 120 real customer designs[2] has estimated that
multiplexers typically account for over 25% of the area of an
FPGA design. Indeed, optimizing a design for an FPGA is often
the problem of optimizing the multiplexers.
This paper presents a novel multiplexer restructuring algorithm
for reducing the implementation area for multiplexers in a 4-input
lookup table (4-LUT) based FPGA architecture[3]. Benchmark
results will show average overall area reductions of 4.5% which is

equivalent to a reduction of 18% in the area needed for
multiplexers.
HDL code (e.g. from VHDL or Verilog) can be synthesized into
simple logic gates; with logic optimization[4] and technology
mapping[4][5] being applied to the resulting netlist. Rather than
working with a netlist of simple logic gates, multiplexer
restructuring relies on the creation of busses of multiplexer trees
with identical structures. Logic optimizations can change
multiplexer structures or reduce them to simple logic gates, and
will prevent busses from forming. For this reason, multiplexer
restructuring benefits from being performed before most other
logic optimizations.
Section 2.1 shows how 2:1 multiplexers (rather than simple logic
gates) can be synthesized directly from behavioural HDL code.
Sections 2.2 and 2.3 show how designs often create trees of
multiplexers and busses of multiplexers, and section 2.4 shows
how these structures are implemented using 4-LUTs, and
describes an efficient implementation of a 4:1 binary multiplexer
using just two 4-LUTs.

Section 3 introduces a new technique called Compression which
is able to re-implement groups of 2:1 multiplexers as efficient 4:1
multiplexers at the cost of some additional control logic. This
results in a reduction in the number of 4-LUTs needed to
implement the multiplexers for every bit in the bus, however the
additional cost in control logic can be shared across the entire bus.
Optimizing entire busses of multiplexers is the key to the
multiplexer restructuring algorithm.

Section 4.1 describes how the multiplexer restructuring algorithm
constructs busses of multiplexer trees from a design. The
restructuring technique in section 4.2 is used to perform the
Balancing algorithm defined in section 4.3. Balancing increases
the number of efficient 4:1 multiplexers that can be generated
during Compression.
Section 5 summarizes the overall algorithm which has been
implemented in Altera’s Quartus II integrated synthesis. Section
6 shows the results achieved across Altera’s benchmark set
yielding area reductions of over 20%.

2. BACKGROUND
2.1 Multiplexer Synthesis from HDL
It is not common for multiplexers to be instantiated explicitly in
HDL code, and it can be difficult to reliably infer multiplexers
from simple logic gates. However, some HDL constructs can be
synthesized directly to a multiplexer based representation. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006…$5.00.

27.1

421

section shows the type of HDL code that generated multiplexers
for the restructuring algorithm.
Figure 1 shows an example of a case statement in VHDL, together
with its implementation as a tree of 2:1 multiplexers. A similar
result is achieved with a Verilog case statement using the ‘parallel
case’ directive. Case statements can have any number of cases,
limited only by the bit-width of the select expression (sel); large
cases result in deeper trees of 2:1 multiplexers.

CASE sel[1:0] IS

WHEN ”00” =>

z <= a;

WHEN ”01” =>

z <= b;

WHEN ”10” =>

z <= c;

WHEN ”11” =>

z <= d;

END CASE; z

a b dc

Sel[1]

Sel[0]0 1

0 1

0 1

Figure 1: Logic generated from a case statement

Note that not all case statements describe all possible cases
explicitly, and may rely on a ‘default’ or ‘others’ condition to be
described also. In these cases, it is still possible to represent the
case statement as a tree of 2:1 multiplexers, although the tree may
no longer be balanced.
Figure 2 shows how ‘if-then-else’ statements generate a chain of
2:1 multiplexers. Verilog’s ‘?:’ and non-parallel cases also
generate a similar structure. Note that the chain of multiplexers
ensures that if the first if-condition is true, then the ‘a’ data input
will be selected, and all the remainder of the multiplexers will be
ignored.

IF c1 THEN

z <= a;

ELSIF c2 THEN

z <= b;

ELSIF c3 THEN

z <= c;
ELSE

z <= d;

END IF;

z

c d

1 0

1 0c3

c2

c1 1 0

b

a

Figure 2: Logic generated from an if-then-else statement

2.2 Multiplexer Trees
It is common in HDL designs for if-then-else and case statements
to be nested within each other. For example, the HDL in
Figure 3 shows an if-then-else statement surrounding a case
statement. This will lead to multiplexers feeding other
multiplexers, which will be termed multiplexer trees.
A multiplexer tree is defined as a fanout-free cone of logic
containing only 2:1 multiplexers, and with no internal
reconvergent fanouts (i.e.: a tree rather than a directed acyclic
graph). In the set of all possible multiplexer trees in a design, the
set of maximal multiplexer trees is defined as a subset of those
trees which are not contained in any other.

IF c1 THEN
IF c2 THEN

z <= a;
ELSE

z <= b;
END IF;

ELSIF c3 THEN
CASE s4[1:0]
WHEN “00” =>

z <= c;
WHEN “01” =>

z <= d;
WHEN OTHERS =>

z <= e;
END CASE;

ELSIF c6 THEN
z <= f;

ELSE
z <= g;

END IF; z

f g
c

b
1 0

1 0c6

c3

c1

0 1

0 1

0 1

e

1 0

c2

c4

c5

d

a

Figure 3: Multiplexer tree generated from HDL

Recognizing large multiplexer trees will be important in order to
maximize the area saving achieved by the multiplexer
restructuring algorithm. This is described further in Section 3.

2.3 Multiplexer Busses
A VHDL Signal or Verilog wire is often more than one bit wide.
When used in if-then-else and case statements, this creates a
number of identical multiplexer trees with different data inputs, an
example of which is shown in Figure 4.

IF c1 THEN

z[3:0] <= a[3:0];

ELSIF c2 THEN

z[3:0] <= b[3:0];

ELSIF c3 THEN

z[3:0] <= c[3:0];

ELSE

z[3:0] <= d[3:0];

END IF;

z

c d

1 0

1 0c3

c2

c1 1 0

b

a

Figure 4: Generating a bus of multiplexers

A set of multiplexer trees with identical structures is called a bus
of multiplexer trees. The multiplexer restructuring techniques
presented in this paper take the novel approach of optimizing
entire busses of maximal multiplexer trees.
A bus of maximal multiplexer trees is defined as the set of all
maximal multiplexer trees with identical structures. Two
multiplexer trees have identical structures when they have the
same arrangement of 2:1 multiplexers, with each corresponding
pair of 2:1 multiplexers have exactly the same control inputs. The
techniques used for identifying and forming busses are described
further in section 4.1.
Multiplexer restructuring should be performed early in the
synthesis flow, so as to ensure that individual 2:1 multiplexers are
neither moved nor reduced to logic gates in local optimizations
that do not consider their effect on busses. The average bus width
found in the Altera set of benchmarks was 14 bits wide.

2.4 The Cost of Multiplexers
Conventional technology mapping techniques[4][4] are unable to
pack the structures shown in Figure 1 and Figure 2 into less than
three 4-LUTs, even if the 2:1 multiplexers are reduced to simple
logic gates. This means that every 2:1 multiplexer tends to
require a separate 4-LUT, despite the fact that only 3 of the 4
inputs of those 4-LUTs may ever be used.
This section shows an implementation of a 4:1 multiplexer that
requires just two 4-LUTs (rather than three 4-LUTs). This

422

implementation has been chosen for this paper as it does not rely
on any special hardware features to implement, although any
equally efficient implementation of a 4:1 can be used in the
restructuring algorithm.
Figure 5 shows the operation of the area efficient 4:1 multiplexer
when the control input, S0, is held low. The 4:1 multiplexer is
realized using two 4-LUTs (shown as shaded boxes) chained
together. Each 4-LUT is configured to behave as though it
contains the logic shown inside the shaded boxes. The
multiplexer has four inputs, a, b, c and d, and two control inputs,
S0 and S1, shown in the white boxes.

C D
A B

S1S0

1 0

1 0

0 1

0 1

Figure 5: An efficient 4:1 multiplexer in two 4-LUTs (S0=0)

When S0 is low, the lower control bit, S1, selects between inputs
c or d, the result of which is passed to the second 4-LUT where it
bypasses the a or b inputs.

C D
A B

S1S0

1 0

0 1

0 1

1 0

Figure 6: An efficient 4:1 multiplexer in two 4-LUTs (S0=1)

Figure 6 shows the operation of the efficient 4:1 multiplexer when
the control input, S0, is high. The lower control bit, S1, now
bypasses the ‘C’ or ‘D’ inputs to go direct to the second 4-LUT
where it selects between the ‘A’ or ‘B’ inputs, the result of which
is now passed to the output of the second 4-LUT.
The Compression algorithm described in section 3 achieves an
area reduction by reimplementing groups of 2:1 multiplexers
using this efficient 4:1 multiplexer.

3. COMPRESSION
Compression is the process of converting groups of 2:1
multiplexers into the more area efficient 4:1 multiplexer
implementation described in Section 2.4. Figure 7 and Figure 8
will show that any group of three 2:1 multiplexers can be
converted into a 4:1 multiplexer. However, additional control
logic is needed to convert the control lines into the two-bit binary
control needed for the 4:1 multiplexer.
The multiplexer restructuring algorithm takes the new approach of
converting entire busses of multiplexers so that the control logic
can be shared between all multiplexer trees in the bus, whilst the

benefit of the improved multiplexer implementation can be
realized for every multiplexer tree in the bus. This is summarized
in Equation 1.

iccontrol
afterbefore

widthbitbus

CAreaWAreaW
log

+⋅→⋅

Equation 1: Area Reduction Estimate for Compression
Without considering busses, this type of transformation would
seldom yield an area benefit as the extra control logic can
outweigh any advantage gained by the more efficient multiplexer
implementation.
Figure 7 shows the how a priority-chain of three 2:1 multiplexers
can be converted into a 4:1 binary multiplexer. This conversion
requires at most two additional 4-LUTs of control logic. (Fewer
LUTs may actually be needed to implement the control logic,
either because it may pack with existing LUTs or the control lines
are not independent logic functions). Given that the original cost
of the multiplexers would be at least three 4-LUTs, and the 4:1
multiplexer can be implemented using just two, Equation 1 shows
that this transformation yields a net area saving for busses of
width W > 2 (W = 2 is area neutral).

S1

S2

A B

A B C D

C

S0

D

S0

S1 S2

S0 S1
0 1

0 1

0 1

00 01 10 11

S0 S1 S2 SBINARY

1 - - 11

0 1 - 10

0 0 1 01

0 0 0 00

Figure 7: Recoding a 2:1 multiplexer triplet (linear)

Figure 8 shows how a group of three 2:1 multiplexers arranged as
a tree can be converted into a 4:1 multiplexer. In this case, by
carefully choosing the encoding for the 4:1 multiplexer so that S0
selects between (A,B) and (C,D), it is possible to restrict the
additional control logic to at most just one 4-LUT. In this case,
Equation 1 shows that this transformation yields a net area saving
for busses of width W > 1.

S0

S1 S2

A B C D
A B C D

S0

S0 S1 S2 SBINARY

0 0 - 00

0 1 - 01

1 - 0 10

1 - 1 11

S2 S0 S1

0 1

00 01 10 11

0 10 1

Figure 8: Recoding a 2:1 multiplexer triplet (tree)

Using the transformations in Figure 7 and Figure 8, any cluster of
three 2:1 multiplexers can be converted into a 4:1 multiplexer.
However, both these transformations must be performed on
busses of multiplexers of width 2 or more in order to reduce the
overall number of 4-LUTs needed.

Recognizing 2:1 multiplexer triplets within busses is the core of
the multiplexer restructuring algorithm. The next section will

423

present some novel techniques to maximize the number of triplets
that can be formed.

4. BUSSES OF MULTIPLEXERS
4.1 Construction of the Depot
Compression gives an area reduction for every 2:1 multiplexer
triplet it recodes; hence Compression works best when it is
applied to wide busses of large multiplexer trees. The set of all
busses of multiplexer trees is called the Depot. This section
shows the Depot can be constructed.
Note that any given 2:1 multiplexer can be part of at most one
maximal multiplexer tree, and when the output of one 2:1
multiplexer feeds the input to another and nothing else they are
both part of the same maximal multiplexer tree. Using these
observations it is possible to construct the set of all maximal
multiplexer trees in a linear pass of the 2:1 multiplexers in a
design.
By sorting the list of maximal multiplexer trees based on their
structure, trees with identical structures will be adjacent in the
resulting list. Busses formed from trees with identical structures
can then be constructed in a linear pass of the sorted list.

4.2 Restructuring
Section 4.3 will describe Balancing which aims to maximize the
area reduction that is achievable through Compression. However,
Balancing is based on Restructuring, which is defined in this
section.

Restructuring moves a 2:1 multiplexer together with one of its
inputs through the 2:1 multiplexer that it fed. Figure 9 shows the
restructuring of the shaded multiplexer together with its ‘f’ input.
In order to maintain the functionality of the original bus of
multiplexers, some additional control logic is needed. Once
again, this control logic can be shared for every multiplexer tree in
the bus.

1 0

0 1

0 1

0 1

1 0

1 0

0 1

0 1

0 1

1 0

z

g

c

b
1 0 c3

c1

0 1

0 1

0 1

e

1 0

c2

c4

c5

d

a

0 10 1

f

1 0 c6 & ~c3

1 0

1 0

0 1

0 1

0 1

1 0

1 0

1 0

0 1

0 1

0 1

1 0

z

f g

c

b

1 0

1 0c6

c3

c1

0 1

0 1

0 1

e

1 0

c2

c4

c5

d

a

Figure 9: Restructuring a bus of multiplexer trees

For Figure 9, the recode logic (c6 AND (NOT c3)) must ensure
that input ‘f’ is selected when c1 is false, c3 is false and c6 is true
(as was the case before the transformation). Likewise, note that
input ‘g’ is selected when c1 is false, c3 is false, and c6 is false,
which means that (c6 AND (NOT c3)) is also false.

The restructuring transformation moves the selected multiplexer
one step further towards the head of the multiplexer tree. Hence,
by repeatedly applying the restructuring transformation, it is
possible to move any number of places further towards the head.

4.3 Balancing
Compression is able to reduce the number of 4-LUTs needed to
implement a bus of multiplexers by converting 2:1 multiplexer
triplets. However, there are some structures for which it is not
possible to get the best triplet clustering without restructuring the
multiplexer trees slightly. For example, it is not possible to
cluster all the 2:1 multiplexers in Figure 10, as every possible
clustering leaves a 2:1 multiplexer stranded.

1 0

1 0

1 0

1 0

z

f g

c

b

1 0

1 0c5

c3

c1

0 1

0 1

0 1

e

1 0

c2

c4

c6

d

a

Figure 10: Multiplexer tree with sub-optimal Compression

Balancing aims to perform a minimal amount of restructuring in
order to achieve the best Compression. For the example shown in
Figure 10, restructuring would be applied as shown in Figure 11
below to achieve two sets of 2:1 multiplexer triplets.

1 0

0 1

0 1

0 1

1 0

1 0

0 1

0 1

0 1

1 0

z

g

c

b
1 0 c3

c1

0 1

0 1

0 1

e

1 0

c2

c4

c6

d

a

0 1

f

1 0 c5 & ~c3

1 0

1 0

1 0

1 0

z

f g

c

b

1 0

1 0c5

c3

c1

0 1

0 1

0 1

e

1 0

c2

c4

c6

d

a

Figure 11: Balancing to improve Compression

The Balancing algorithm is defined recursively as shown in
Figure 12, and results in an algorithm runtime linear in the tree
size. Starting at the head multiplexer, the algorithm first balances
the multiplexer trees on its left and right data inputs. The
Balancing function returns the number of 2:1 multiplexers that
have not yet been combined into triplets. Balancing will
guarantee that as many triplets are formed as possible, so there
will only ever be zero, one or two 2:1 multiplexers left over.
At any stage during Balancing there will be between one and five
2:1 multiplexers that need to be balanced (up to 2 from the left
branch and 2 from the right branch as well as the current 2:1
multiplexer itself), . With one or two multiplexers, no additional
triples can be formed, and any combination of three multiplexers
can always be formed into a triple. However four or five
multiplexers may need some restructuring in order to not leave
any stranded multiplexers and this restructuring is shown in
Figure 13 and Figure 14 respectively.

424

Function Balance(m)
 if (is_a_multiplexer(m)) then
 num_muxes = 1 // Count this mux
 + Balance(m.left)
 + Balance(m.right);
 if (num_muxes >= 3) then
 if (num_muxes == 4) then
 Apply transformation shown in Figure 13;
 else if (num_muxes == 5) then
 Apply transformation shown in Figure 14;
 end if
 // remove muxes in triplet
 num_muxes = num_muxes – 3;
 end if
 return num_muxes;
 else
 return 0; // input to multiplexer tree: 0 muxes
 end if

Figure 12: The balancing algorithm

S0

S1

S2

A B

C D E

S3

S0

S1

S2

A B

C

D

S3

S0 E

Figure 13: Restructuring 4 multiplexers for Balancing

S0

S1

S2

A B

C D

E F

S3

S4

S0

S1

S2

A B

C

D

S3

S0

E F

S4

Figure 14: Restructuring 5 multiplexers for Balancing

Note that there are other types of restructuring that could be
performed instead. For instance, the A-B multiplexer in Figure 13
could be moved to the head instead of the D-E multiplexer. The
restructuring in Figure 13 and Figure 14 was chosen so as to
(locally) minimize the amount of additional control logic. A
different choice of restructuring could lead to a smaller
implementation in LUTs depending on what logic feeds the
multiplexer control signals, but this was not explored.

5. ALGORITHM SUMMARY
This paper has introduced the notion of busses of multiplexer
trees, and described Balancing which can be used to improve the

performance of Compression, which reimplements 2:1
multiplexer triplets into more efficient 4:1 multiplexers. Figure
15 shows the overall multiplexer restructuring algorithm.

Convert_Multiplexers_to_2:1s ()
 Form_Multiplexer_Trees()
 Merge_Multiplexer_Trees_into_Busses()
 Foreach bus {
 Balance(bus) // Minimally rearrange 2:1 into triples
 Compress(bus) // Convert triplets into efficient 4:1’s

 }
Figure 15: The multiplexer restructuring algorithm

The quality of the Multiplexer Restructuring algorithm relies upon
recognizing large busses of multiplexer trees. Because the
multiplexer restructuring algorithm relies on sharing control logic
across an entire bus, the wider the busses, the greater the benefit
from Compression. Optimizations that might reduce the
similarity between multiplexer trees, and hence reduce the size of
the busses found, should be avoided until after multiplexer
restructuring.

Multiplexer restructuring begins by decomposing any large
multiplexers into 2:1 multiplexers. All the 2:1 multiplexers in the
design are used to form multiplexer trees as described in section
4.1. Multiplexer trees with similar structures are then merged to
form busses as described in section 4.1.

The main part of the algorithm optimizes each bus in turn.
Balancing rearranges the 2:1 multiplexers into triplets, so that
each triplet can be recoded to the efficient 4:1 multiplexer during
the Compression stage.

6. RESULTS
The algorithms presented in this paper have been integrated into
Altera’s Synthesis software within Quartus II 4.2. Figure 16
shows the resulting area reduction when applied to all 120 real
customer designs in Altera’s benchmarking suite.
The results show a number of designs that have achieved a 20%
reduction in the number of LUTs required to implement them, and
over 40% of the designs experienced a reduction in area of over
5%. The mean improvement across all designs is 4.5%.
It has been estimated that around 25% of all LUTs were being
used to implement multiplexers, and multiplexer restructuring is
only able to optimize this 25%, so an average of 4.5% means that
multiplexers have been reduced by 18% on average.
Figure 16 shows that only 8% of designs have increased in size
(3.6% at worse). Initial investigations show that the majority of
these cases are due to inefficiencies introduced by multiplexers
with related or constant data inputs, which may be exploited better
by traditional logic optimization techniques. Also, Restructuring
tends to push surplus 2:1 multiplexers (that cannot be combined
into a 4:1 multiplexer) to the head of the multiplexer tree,
however in some cases those multiplexers may have been able to
pack with logic at the inputs to the multiplexer trees.

425

Figure 16: Multiplexer restructuring benchmark results

Although the focus of Multiplexer Restructuring was primarily on
area (i.e.: reducing the number of 4-LUTs needed), the average
speed of the circuits was reduced by only 0.9% (measured from
the slowest clocks in each design). The scatter-plot in Figure 17
shows that there is no discernable relationship between the size of
the area reduction and the change in speed of the resulting circuit.
The restructuring transforms used tend to increase the depth of 2:1
multiplexers in a tree and this should impact speed, however,
reducing the number of LUTs needed will also tend to reduce the
average routing distance (which accounts for 50% of the overall
delays) and hence improve speed.

Figure 17: Correlation between Area and Fmax

7. CONCLUSION
This paper has presented the Multiplexer Restructuring algorithm
which is able to reduce the number of 4-LUTs needed to
implement the multiplexers in a design by an average of 18%.
The key to the multiplexer restructuring algorithm is to optimize
across busses of multiplexers. New optimizations allow area
reductions to be made in every bit in the bus, even at the expense

of additional control logic. This is because control logic can be
shared across a bus, and hence its cost can be amortized.
Compression converts triplets of 2:1 multiplexers into efficient
4:1 multiplexers. Although additional LUTs may be needed to
recode the control lines for the 4:1’s, this cost can be amortized by
applying Compression to entire busses of multiplexers. In
addition, by building maximal multiplexer trees, it is possible to
convert a large number of 2:1 multiplexer triplets in this way.
This paper has also introduced Balancing which improves the
effectiveness of the Compression algorithm. Balancing modifies
the structure of the multiplexers slightly, so as to maximize the
number of triplets that can be recoded by Compression.
This paper describes algorithms that are targeted to an FPGA
based on 4-LUTs, such as Altera’s Stratix I or Cyclone devices.
New FPGA architectures allow variable sized lookup tables (such
as the Stratix II architecture which is able to implement 4, 5, or 6
input LUTs)[8], and it may be possible to get even better area
reductions by extending the techniques presented in this paper to
exploiting these architectures. This is the subject of current
research.

8. REFERENCES
[1] A High Performance 32-bit ALU for Programmable Logic. P.

Metzgen. Proceedings of the 2004 ACM/SIGDA 12th
international symposium on Field Programmable Gate
Arrays. Pp 61-70. 2004.

[2] FPGA Performance Benchmarking Methodology, White
Paper, www.altera.com

[3] The Stratix Device Handbook (Vol 1). Altera Corporation,
2004.

[4] E. M. Sentovich et al. “SIS: A System for Sequential Circuit
Synthesis.” Technical Report, University of California at
Berkeley, 1992, Memorandum No. UCB/ERL M92/41

[5] J. Cong and Y. Ding, “FlowMap: An Optimal Technology
Mapping Algorithm for Delay Optimization in Lookup-Table
based FPGA Designs”, IEEE Trans. CAD Vol 13, No 1, pp.
1-12, 1994.

[6] V. Manohararajah, S.D. Brown and Z. Vranesic, "Heuristics
for Area Minimization in LUT-Based FPGA Technology
Mapping”, in Proc. of the Int'l Workshop on Logic Synthesis
2004

[7] D. Lewis et al, C. Wysocki and R. Cliff, "The Stratix
Routing and Logic Architecture”, in Proc. ACM/SIGDA Int’l
Symposium on FPGAs (FPGA 2003), pp.12-20, 2003

[8] David Lewis et al, "The Stratix-II Routing and Logic
Architecture". 2005 Int'l Symposium on FPGAs (FPGA
2005)

426

