

Designing for Speed on the Back of an Envelope

David Harris

harrisd@vlsi.stanford.edu

August, 1998

Stanford University

Stanford, CA

* Based on a book by Ivan Sutherland, Bob Sproull, and David Harris

Outline

Introduction

- Delay in a Logic Gate
- Multi-stage Logic Networks
- Choosing the Best Number of Stages
- **Example**

Summary

Page 2 of 38

Introduction

Chip designers face a bewildering array of choices.

- What is the best circuit topology for a function?
- How large should the transistors be?
- How many stages of logic give least delay?

Logical Effort is a method of answering these questions:

- Uses a very simple model of delay
- Back of the envelope calculations and tractable optimization
- Gives new names to old ideas to emphasize remarkable symmetries

Who cares about logical effort?

- Circuit designers waste too much time simulating and tweaking circuits
- High speed logic designers need to know where time is going in their logic
- CAD engineers need to understand circuits to build better tools

Logical Effort

Example

Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded processor for automotive applications. Help Ben design the decoder for a register file: $a < 3:0 > \overline{a} < 3:0 > |_{4}$ 32 bits

4:16 Decoder

16

Decoder specification:

- ▲ 16 word register file
- Each word is 32 bits wide
- Each bit presents a load of 3 unit-sized transistors
- True and complementary inputs of address bits *a*<3:0> are available
- Each input may drive 10 unit-sized transistors

Ben needs to decide:

- How many stages to use?
- How large should each gate be?
- How fast can the decoder operate?

Page 4 of 38

16 words

Register File

Outline

- Introduction
- Delay in a Logic Gate
- Multi-stage Logic Networks
- Choosing the Best Number of Stages
- **Example**
- Summary

Page 5 of 38

Delay in a Logic Gate

Let us express delays in a process-independent unit:

 $\tau \approx 20\,\mathrm{ps}$ in 0.25 µm technology

Delay of logic gate has two components:

effort delay, a.k.a. stage effort d = f + pEffort delay again has two components:

Logical Effort

electrical effort called "fanout"

Page 6 of 38

Logical effort describes relative ability of gate topology to deliver current (defined to be 1 for an inverter)

Electrical effort is the ratio of output to input capacitance

Computing Logical Effort

- DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current.
- Measured from delay vs. fanout plots of simulated or measured gates
- Or estimated, counting capacitance in units of transistor width:

A Catalog of Gates

Table 1: Logical effort of static CMOS gates

Gate type	Number of inputs						
	1	2	3	4	5	n	
inverter	1						
NAND		4/3	5/3	6/3	7/3	(<i>n</i> +2)/3	
NOR		5/3	7/3	9/3	11/3	(2 <i>n</i> +1)/3	
multiplexer		2	2	2	2	2	
XOR, XNOR		4	12	32			

Table 2: Parasitic delay of static CMOS gates

Gate type	Parasitic delay		
inverter	P _{inv}		
<i>n</i> -input NAND	np _{inv}		
<i>n</i> -input NOR	np _{inv}		
<i>n</i> -way multiplexer	2np _{inv}		
2-input XOR, XNOR	4np _{inv}		

 $p_{inv} \approx 1$

parasitic delays depend on diffusion capacitance

Logical Effort

Example Estimate the frequency of an *N*-stage ring oscillator: Logical Effort: g =h =Electrical Effort: Parasitic Delay: *p* = d =Stage Delay: Oscillator Frequency: F =

Page 10 of 38

Example Estimate the delay of a fanout-of-4 (FO4) inverter: l**←**d → l Logical Effort: *g* = Electrical Effort: h =Parasitic Delay: *p* = Stage Delay: *d* =

Logical Effort

Outline

- Introduction
- Delay in a Logic Gate
- Multi-stage Logic Networks
- Choosing the Best Number of Stages
- **Example**
- Summary

Page 12 of 38

Multi-stage Logic Networks

Logical effort extends to multi-stage networks:

Page 13 of 38

Logical Effort

Branching Effort

No! Consider circuits that branch:

Page 14 of 38

Logical Effort

Delay in Multi-stage Networks

We can now compute the delay of a multi-stage network:

- Path Effort Delay:
- Path Parasitic Delay:
- Path Delay:

$$P = \sum p_i$$
$$D = \sum d_i = D_F + P$$

We can prove that delay is minimized when each stage bears the same effort:

 $D_F = \sum f_i$

$$\hat{f} = g_i h_i = F^{1/N}$$

Therefore, the minimum delay of an *N*-stage path is:

$$NF^{1/N} + P$$

This is a key result of logical effort. Lowest possible path delay can be found without even calculating the sizes of each gate in the path.

Page 15 of 38

Determining Gate Sizes

Gate sizes can be found by starting at the end of the path and working backward.

At each gate, apply the capacitance transformation:

$$C_{in_i} = \frac{C_{out_i} \bullet g_i}{\hat{f}}$$

Check your work by verifying that the input capacitance specification is satisfied at the beginning of the path.

Page 16 of 38

Example

Select gate sizes *y* and *z* to minimize delay from *A* to *B*

- Logical Effort: G =
- Electrical Effort: H =
- Branching Effort: B =
- Path Effort: F =
- Best Stage Effort: $\hat{f} =$
- Delay: D =

Work backward for sizes:

- Z =
- *y* =

Page 17 of 38

Logical Effort

Outline

- Introduction
- Delay in a Logic Gate
- Multi-stage Logic Networks
- **Choosing the Best Number of Stages**
- Example
- Summary

Page 18 of 38

Best Number of Stages (continued)

 $p_{inv} + \rho (1 - ln\rho) = 0$ has no closed form solution.

Neglecting parasitics (*i.e.* $p_{inv} = 0$), we get the familiar result that $\rho = 2.718$ (e) For $p_{inv} = 1$, we can solve numerically to obtain $\rho = 3.59$ How sensitive is the delay to using exactly the best number of stages? 4 3 I like to use $\rho = 4$ 1.51 1.26 Better use too many stages than too few. 0.25 0.5 $1 N/\hat{N}$ 2 4 8 $2.4 < \rho < 6$ gives delays within 15% of optimal -> we can be sloppy **Logical Effort David Harris** Page 21 of 38

Outline

- Introduction
- Delay in a Logic Gate
- Multi-stage Logic Networks
- Choosing the Best Number of Stages
- **Example**
- Summary

Page 22 of 38

Example

Let's revisit Ben Bitdiddle's decoder problem using logical effort:

Decoder specification:

- 16 word register file
- Each word is 32 bits wide
- Each bit presents a load of 3 unit-sized transistors
- True and complementary inputs of address bits *a*<3:0> are available
- Each input may drive 10 unit-sized transistors

Ben needs to decide:

- ▲ How many stages to use?
- How large should each gate be?
- How fast can the decoder operate?

Example: Number of Stages

How many stages should Ben use?

Effort of decoders is dominated by electrical and branching portions

- \blacksquare Electrical Effort: H =
- \Box Branching Effort: B =

If we neglect logical effort (assume G = 1),

D Path Effort: F =

Remember that the best stage effort is about $\rho = 4$

Hence, the best number of stages is: N =

Page 24 of 38

Example: Gate Sizes & Delay

Example: Alternative Decoders

Design	Stages	G	Р	D
NAND4; INV	2	2	5	29.8
INV; NAND4; INV	3	2	6	22.1
INV; NAND4; INV; INV	4	2	7	21.1
NAND2; INV; NAND2; INV	4	16/9	6	19.7
INV; NAND2; INV; NAND2; INV	5	16/9	7	20.4
NAND2; INV; NAND2; INV; INV; INV	6	16/9	8	21.6
INV; NAND2; INV; NAND2; INV; INV; INV	7	16/9	9	23.1
NAND2; INV; NAND2; INV; INV; INV; INV; INV	8	16/9	10	24.8

Table 3: Comparison of Decoder Designs

We underestimated the best number of stages by neglecting the logical effort.

- Logical effort facilitates comparing different designs before selecting sizes
- Using more stages also reduces G and P by using multiple 2-input gates
- Our design was about 10% slower than the best

Outline

- Introduction
- Delay in a Logic Gate
- Multi-stage Logic Networks
- Choosing the Best Number of Stages
- **Example**
- Summary

Page 27 of 38

Summary

Table 4: Key Definitions of Logical Effort

Term	Stage expression	Path expression		
Logical effort	$m{g}$ (seeTable 1)	$G = \prod g_i$		
Electrical effort	$h = \frac{C_{out}}{C_{in}}$	$H = rac{C_{out (path)}}{C_{in (path)}}$		
Branching effort	n/a	$B = \prod b_i$		
Effort	f = gh	F = GBH		
Effort delay	f	$D_F = \sum f_i$		
Number of stages	1	N		
Parasitic delay	$oldsymbol{ ho}$ (seeTable 2)	$P = \sum p_i$		
Delay	d = f + p	$D = D_F + P$		

Logical Effort

Method of Logical Effort

Logical effort helps you find the best number of stages, the best size of each gate, and the minimum delay of a circuit with the following procedure:

- Compute the path effort: F = GBH
- Estimate the best number of stages:
- Estimate the minimum delay:
- Sketch your path using the number of stages computed above
- Compute the stage effort:
 - Starting at the end, work backward to find transistor sizes:

$$C_{in_i} = rac{C_{out_i} \bullet g_i}{\hat{f}}$$

Page 29 of 38

Logical Effort

$$D = \hat{N}F^{1/\hat{N}} + P$$

 $\hat{N} \approx \log_4 F$

 $\hat{f} = F^{1/N}$

Limitations of Logical Effort

Logical effort is not a panacea. Some limitations include:

Chicken & egg problem

how to estimate G and best number of stages before the path is designed

Simplistic delay model

neglects effects of input slopes

Interconnect

iteration required in designs with branching and non-negligible wire C or RC same convergence difficulties as in synthesis / placement problem

Maximum speed only

optimizes circuits for speed, not area or power under a fixed speed constraint

Page 30 of 38

Conclusion

Logical effort is a useful concept for thinking about delay in circuits:

- Facilitates comparison of different circuit topologies
- Easily select gate sizes for minimum delay
- Circuits are fastest when effort delays of each stage are equal and about 4
- Path delay is insensitive to modest deviations from optimal sizes

Some further results from logical effort include:

- Logical effort can be applied to domino, pass gate, and other logic families
- Logic gates can be skewed to favor one input or edge at the cost of another
- ❑ While the logical effort of a multiplexer is independent of the number of inputs, parasitic delay increases with size, so 4-way multiplexers are best
- Circuits that fork should equalize delays between legs of the fork

A book on Logical Effort will be available in Feb. 1999 from Morgan Kaufmann http://www.mkp.com/Logical_Effort

Logical Effort

Example Estimate the frequency of an *N*-stage ring oscillator: Logical Effort: $g \equiv 1$ $h = \frac{C_{out}}{C_{in}} = 1$ Electrical Effort: $p = p_{inv} \approx 1$ Parasitic Delay: Stage Delay: d = gh + p = 2A 31 stage ring oscillator in a Oscillator Frequency: $F = \frac{1}{2Nd_{abs}} = \frac{1}{4N\tau}$ $0.25 \,\mu m$ process oscillates at about 400 MHz.

Logical Effort

Example Estimate the delay of a fanout-of-4 (FO4) inverter: **|-***d* - **→**| Logical Effort: $g \equiv 1$ $h = \frac{C_{out}}{C_{in}} = 4$ The FO4 inverter Electrical Effort: delay is a useful metric to characterize $p = p_{inv} \approx 1$ process performance. Parasitic Delay: 1 FO4 delay = 5τ d = gh + p = 5Stage Delay: This is about 100 ps in a 0.25 μ m process. **David Harris** Page 34 of 38 **Logical Effort**

Branching Effort

No! Consider circuits that branch:

Introduce new kind of effort to account for branching within a network:

Example

Select gate sizes *y* and *z* to minimize delay from A to B

Logical Effort:

Electrical Effort:

Path Effort:

Best Stage Effort:

Delay:

Page 36 of 38

Example: Number of Stages

How many stages should Ben use?

Effort of decoders is dominated by electrical and branching portions

- Electrical Effort: $H = \frac{32 \bullet 3}{10} = 9.6$

Branching Effort: B = 8 because each address input controls half the outputs

If we neglect logical effort,

Path Effort: $F = GBH = 8 \bullet 9.6 = 76.8$

Remember that the best stage effort is about $\rho = 4$

Hence, the best number of stages is: $N = \log_{a} 76.8 = 3.1$

David Harris

Let's try a 3-stage design

Logical Effort

Page 37 of 38

Example: Gate Sizes & Delay

Lets try a 3-stage design using 16 4-input NAND gates with $G = 1 \bullet 2 \bullet 1 = 2$

Logical Effort