

Static Timing Analysis for

Nanometer Designs
A Practical Approach

J. Bhasker • Rakesh Chadha

Static Timing Analysis for
Nanometer Designs
A Practical Approach

J. Bhasker Rakesh Chadha
eSilicon Corporation eSilicon Corporation

 ISBN 978-0-387-93819-6 e-ISBN 978-0-387-93820-2

Library of Congress Control Number: 2009921502

All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed is forbidden. The use in this publication of trade names,
trademarks, service marks and similar terms, even if they are not identified as such, is not to
be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.
While the advice and information in this book are believed to be true and accurate at the
date of going to press, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Some material reprinted from “IEEE Std. 1497-2001, IEEE Standard for Standard Delay
Format (SDF) for the Electronic Design Process; IEEE Std. 1364-2001, IEEE Standard
Verilog Hardware Description Language; IEEE Std.1481-1999, IEEE Standard for
Integrated Circuit (IC) Delay and Power Calculation System”, with permission from IEEE.
The IEEE disclaims any responsibility or liability resulting from the placement and use in
the described manner.
Liberty format specification and SDC format specification described in this text are
copyright Synopsys Inc. and are reprinted as per the Synopsys open-source license
agreement.
Timing reports are reported using PrimeTime which are copyright © <2007> Synopsys, Inc.
Used with permission. Synopsys & PrimeTime are registered trademarks of Synopsys, Inc.
Appendices on SDF and SPEF have been reprinted from “The Exchange Format Handbook”
with permission from Star Galaxy Publishing.

Printed on acid-free paper.

springer.com

 Springer Science+Business Media, LLC 2009

DOI: 10.1007/978-0-387-93820-2

Suite 615
Allentown, PA 18103, USA

 jbhasker@esilicon.com

890 Mountain Ave1605 N. Cedar Crest Blvd.
New Providence, NJ 07974, USA
rchadha@esilicon.com

v

Contents

Preface . xv

CHAPTER 1: Introduction . 1
1.1 Nanometer Designs . 1
1.2 What is Static Timing Analysis?. 2
1.3 Why Static Timing Analysis? . 4

Crosstalk and Noise, 4
1.4 Design Flow . 5

1.4.1 CMOS Digital Designs . 5
1.4.2 FPGA Designs . 8
1.4.3 Asynchronous Designs. 8

1.5 STA at Different Design Phases . 9
1.6 Limitations of Static Timing Analysis . 9
1.7 Power Considerations . 12
1.8 Reliability Considerations. 13
1.9 Outline of the Book. 13

CHAPTER 2: STA Concepts . 15
2.1 CMOS Logic Design. 15

2.1.1 Basic MOS Structure . 15
2.1.2 CMOS Logic Gate . 16
2.1.3 Standard Cells . 18

2.2 Modeling of CMOS Cells . 20
2.3 Switching Waveform . 23

CONTENTS

vi

2.4 Propagation Delay. 25
2.5 Slew of a Waveform . 28
2.6 Skew between Signals . 30
2.7 Timing Arcs and Unateness . 33
2.8 Min and Max Timing Paths . 34
2.9 Clock Domains . 36
2.10 Operating Conditions . 39

CHAPTER 3: Standard Cell Library . 43
3.1 Pin Capacitance. 44
3.2 Timing Modeling . 44

3.2.1 Linear Timing Model. 46
3.2.2 Non-Linear Delay Model. 47

Example of Non-Linear Delay Model Lookup, 52
3.2.3 Threshold Specifications and Slew Derating. 53

3.3 Timing Models - Combinational Cells . 56
3.3.1 Delay and Slew Models . 57

Positive or Negative Unate, 58
3.3.2 General Combinational Block . 59

3.4 Timing Models - Sequential Cells . 60
3.4.1 Synchronous Checks: Setup and Hold. 62

Example of Setup and Hold Checks, 62
Negative Values in Setup and Hold Checks, 64

3.4.2 Asynchronous Checks . 66
Recovery and Removal Checks, 66
Pulse Width Checks, 66
Example of Recovery, Removal and Pulse Width Checks, 67

3.4.3 Propagation Delay . 68
3.5 State-Dependent Models. 70

XOR, XNOR and Sequential Cells, 70
3.6 Interface Timing Model for a Black Box . 73
3.7 Advanced Timing Modeling. 75

3.7.1 Receiver Pin Capacitance . 76
Specifying Capacitance at the Pin Level, 77
Specifying Capacitance at the Timing Arc Level, 77

3.7.2 Output Current . 79

CONTENTS

vii

3.7.3 Models for Crosstalk Noise Analysis. 80
DC Current, 82
Output Voltage, 83
Propagated Noise, 83
Noise Models for Two-Stage Cells, 84
Noise Models for Multi-stage and Sequential Cells, 85

3.7.4 Other Noise Models . 87
3.8 Power Dissipation Modeling. 88

3.8.1 Active Power . 88
Double Counting Clock Pin Power?, 92

3.8.2 Leakage Power . 92
3.9 Other Attributes in Cell Library . 94

Area Specification, 94
Function Specification, 95
SDF Condition, 95

3.10 Characterization and Operating Conditions . 96
What is the Process Variable?, 96

3.10.1 Derating using K-factors . 97
3.10.2 Library Units . 99

CHAPTER 4: Interconnect Parasitics . 101
4.1 RLC for Interconnect . 102

T-model, 103
Pi-model, 104

4.2 Wireload Models. 105
4.2.1 Interconnect Trees . 108
4.2.2 Specifying Wireload Models . 110

4.3 Representation of Extracted Parasitics . 113
4.3.1 Detailed Standard Parasitic Format 113
4.3.2 Reduced Standard Parasitic Format 115
4.3.3 Standard Parasitic Exchange Format 117

4.4 Representing Coupling Capacitances . 118
4.5 Hierarchical Methodology . 119

Block Replicated in Layout, 120
4.6 Reducing Parasitics for Critical Nets . 120

Reducing Interconnect Resistance, 120
Increasing Wire Spacing, 121

CONTENTS

viii

Parasitics for Correlated Nets, 121

CHAPTER 5: Delay Calculation . 123
5.1 Overview. 123

5.1.1 Delay Calculation Basics . 123
5.1.2 Delay Calculation with Interconnect 125

Pre-layout Timing, 125
Post-layout Timing, 126

5.2 Cell Delay using Effective Capacitance . 126
5.3 Interconnect Delay . 131

Elmore Delay, 132
Higher Order Interconnect Delay Estimation, 134
Full Chip Delay Calculation, 135

5.4 Slew Merging . 135
5.5 Different Slew Thresholds . 137
5.6 Different Voltage Domains. 140
5.7 Path Delay Calculation . 140

5.7.1 Combinational Path Delay . 141
5.7.2 Path to a Flip-flop . 143

Input to Flip-flop Path, 143
Flip-flop to Flip-flop Path, 144

5.7.3 Multiple Paths . 145
5.8 Slack Calculation . 146

CHAPTER 6: Crosstalk and Noise . 147
6.1 Overview. 148
6.2 Crosstalk Glitch Analysis . 150

6.2.1 Basics . 150
6.2.2 Types of Glitches . 152

Rise and Fall Glitches, 152
Overshoot and Undershoot Glitches, 152

6.2.3 Glitch Thresholds and Propagation 153
DC Thresholds, 153
AC Thresholds, 156

6.2.4 Noise Accumulation with Multiple Aggressors. 160
6.2.5 Aggressor Timing Correlation . 160

CONTENTS

ix

6.2.6 Aggressor Functional Correlation 162
6.3 Crosstalk Delay Analysis . 164

6.3.1 Basics . 164
6.3.2 Positive and Negative Crosstalk . 167
6.3.3 Accumulation with Multiple Aggressors 169
6.3.4 Aggressor Victim Timing Correlation 169
6.3.5 Aggressor Victim Functional Correlation 171

6.4 Timing Verification Using Crosstalk Delay 171
6.4.1 Setup Analysis . 172
6.4.2 Hold Analysis. 173

6.5 Computational Complexity . 175
Hierarchical Design and Analysis, 175
Filtering of Coupling Capacitances, 175

6.6 Noise Avoidance Techniques . 176

CHAPTER 7: Configuring the STA Environment 179
7.1 What is the STA Environment? . 180
7.2 Specifying Clocks . 181

7.2.1 Clock Uncertainty . 186
7.2.2 Clock Latency . 188

7.3 Generated Clocks . 190
Example of Master Clock at Clock Gating Cell Output, 194
Generated Clock using Edge and Edge_shift Options, 195
Generated Clock using Invert Option, 198
Clock Latency for Generated Clocks, 200
Typical Clock Generation Scenario, 200

7.4 Constraining Input Paths . 201
7.5 Constraining Output Paths . 205

Example A, 205
Example B, 206
Example C, 206

7.6 Timing Path Groups . 207
7.7 Modeling of External Attributes . 210

7.7.1 Modeling Drive Strengths . 211
7.7.2 Modeling Capacitive Load. 214

7.8 Design Rule Checks . 215

CONTENTS

x

7.9 Virtual Clocks . 217
7.10 Refining the Timing Analysis. 219

7.10.1 Specifying Inactive Signals . 220
7.10.2 Breaking Timing Arcs in Cells . 221

7.11 Point-to-Point Specification . 222
7.12 Path Segmentation . 224

CHAPTER 8: Timing Verification . 227
8.1 Setup Timing Check . 228

8.1.1 Flip-flop to Flip-flop Path . 231
8.1.2 Input to Flip-flop Path . 237

Input Path with Actual Clock, 240
8.1.3 Flip-flop to Output Path. 242
8.1.4 Input to Output Path. 244
8.1.5 Frequency Histogram. 246

8.2 Hold Timing Check . 248
8.2.1 Flip-flop to Flip-flop Path . 252

Hold Slack Calculation, 253
8.2.2 Input to Flip-flop Path . 254
8.2.3 Flip-flop to Output Path. 256

Flip-flop to Output Path with Actual Clock, 257
8.2.4 Input to Output Path. 259

8.3 Multicycle Paths . 260
Crossing Clock Domains, 266

8.4 False Paths . 272
8.5 Half-Cycle Paths . 274
8.6 Removal Timing Check . 277
8.7 Recovery Timing Check . 279
8.8 Timing across Clock Domains . 281

8.8.1 Slow to Fast Clock Domains . 281
8.8.2 Fast to Slow Clock Domains . 289

8.9 Examples. 295
Half-cycle Path - Case 1, 296
Half-cycle Path - Case 2, 298
Fast to Slow Clock Domain, 301
Slow to Fast Clock Domain, 303

CONTENTS

xi

8.10 Multiple Clocks. 305
8.10.1 Integer Multiples . 305
8.10.2 Non-Integer Multiples . 308
8.10.3 Phase Shifted . 314

CHAPTER 9: Interface Analysis . 317
9.1 IO Interfaces . 317

9.1.1 Input Interface . 318
Waveform Specification at Inputs, 318
Path Delay Specification to Inputs, 321

9.1.2 Output Interface . 323
Output Waveform Specification, 323
External Path Delays for Output, 327

9.1.3 Output Change within Window . 328
9.2 SRAM Interface . 336
9.3 DDR SDRAM Interface . 341

9.3.1 Read Cycle . 343
9.3.2 Write Cycle . 348

Case 1: Internal 2x Clock, 349
Case 2: Internal 1x Clock, 354

9.4 Interface to a Video DAC . 360

CHAPTER 10: Robust Verification . 365
10.1 On-Chip Variations . 365

Analysis with OCV at Worst PVT Condition, 371
OCV for Hold Checks, 373

10.2 Time Borrowing . 377
Example with No Time Borrowed, 379
Example with Time Borrowed, 382
Example with Timing Violation, 384

10.3 Data to Data Checks . 385
10.4 Non-Sequential Checks. 392
10.5 Clock Gating Checks. 394

Active-High Clock Gating, 396
Active-Low Clock Gating, 403
Clock Gating with a Multiplexer, 406

CONTENTS

xii

Clock Gating with Clock Inversion, 409
10.6 Power Management . 412

10.6.1 Clock Gating . 413
10.6.2 Power Gating . 414
10.6.3 Multi Vt Cells . 416

High Performance Block with High Activity, 416
High Performance Block with Low Activity, 417

10.6.4 Well Bias . 417
10.7 Backannotation . 418

10.7.1 SPEF . 418
10.7.2 SDF . 418

10.8 Sign-off Methodology. 418
Parasitic Interconnect Corners, 419
Operating Modes, 420
PVT Corners, 420
Multi-Mode Multi-Corner Analysis, 421

10.9 Statistical Static Timing Analysis. 422
10.9.1 Process and Interconnect Variations 423

Global Process Variations, 423
Local Process Variations, 424
Interconnect Variations, 426

10.9.2 Statistical Analysis. 427
What is SSTA?, 427
Statistical Timing Libraries, 429
Statistical Interconnect Variations, 430
SSTA Results, 431

10.10 Paths Failing Timing?. 433
No Path Found, 434
Clock Crossing Domain, 434
Inverted Generated Clocks, 435
Missing Virtual Clock Latency, 439
Large I/O Delays, 440
Incorrect I/O Buffer Delay, 441
Incorrect Latency Numbers, 442
Half-cycle Path, 442
Large Delays and Transition Times, 443
Missing Multicycle Hold, 443
Path Not Optimized, 443

CONTENTS

xiii

Path Still Not Meeting Timing, 443
What if Timing Still Cannot be Met, 444

10.11 Validating Timing Constraints . 444
Checking Path Exceptions, 444
Checking Clock Domain Crossing, 445
Validating IO and Clock Constraints, 446

APPENDIX A: SDC . 447
A.1 Basic Commands. 448
A.2 Object Access Commands. 449
A.3 Timing Constraints . 453
A.4 Environment Commands. 461
A.5 Multi-Voltage Commands. 466

APPENDIX B: Standard Delay Format (SDF) 467
B.1 What is it? . 468
B.2 The Format . 471

Delays, 480
Timing Checks, 482
Labels, 485
Timing Environment, 485

B.2.1 Examples . 485
Full-adder, 485
Decade Counter, 490

B.3 The Annotation Process . 495
B.3.1 Verilog HDL . 496
B.3.2 VHDL. 499

B.4 Mapping Examples . 501
Propagation Delay, 502
Input Setup Time, 507
Input Hold Time, 509
Input Setup and Hold Time, 510
Input Recovery Time, 511
Input Removal Time, 512
Period, 513
Pulse Width, 514
Input Skew Time, 515

CONTENTS

xiv

No-change Setup Time, 516
No-change Hold Time, 516
Port Delay, 517
Net Delay, 518
Interconnect Path Delay, 518
Device Delay, 519

B.5 Complete Syntax. 519

APPENDIX C: Standard Parasitic Extraction Format (SPEF) . 531
C.1 Basics . 531
C.2 Format . 534
C.3 Complete Syntax. 550

Bibliography . 561

Index . 563

q

xv

Preface

iming, timing, timing! That is the main concern of a digital designer
charged with designing a semiconductor chip. What is it, how is it
described, and how does one verify it? The design team of a large

digital design may spend months architecting and iterating the design to
achieve the required timing target. Besides functional verification, the tim-
ing closure is the major milestone which dictates when a chip can be re-
leased to the semiconductor foundry for fabrication. This book addresses
the timing verification using static timing analysis for nanometer designs.

The book has originated from many years of our working in the area of
timing verification for complex nanometer designs. We have come across
many design engineers trying to learn the background and various aspects
of static timing analysis. Unfortunately, there is no book currently avail-
able that can be used by a working engineer to get acquainted with the de-
tails of static timing analysis. The chip designers lack a central reference for
information on timing, that covers the basics to the advanced timing verifi-
cation procedures and techniques.

The purpose of this book is to provide a reference for both beginners as
well as professionals working in the area of static timing analysis. The book

T

PREFACE

xvi

is intended to provide a blend of the underlying theoretical background as
well as in-depth coverage of timing verification using static timing analy-
sis. The book covers topics such as cell timing, interconnect, timing calcula-
tion, and crosstalk, which can impact the timing of a nanometer design. It
describes how the timing information is stored in cell libraries which are
used by synthesis tools and static timing analysis tools to compute and ver-
ify timing.

This book covers CMOS logic gates, cell library, timing arcs, waveform
slew, cell capacitance, timing modeling, interconnect parasitics and cou-
pling, pre-layout and post-layout interconnect modeling, delay calculation,
specification of timing constraints for analysis of internal paths as well as
IO interfaces. Advanced modeling concepts such as composite current
source (CCS) timing and noise models, power modeling including active
and leakage power, and crosstalk effects on timing and noise are described.

The static timing analysis topics covered start with verification of simple
blocks particularly useful for a beginner to this area. The topics then extend
to complex nanometer designs with concepts such as modeling of on-chip
variations, clock gating, half-cycle and multicycle paths, false paths, as well
as timing of source synchronous IO interfaces such as for DDR memory in-
terfaces. Timing analyses at various process, environment and interconnect
corners are explained in detail. Usage of hierarchical design methodology
involving timing verification of full chip and hierarchical building blocks is
covered in detail. The book provides detailed descriptions for setting up
the timing analysis environment and for performing the timing analysis for
various cases. It describes in detail how the timing checks are performed
and provides several commonly used example scenarios that help illustrate
the concepts. Multi-mode multi-corner analysis, power management, as
well as statistical timing analyses are also described.

Several chapters on background reference materials are included in the ap-
pendices. These appendices provide complete coverage of SDC, SDF and
SPEF formats. The book describes how these formats are used to provide
information for static timing analysis. The SDF provides cell and intercon-
nect delays for a design under analysis. The SPEF provides parasitic infor-
mation, which are the resistance and capacitance networks of nets in a

PREFACE

xvii

design. Both SDF and SPEF are industry standards and are described in de-
tail. The SDC format is used to provide the timing specifications or con-
straints for the design under analysis. This includes specification of the
environment under which the analysis must take place. The SDC format is
a defacto industry standard used for describing timing specifications.

The book is targeted for professionals working in the area of chip design,
timing verification of ASICs and also for graduate students specializing in
logic and chip design. Professionals who are beginning to use static timing
analysis or are already well-versed in static timing analysis can use this
book since the topics covered in the book span a wide range. This book
aims to provide access to topics that relate to timing analysis, with easy-to-
read explanations and figures along with detailed timing reports.

The book can be used as a reference for a graduate course in chip design
and as a text for a course in timing verification targeted to working engi-
neers. The book assumes that the reader has a background knowledge of
digital logic design. It can be used as a secondary text for a digital logic de-
sign course where students learn the fundamentals of static timing analysis
and apply it for any logic design covered in the course.

Our book emphasizes practicality and thorough explanation of all basic
concepts which we believe is the foundation of learning more complex top-
ics. It provides a blend of theoretical background and hands-on guide to
static timing analysis illustrated with actual design examples relevant for
nanometer applications. Thus, this book is intended to fill a void in this
area for working engineers and graduate students.

The book describes timing for CMOS digital designs, primarily synchro-
nous; however, the principles are applicable to other related design styles
as well, such as for FPGAs and for asynchronous designs.

Book Organization

The book is organized such that the basic underlying concepts are de-
scribed first before delving into more advanced topics. The book starts

PREFACE

xviii

with the basic timing concepts, followed by commonly used library model-
ing, delay calculation approaches, and the handling of noise and crosstalk
for a nanometer design. After the detailed background, the key topics of
timing verification using static timing analysis are described. The last two
chapters focus on advanced topics including verification of special IO in-
terfaces, clock gating, time borrowing, power management and multi-
corner and statistical timing analysis.

Chapter 1 provides an explanation of what static timing analysis is and
how it is used for timing verification. Power and reliability considerations
are also described. Chapter 2 describes the basics of CMOS logic and the
timing terminology related to static timing analysis.

Chapter 3 describes timing related information present in the commonly
used library cell descriptions. Even though a library cell contains several
attributes, this chapter focuses only on those that relate to timing, crosstalk,
and power analysis. Interconnect is the dominant effect on timing in nano-
meter technologies and Chapter 4 provides an overview of various tech-
niques for modeling and representing interconnect parasitics.

Chapter 5 explains how cell delays and paths delays are computed for both
pre-layout and post-layout timing verification. It extends the concepts de-
scribed in the preceding chapters to obtain timing of an entire design.

In nanometer technologies, the effect of crosstalk plays an important role
in the signal integrity of the design. Relevant noise and crosstalk analyses,
namely glitch analysis and crosstalk analysis, are described in Chapter 6.
These techniques are used to make the ASIC behave robustly from a timing
perspective.

Chapter 7 is a prerequisite for succeeding chapters. It describes how the
environment for timing analysis is configured. Methods for specifying
clocks, IO characteristics, false paths and multicycle paths are described in
Chapter 7. Chapter 8 describes the timing checks that are performed as part
of various timing analyses. These include amongst others - setup, hold and
asynchronous recovery and removal checks. These timing checks are in-
tended to exhaustively verify the timing of the design under analysis.

PREFACE

xix

Chapter 9 focuses on the timing verification of special interfaces such as
source synchronous and memory interfaces including DDR (Double Data
Rate) interfaces. Other advanced and critical topics such as on-chip varia-
tion, time borrowing, hierarchical methodology, power management and
statistical timing analysis are described in Chapter 10.

The SDC format is described in Appendix A. This format is used to specify
the timing constraints of a design. Appendix B describes the SDF format in
detail with many examples of how delays are back-annotated. This format
is used to capture the delays of a design in an ASCII format that can be
used by various tools. Appendix C describes the SPEF format which is
used to provide the parasitic resistance and capacitance values of a design.

All timing reports are generated using PrimeTime, a static timing analysis
tool from Synopsys, Inc. Highlighted text in reports indicates specific items
of interest pertaining to the explanation in the accompanying text.

New definitions are highlighted in bold. Certain words are highlighted in
italics just to keep the understanding that the word is special as it relates to
this book and is different from the normal English usage.

Acknowledgments

We would like to express our deep gratitude to eSilicon Corporation for
providing us the opportunity to write this book.

We also would like to acknowledge the numerous and valuable insights
provided by Kit-Lam Cheong, Ravi Kurlagunda, Johnson Limqueco, Pete
Jarvis, Sanjana Nair, Gilbert Nguyen, Chris Papademetrious, Pierrick Pe-
dron, Hai Phuong, Sachin Sapatnekar, Ravi Shankar, Chris Smirga, Bill
Tuohy, Yeffi Vanatta, and Hormoz Yaghutiel, in reviewing earlier drafts of
the book. Their feedback has been invaluable in improving the quality and
usefulness of this book.

PREFACE

xx

Last, but not least, we would like to thank our families for their patience
during the development of this book.

Dr. Rakesh Chadha
Dr. J. Bhasker

January 2009

C H A P T E R

1

Introduction

his chapter provides an overview of the static timing analysis proce-
dures for nanometer designs. This chapter addresses questions such
as, what is static timing analysis, what is the impact of noise and

crosstalk, how these analyses are used and during which phase of the over-
all design process are these analyses applicable.

1.1 Nanometer Designs

In semiconductor devices, metal interconnect traces are typically used to
make the connections between various portions of the circuitry to realize
the design. As the process technology shrinks, these interconnect traces
have been known to affect the performance of a design. For deep submi-

T

 J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs: A Practical Approach,
DOI: 10.1007/978-0-387-93820-2_1, © Springer Science + Business Media, LLC 2009

1

CHAPTER 1 Introduction

2

cron or nanometer process technologies1, the coupling in the interconnect
induces noise and crosstalk - either of which can limit the operating speed
of a design. While the noise and coupling effects are negligible at older
generation technologies, these play an important role in nanometer tech-
nologies. Thus, the physical design should consider the effect of crosstalk
and noise and the design verification should then include the effects of
crosstalk and noise.

1.2 What is Static Timing Analysis?

Static Timing Analysis (also referred as STA) is one of the many tech-
niques available to verify the timing of a digital design. An alternate ap-
proach used to verify the timing is the timing simulation which can verify
the functionality as well as the timing of the design. The term timing analy-
sis is used to refer to either of these two methods - static timing analysis, or
the timing simulation. Thus, timing analysis simply refers to the analysis of
the design for timing issues.

The STA is static since the analysis of the design is carried out statically and
does not depend upon the data values being applied at the input pins. This
is in contrast to simulation based timing analysis where a stimulus is ap-
plied on input signals, resulting behavior is observed and verified, then
time is advanced with new input stimulus applied, and the new behavior
is observed and verified and so on.

Given a design along with a set of input clock definitions and the definition
of the external environment of the design, the purpose of static timing
analysis is to validate if the design can operate at the rated speed. That is,
the design can operate safely at the specified frequency of the clocks with-
out any timing violations. Figure 1-1 shows the basic functionality of static

1. Deep submicron refers to process technologies with a feature size of 0.25mm or lower.
The process technologies with feature size below 0.1mm are referred to as nanometer tech-
nologies. Examples of such process technologies are 90nm, 65nm, 45nm, and 32nm. The
finer process technologies normally allow a greater number of metal layers for intercon-
nect.

What is Static Timing Analysis? SECTION 1.2

3

timing analysis. The DUA is the design under analysis. Some examples of
timing checks are setup and hold checks. A setup check ensures that the
data can arrive at a flip-flop within the given clock period. A hold check
ensures that the data is held for at least a minimum time so that there is no
unexpected pass-through of data through a flip-flop: that is, it ensures that
a flip-flop captures the intended data correctly. These checks ensure that
the proper data is ready and available for capture and latched in for the
new state.

The more important aspect of static timing analysis is that the entire design
is analyzed once and the required timing checks are performed for all pos-
sible paths and scenarios of the design. Thus, STA is a complete and ex-
haustive method for verifying the timing of a design.

Figure 1-1 Static timing analysis.

Design
under

analysis
(DUA)

Static Timing Analysis
(STA)

External environment
of design

(including clock definitions)

Timing reports
(include violating

paths, if any)

CHAPTER 1 Introduction

4

The design under analysis is typically specified using a hardware descrip-
tion language such as VHDL1 or Verilog HDL2. The external environment,
including the clock definitions, are specified typically using SDC3 or an
equivalent format. SDC is a timing constraint specification language. The
timing reports are in ASCII form, typically with multiple columns, with
each column showing one attribute of the path delay. Many examples of
timing reports are provided as illustrations in this book.

1.3 Why Static Timing Analysis?

Static timing analysis is a complete and exhaustive verification of all timing
checks of a design. Other timing analysis methods such as simulation can
only verify the portions of the design that get exercised by stimulus. Verifi-
cation through timing simulation is only as exhaustive as the test vectors
used. To simulate and verify all timing conditions of a design with 10-100
million gates is very slow and the timing cannot be verified completely.
Thus, it is very difficult to do exhaustive verification through simulation.

Static timing analysis on the other hand provides a faster and simpler way
of checking and analyzing all the timing paths in a design for any timing
violations. Given the complexity of present day ASICs4, which may con-
tain 10 to 100 million gates, the static timing analysis has become a necessi-
ty to exhaustively verify the timing of a design.

Crosstalk and Noise

The design functionality and its performance can be limited by noise. The
noise occurs due to crosstalk with other signals or due to noise on primary
inputs or the power supply. The noise impact can limit the frequency of

1. See [BHA99] in Bibliography.
2. See [BHA05] in Bibliography.
3. Synopsys Design Constraints: It is a defacto standard but a proprietary format of Syn-
opsys, Inc.
4. Application-Specific Integrated Circuit.

Design Flow SECTION 1.4

5

operation of the design and it can also cause functional failures. Thus, a de-
sign implementation must be verified to be robust which means that it can
withstand the noise without affecting the rated performance of the design.

Verification based upon logic simulation cannot handle the effects of cross-
talk, noise and on-chip variations.

The analysis methods described in this book cover not only the traditional
timing analysis techniques but also noise analysis to verify the design in-
cluding the effects of noise.

1.4 Design Flow

This section primarily describes the CMOS1 digital design flow in the con-
text used in the rest of this book. A brief description of its applicability to
FPGAs2 and to asynchronous designs is also provided.

1.4.1 CMOS Digital Designs

In a CMOS digital design flow, the static timing analysis can be performed
at many different stages of the implementation. Figure 1-2 shows a typical
flow.

STA is rarely done at the RTL level as, at this point, it is more important to
verify the functionality of the design as opposed to timing. Also not all tim-
ing information is available since the descriptions of the blocks are at the

gate level, the STA is used to verify the timing of the design. STA can also
be run prior to performing logic optimization - the goal is to identify the
worst or critical timing paths. STA can be rerun after logic optimization to

1. Complimentary Metal Oxide Semiconductor.
2. Field Programmable Gate Array: Allows for design functionality to be programmed by
the user after manufacture.

behavioral level. Once a design at the RTL level has been synthesized to the

CHAPTER 1 Introduction

6

see whether there are failing paths still remaining that need to be opti-
mized, or to identify the critical paths.

At the start of the physical design, clock trees are considered as ideal, that
is, they have zero delay. Once the physical design starts and after clock
trees are built, STA can be performed to check the timing again. In fact,

Figure 1-2 CMOS digital design flow.

RTL

Synthesis

Physical design

Clock tree synthesis

Static timing

Gate-level netlist

Gate-level netlist

Gate-level netlist

Logic optimization

Gate-level netlist

Gate-level netlist

Constraints (SDC)

Placement

Routing

Logical design

- unoptimized
- ideal clock trees
- no routes

- optimized

- global routes

- real clock trees

- real routes
- real clock trees
- optimized

analysis

Static timing
analysis incl.

noise, crosstalk

Design Flow SECTION 1.4

7

during physical design, STA can be performed at each and every step to
identify the worst paths.

In physical implementation, the logic cells are connected by interconnect
metal traces. The parasitic RC (Resistance and Capacitance) of the metal
traces impact the signal path delay through these traces. In a typical nano-
meter design, the parasitics of the interconnect can account for the majority
of the delay and power dissipation in the design. Thus, any analysis of the
design should evaluate the impact of the interconnect on the performance
characteristics (speed, power, etc.). As mentioned previously, coupling be-
tween signal traces contributes to noise, and the design verification must
include the impact of the noise on the performance.

At the logical design phase, ideal interconnect may be assumed since there
is no physical information related to the placement; there may be more in-
terest in viewing the logic that contributes to the worst paths. Another
technique used at this stage is to estimate the length of the interconnect us-
ing a wireload model. The wireload model provides estimated RC based
on the fanouts of a cell.

Before the routing of traces are finalized, the implementation tools use an
estimate of the routing distance to obtain RC parasitics for the route. Since
the routing is not finalized, this phase is called the global route phase to dis-
tinguish it from the final route phase. In the global route phase of the physi-
cal design, simplified routes are used to estimate routing lengths, and the
routing estimates are used to determine resistance and capacitance that are
needed to compute wire delays. During this phase, one can not include the
effect of coupling. After the detailed routing is complete, actual RC values
obtained from extraction are used and the effect of coupling can be ana-
lyzed. However, a physical design tool may still use approximations to
help improve run times in computing RC values.

An extraction tool is used to extract the detailed parasitics (RC values)
from a routed design. Such an extractor may have an option to obtain para-
sitics with small runtime and less accurate RC values during iterative opti-
mization and another option for final verification during which very
accurate RC values are extracted with a larger runtime.

CHAPTER 1 Introduction

8

To summarize, the static timing analysis can be performed on a gate-level
netlist depending on:

i. How interconnect is modeled - ideal interconnect, wireload
model, global routes with approximate RCs, or real routes with
accurate RCs.

ii. How clocks are modeled - whether clocks are ideal (zero delay)
or propagated (real delays).

iii. Whether the coupling between signals is included - whether
any crosstalk noise is analyzed.

Figure 1-2 may seem to imply that STA is done outside of the implementa-
tion steps, that is, STA is done after each of the synthesis, logic optimiza-
tion, and physical design steps. In reality, each of these steps perform
integrated (and incremental) STA within their functionality. For example,
the timing analysis engine within the logic optimization step is used to
identify critical paths that the optimizer needs to work on. Similarly, the in-
tegrated timing analysis engine in a placement tool is used to maintain the
timing of the design as layout progresses incrementally.

1.4.2 FPGA Designs

The basic flow of STA is still valid in an FPGA. Even though routing in an
FPGA is constrained to channels, the mechanism to extract parasitics and
perform STA is identical to a CMOS digital design flow. For example, STA
can be performed assuming interconnects as ideal, or using a wireload
model, assuming clock trees as ideal or real, assuming global routes, or us-
ing real routes for parasitics.

1.4.3 Asynchronous Designs

The principles of STA are applicable in asynchronous designs also. One
may be more interested in timing from one signal in the design to another
as opposed to doing setup and hold checks which may be non-existent.
Thus, most of the checks may be point to point timing checks, or skew

STA at Different Design Phases SECTION 1.5

9

checks. The noise analysis to analyze the glitches induced due to coupling
are applicable for any design - asynchronous or synchronous. Also, the
noise analysis impact on timing, including the effect of the coupling, is val-
id for asynchronous designs as well.

1.5 STA at Different Design Phases

At the logical level (gate-level, no physical design yet), STA can be carried
out using:

i. Ideal interconnect or interconnect based on wireload model.

ii. Ideal clocks with estimates for latencies and jitter.

During the physical design phase, in addition to the above modes, STA can
be performed using:

i. Interconnect - which can range from global routing estimates,
real routes with approximate extraction, or real routes with si-
gnoff accuracy extraction.

ii. Clock trees - real clock trees.

iii. With and without including the effect of crosstalk.

1.6 Limitations of Static Timing Analysis

While the timing and noise analysis do an excellent job of analyzing a de-
sign for timing issues under all possible situations, the state-of-the-art still

are some aspects of timing verification that cannot yet be completely cap-
tured and verified in STA.

does not allow STA to replace simulation completely. This is because there

CHAPTER 1 Introduction

10

Some of the limitations of STA are:

i. Reset sequence: To check if all flip-flops are reset into their re-
quired logical values after an asynchronous or synchronous re-
set. This is something that cannot be checked using static
timing analysis. The chip may not come out of reset. This is be-
cause certain declarations such as initial values on signals are
not synthesized and are only verified during simulation.

ii. X-handling: The STA techniques only deal with the logical do-
main of logic-0 and logic-1 (or high and low), rise and fall. An
unknown value X in the design causes indeterminate values to
propagate through the design, which cannot be checked with
STA. Even though the noise analysis within STA can analyze
and propagate the glitches through the design, the scope of
glitch analysis and propagation is very different than the X
handling as part of the simulation based timing verification for
nanometer designs.

iii. PLL settings: PLL configurations may not be loaded or set prop-
erly.

iv. Asynchronous clock domain crossings: STA does not check if the
correct clock synchronizers are being used. Other tools are
needed to ensure that the correct clock synchronizers are pres-
ent wherever there are asynchronous clock domain crossings.

v. IO interface timing: It may not be possible to specify the IO in-
terface requirements in terms of STA constraints only. For ex-
ample, the designer may choose detailed circuit level
simulation for the DDR1 interface using SDRAM simulation
models. The simulation is to ensure that the memories can be
read from and written to with adequate margin, and that the
DLL2, if any, can be controlled to align the signals if necessary.

1. Double Data Rate.
2. Delay Locked Loop.

Limitations of Static Timing Analysis SECTION 1.6

11

vi. Interfaces between analog and digital blocks: Since STA does not
deal with analog blocks, the verification methodology needs to
ensure that the connectivity between these two kinds of blocks
is correct.

vii. False paths: The static timing analysis verifies that timing
through the logic path meets all the constraints, and flags vio-
lations if the timing through a logic path does not meet the re-
quired specifications. In many cases, the STA may flag a logic
path as a failing path, even though logic may never be able to
propagate through the path. This can happen when the system
application never utilizes such a path or if mutually contradic-
tory conditions are used during the sensitization of the failing
path. Such timing paths are called false paths in the sense that
these can never be realized. The quality of STA results is better
when proper timing constraints including false path and multi-
cycle path constraints are specified in the design. In most cases,
the designer can utilize the inherent knowledge of the design
and specify constraints so that the false paths are eliminated
during the STA.

viii. FIFO pointers out of synchronization: STA cannot detect the prob-
lem when two finite state machines expected to be synchro-
nous are actually out of synchronization. During functional
simulations, it is possible that the two finite state machines are
always synchronized and change together in lock-step. How-
ever, after delays are considered, it is possible for one of the fi-
nite state machines to be out of synchronization with the other,
most likely because one finite state machine comes out of reset
sooner than the other. Such a situation can not be detected by
STA.

ix. Clock synchronization logic: STA cannot detect the problem of
clock generation logic not matching the clock definition. STA
assumes that the clock generator will provide the waveform as
specified in the clock definition. There could be a bad optimi-
zation performed on the clock generator logic that causes, for
example, a large delay to be inserted on one of the paths that

CHAPTER 1 Introduction

12

may not have been constrained properly. Alternately, the add-
ed logic may change the duty cycle of the clock. The STA can-
not detect either of these potential conditions.

x. Functional behavior across clock cycles: The static timing analysis
cannot model or simulate functional behavior that changes
across clock cycles.

Despite issues such as these, STA is widely used to verify timing of the de-
sign and the simulation (with timing or with unit-delay) is used as a back-
up to check corner cases and more simply to verify the normal functional
modes of the design.

1.7 Power Considerations

Power is an important consideration in the implementation of a design.
Most designs need to operate within a power budget for the board and the
system. The power considerations may also arise due to conforming to a
standard and/or due to a thermal budget on the board or system where
the chip must operate in. There are often separate limits for total power and
for standby power. The standby power limits are often imposed for hand-
held or battery operated devices.

The power and timing often go hand in hand in most practical designs. A
designer would like to use faster (or higher speed) cells for meeting the
speed considerations but would likely run into the limit on available pow-
er dissipation. Power dissipation is an important consideration in the
choice of process technology and cell library for a design.

Reliability Considerations SECTION 1.8

13

1.8 Reliability Considerations

The design implementation must meet the reliability requirements. As de-
scribed in Section 1.4.1, the metal interconnect traces have parasitic RC lim-
iting the performance of the design. Besides parasitics, the metal trace
widths need to be designed keeping the reliability considerations into ac-
count. For example, a high speed clock signal needs to be wide enough to
meet reliability considerations such as electromigration.

1.9 Outline of the Book

While static timing analysis may appear to be a very simple concept on the
surface, there is a lot of background knowledge underlying this analysis.
The underlying concepts range from accurate representation of cell delays
to computing worst path delays with minimum pessimism. The concepts
of computing cell delays, timing a combinational block, clock relationships,
multiple clock domains and gated clocks form an important basis for static
timing analysis. Writing a correct SDC for a design is indeed a challenge.

The book has been written in a bottom-up order - presenting the simple
concepts first followed by more advanced topics in later chapters. The
book begins by representing accurate cell delays (Chapter 3). Estimating or
computing exact interconnect delays and their representation in an effec-
tive manner is the topic of Chapter 4. Computing delay of a path composed
of cells and interconnect is the topic of Chapter 5. Signal integrity, that is
the effect of signal switching on neighboring nets and how it impacts the
delay along a path, is the topic of Chapter 6. Accurately representing the
environment of the DUA with clock definitions and path exceptions is the
topic of Chapter 7. The details of the timing checks performed in STA are
described in Chapter 8. Modeling IO timing across variety of interfaces is
the topic of Chapter 9. And finally, Chapter 10 dwells on advanced timing
checks such as on-chip variations, clock gating checks, power management
and statistical timing analysis. Appendices provide detailed descriptions of
SDC (used to represent timing constraints), SDF (used to represent delays
of cell and nets) and SPEF (used to represent parasitics).

CHAPTER 1 Introduction

14

Chapters 7 through 10 provide the heart of STA verification. The preceding
chapters provide a solid foundation and a detailed description of the nuts
and bolts knowledge needed for a better understanding of STA.

q

C H A P T E R

2

STA Concepts

his chapter describes the basics of CMOS technology and the termi-
nology involved in performing static timing analysis.

2.1 CMOS Logic Design

2.1.1 Basic MOS Structure

The physical implementation of MOS transistors (NMOS1 and PMOS2) is

is the length of the MOS transistor. The smallest length used to build a MOS

1. N-channel Metal Oxide Semiconductor.
2. P-channel Metal Oxide Semiconductor.

T

depicted in Figure 2-1. The separation between the source and drain regions

 J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs: A Practical Approach, 15
DOI: 10.1007/978-0-387-93820-2_2, © Springer Science + Business Media, LLC 2009

CHAPTER 2 STA Concepts

16

transistor is normally the smallest feature size for the CMOS technology
process. For example, a 0.25mm technology allows MOS transistors with a
channel length of 0.25mm or larger to be fabricated. By shrinking the chan-
nel geometry, the transistor size becomes smaller, and subsequently more
transistors can be packed in a given area. As we shall see later in this chap-
ter, this also allows the designs to operate at a greater speed.

2.1.2 CMOS Logic Gate

A CMOS logic gate is built using NMOS and PMOS transistors. Figure 2-2
shows an example of a CMOS inverter. There are two stable states of the
CMOS inverter depending upon the state of the input. When input A is low
(at Vss or logic-0), the NMOS transistor is off and the PMOS transistor is on,
causing the output Z to be pulled to Vdd, which is a logic-1. When input A
is high (at Vdd or logic-1), the NMOS transistor is on and the PMOS transis-
tor is off, causing the output Z to be pulled to Vss, which is a logic-0. In ei-
ther of the two states described above, the CMOS inverter is stable and

Figure 2-1 Structure of NMOS and PMOS transistors.

Poly Oxide

n+n+

Source
Drain

Gate

p-substrate

p+p+ n+

n-well

p+

NMOS PMOS

Gate
Source Drain

channel length

Bulk Bulk

CMOS Logic Design SECTION 2.1

17

does not draw any current1 from the input A or from the power supply
Vdd.

The characteristics of the CMOS inverter can be extended to any CMOS
logic gate. In a CMOS logic gate, the output node is connected by a pull-up
structure (made up of PMOS transistors) to Vdd and a pull-down structure
(made up of NMOS transistors) to Vss. As an example, a two-input CMOS
nand gate is shown in Figure 2-3. In this example, the pull-up structure is
comprised of the two parallel PMOS transistors and the pull-down struc-
ture is made up of two series NMOS transistors.

For any CMOS logic gate, the pull-up and pull-down structures are com-
plementary. For inputs at logic-0 or logic-1, this means that if the pull-up
stage is turned on, the pull-down stage will be off and similarly if the pull-
up stage is turned off, the pull-down stage will be turned on. The pull-
down and pull-up structures are governed by the logic function imple-
mented by the CMOS gate. For example, in a CMOS nand gate, the function
controlling the pull-down structure is “A and B”, that is, the pull-down is
turned on when A and B are both at logic-1. Similarly, the function control-
ling the pull-up structure is “not A or not B”, that is, the pull-up is turned on
when either A or B is at logic-0. These characteristics ensure that the output
node logic will be pulled to Vdd based upon the function controlling the
pull-up structure. Since the pull-down structure is controlled by a comple-

1. Depending upon the specifics of the CMOS technology, there is a small amount of leak-
age current that is drawn even in steady state.

Figure 2-2 A CMOS inverter.

A

Vdd

Vss

Z

NMOS transistor

PMOS transistor

CHAPTER 2 STA Concepts

18

mentary function, the output node is at logic-0 when the pull-up structure
function evaluates to 0.

For inputs at logic-0 or at logic-1, the CMOS logic gate does not draw any
current from the inputs or from the power supply in steady state since the
pull-up and pull-down structures can not both be on1. Another important
aspect of CMOS logic is that the inputs pose only a capacitive load to the
previous stage.

The CMOS logic gate is an inverting gate which means that a single switch-
ing input (rising or falling) can only cause the output to switch in the oppo-
site direction, that is, the output can not switch in the same direction as the
switching input. The CMOS logic gates can however be cascaded to put to-
gether a more complex logic function - inverting as well as non-inverting.

2.1.3 Standard Cells

Most of the complex functionality in a chip is normally designed using ba-
sic building blocks which implement simple logic functions such as and, or,
nand, nor, and-or-invert, or-and-invert and flip-flop. These basic building

Figure 2-3 CMOS two-input NAND gate.

1. The pull-up and pull-down structures are both on only during switching.

A

Vdd

Z

NMOS transistors

PMOS transistors

Vss

B

CMOS Logic Design SECTION 2.1

19

blocks are pre-designed and referred to as standard cells. The functionality
and timing of the standard cells is pre-characterized and available to the
designer. The designer can then implement the required functionality us-
ing the standard cells as the building blocks.

The key characteristics of the CMOS logic gates described in previous sub-
section are applicable to all CMOS digital designs. All digital CMOS cells
are designed such that there is no current drawn from power supply (ex-
cept for leakage) when the inputs are in a stable logic state. Thus, most of
the power dissipation is related to the activity in the design and is caused
by the charging and discharging of the inputs of CMOS cells in the design.

What is a logic-1 or a logic-0? In a CMOS cell, two values VIHmin and VIL-
max define the limits. That is, any voltage value above VIHmin is consid-
ered as a logic-1 and any voltage value below VILmax is considered as a
logic-0. See Figure 2-4. Typical values for a CMOS 0.13mm inverter cell
with 1.2V Vdd supply are 0.465V for VILmax and 0.625V for VIHmin. The
VIHmin and VILmax values are derived from the DC transfer characteris-
tics of the cell. The DC transfer characteristics are described in greater de-
tail in Section 6.2.3.

For more details on CMOS technology, refer to one of the relevant texts
listed in the Bibliography.

Figure 2-4 CMOS logic levels.

Vdd

Vss

VIHmin

VILmax

Logic-1

Logic-0

CHAPTER 2 STA Concepts

20

2.2 Modeling of CMOS Cells

If a cell output pin drives multiple fanout cells, the total capacitance on the
output pin of the cell is the sum of all the input capacitances of the cells
that it is driving plus the sum of the capacitance of all the wire segments
that comprise the net plus the output capacitance of the driving cell. Note
that in a CMOS cell, the inputs to the cell present a capacitive load only.

Figure 2-5 shows an example of a cell G1 driving three other cells G2, G3,
and G4. Cs1, Cs2, Cs3 and Cs4 are the capacitance values of wire segments
that comprise the net. Thus:

Total cap (Output G1) = Cout(G1) + Cin(G2) + Cin(G3) +
Cin(G4) + Cs1 + Cs2 + Cs3 + Cs4

Cout is the output pin capacitance of the cell.
Cin is the input pin capacitance of the cell.

This is the capacitance that needs to be charged or discharged when cell G1
switches and thus this total capacitance value impacts the timing of cell G1.

From a timing perspective, we need to model the CMOS cell to aid us in
analyzing the timing through the cell. An input pin capacitance is specified

Figure 2-5 Capacitance on a net.

G1

G2

G3

G4
Cs1

Cs2

Cs3

Cs4

Modeling of CMOS Cells SECTION 2.2

21

for each of the input pins. There can also be an output pin capacitance
though most CMOS logic cells do not include the pin capacitance for the
output pins.

When output is a logic-1, the pull-up structure for the output stage is on,
and it provides a path from the output to Vdd. Similarly, when the output
is a logic-0, the pull-down structure for the output stage provides a path
from the output to Vss. When the CMOS cell switches state, the speed of
the switching is governed by how fast the capacitance on the output net
can be charged or discharged. The capacitance on the output net (Figure 2-
5) is charged and discharged through the pull-up and pull-down struc-
tures respectively. Note that the channel in the pull-up and pull-down
structures poses resistances for the output charging and discharging paths.
The charging and discharging path resistances are a major factor in deter-
mining the speed of the CMOS cell. The inverse of the pull-up resistance is
called the output high drive of the cell. The larger the output pull-up struc-
ture, the smaller the pull-up resistance and the larger the output high drive
of the cell. The larger output structures also mean that the cell is larger in
area. The smaller the output pull-up structures, the cell is smaller in area,
and its output high drive is also smaller. The same concept for the pull-up
structure can be applied for the pull-down structure which determines the
resistance of the pull-down path and output low drive. In general, the cells
are designed to have similar drive strengths (both large or both small) for
pull-up and pull-down structures.

The output drive determines the maximum capacitive load that can be
driven. The maximum capacitive load determines the maximum number
of fanouts, that is, how many other cells it can drive. A higher output drive
corresponds to a lower output pull-up and pull-down resistance which al-
lows the cell to charge and discharge a higher load at the output pin.

Figure 2-6 shows an equivalent abstract model for a CMOS cell. The objec-
tive of this model is to abstract the timing behavior of the cell, and thus
only the input and output stages are modeled. This model does not capture
the intrinsic delay or the electrical behavior of the cell.

CHAPTER 2 STA Concepts

22

CpinA is the input pin capacitance of the cell on input A. Rdh and Rdl are
the output drive resistances of the cell and determine the rise and fall times
of the output pin Z based upon the load being driven by the cell. This drive
also determines the maximum fanout limit of the cell.

Figure 2-7 shows the same net as in Figure 2-5 but with the equivalent
models for the cells.

Figure 2-6 CMOS cell and its electrically equivalent model.

Figure 2-7 Net with CMOS equivalent models.

Vdd

Vss

Z

A

Rdh

RdlCpinA

Vdd

Vss

Z

Pull-up
structure

Pull-down
structure

A

Pull-up

resistance

Pull-down

resistance
equivalent

equivalent

B B

A
Z

Vdd

Vss

Cin

Rdh

Rdl Cwire

Cin2

Cin4

G1

G2

G3

G4 Cin3

Switching Waveform SECTION 2.3

23

Cwire = Cs1 + Cs2 + Cs3 + Cs4
Output charging delay (for high or low) =
Rout * (Cwire + Cin2 +Cin3 + Cin4)

In the above expression, Rout is one of Rdh or Rdl where Rdh is the output
drive resistance for pull-up and Rdl is the output drive resistance for pull-
down.

2.3 Switching Waveform

When a voltage is applied to the RC network as shown in Figure 2-8(a) by
activating the SW0 switch, the output goes to a logic-1. Assuming the out-
put is at 0V when SW0 is activated, the voltage transition at the output is
described by the equation:

V = Vdd * [1 - e -t/(Rdh * Cload)]

The voltage waveform for this rise is shown in Figure 2-8(b). The product
(Rdh * Cload) is called the RC time constant - typically this is also related to
the transition time of the output.

When the output goes from logic-1 to logic-0, caused by input changes dis-
connecting SW0 and activating SW1, the output transition looks like the
one shown in Figure 2-8(c). The output capacitance discharges through the
SW1 switch which is on. The voltage transition in this case is described by
the equation:

V = Vdd * e-t/(Rdl * Cload)

In a CMOS cell, the output charging and discharging waveforms do not
appear like the RC charging and discharging waveforms of Figure 2-8 since
the PMOS pull-up and the NMOS pull-down transistors are both on simul-
taneously for a brief amount of time. Figure 2-9 shows the current paths
within a CMOS inverter cell for various stages of output switching from
logic-1 to logic-0. Figure 2-9(a) shows the current flow when both the pull-

CHAPTER 2 STA Concepts

24

up and pull-down structures are on. Later, the pull-up structure turns off
and the current flow is depicted in Figure 2-9(b). After the output reaches
the final state, there is no current flow as the capacitance Cload is complete-
ly discharged.

Figure 2-10(a) shows a representative waveform at the output of a CMOS
cell. Notice how the transition waveforms curve asymptotically towards
the Vss rail and the Vdd rail, and the linear portion of the waveform is in
the middle.

In this text, we shall depict some waveforms using a simplistic drawing as
shown in Figure 2-10(b). It shows the waveform with some transition time,
which is the time needed to transition from one logic state to the other. Fig-

Figure 2-8 RC charging and discharging waveforms.

Vss

Vdd

Vdd

Rdh

Cload

Output

SW0

SW1

Vss

Vdd

(c)

(b)(a)

Rdl

Vss

Propagation Delay SECTION 2.4

25

ure 2-10(c) shows the same waveforms using a transition time of 0, that is,
as ideal waveforms. We shall be using both of these forms in this text inter-
changeably to explain the concepts, though in reality, each waveform has
its real edge characteristics as shown in Figure 2-10(a).

2.4 Propagation Delay

Consider a CMOS inverter cell and its input and output waveforms. The
propagation delay of the cell is defined with respect to some measurement
points on the switching waveforms. Such points are defined using the fol-
lowing four variables:

Threshold point of an input falling edge:
input_threshold_pct_fall : 50.0;
Threshold point of an input rising edge:
input_threshold_pct_rise : 50.0;
Threshold point of an output falling edge:
output_threshold_pct_fall : 50.0;

Figure 2-9 Current flow for a CMOS cell output stage.

(a) Cell is switching. (b) Cell is discharging to logic-0.
(Pull-up, pull-down both on) (Pull-up off, pull-down on)

Vdd

Rdh

Cload

Output

SW0

SW1

Rdl

Vss

Vdd

Rdh

Cload

Output

SW0

SW1

Rdl

Vss

CHAPTER 2 STA Concepts

26

Threshold point of an output rising edge:
output_threshold_pct_rise : 50.0;

These variables are part of a command set used to describe a cell library
(this command set is described in Liberty1). These threshold specifications
are in terms of the percent of Vdd, or the power supply. Typically 50%
threshold is used for delay measurement for most standard cell libraries.

Figure 2-10 CMOS output waveforms.

1. See [LIB] in Bibliography.

Linear portion

(a) Actual waveform.

(b) Approximate waveform.

(c) Ideal waveform.

Vdd

Vss

Vdd

Vss

Vdd

Vss

Propagation Delay SECTION 2.4

27

Rising edge is the transition from logic-0 to logic-1. Falling edge is the tran-
sition from logic-1 to logic-0.

Consider the example inverter cell and the waveforms at its pins shown in
Figure 2-11. The propagation delays are represented as:

i. Output fall delay (Tf)

ii. Output rise delay (Tr)

In general, these two values are different. Figure 2-11 shows how these two
propagation delays are measured.

If we were looking at ideal waveforms, propagation delay would simply
be the delay between the two edges. This is shown in Figure 2-12.

Figure 2-11 Propagation delays.

50%
threshold point

Tf Tr

50%

A Z

A

Z

CHAPTER 2 STA Concepts

28

2.5 Slew of a Waveform

A slew rate is defined as a rate of change. In static timing analysis, the ris-
ing or falling waveforms are measured in terms of whether the transition is
slow or fast. The slew is typically measured in terms of the transition time,
that is, the time it takes for a signal to transition between two specific lev-
els. Note that the transition time is actually inverse of the slew rate - the
larger the transition time, the slower the slew, and vice versa. Figure 2-10
illustrates a typical waveform at the output of a CMOS cell. The waveforms
at the ends are asymptotic and it is hard to determine the exact start and
end points of the transition. Consequently, the transition time is defined
with respect to specific threshold levels. For example, the slew threshold
settings can be:

Falling edge thresholds:
slew_lower_threshold_pct_fall : 30.0;
slew_upper_threshold_pct_fall : 70.0;
Rising edge thresholds:
slew_lower_threshold_pct_rise : 30.0;
slew_upper_threshold_pct_rise : 70.0;

These values are specified as a percent of Vdd. The threshold settings spec-
ify that falling slew is the difference between the times that falling edge

Figure 2-12 Propagation delay using ideal waveforms.

Tf Tr

A

Z

Slew of a Waveform SECTION 2.5

29

reaches 70% and 30% of Vdd. Similarly, the settings for rise specify that the
rise slew is the difference in times that the rising edge reaches 30% and 70%
of Vdd. Figure 2-13 shows this pictorially.

Figure 2-14 shows another example where the slew on a falling edge is
measured 20-80 (80% to 20%) and that on the rising edge is measured 10-90
(10% to 90%). Here are the threshold settings for this case.

Falling edge thresholds:
slew_lower_threshold_pct_fall : 20.0;
slew_upper_threshold_pct_fall : 80.0;

Figure 2-13 Rise and fall transition times.

Figure 2-14 Another example of slew measurement.

70% Vdd

30% Vdd

Rise
slew

Fall
slew

Vdd / logic-1

Vss / logic-0

Fall slew Rise slew

20%

80%

10%

90%

CHAPTER 2 STA Concepts

30

Rising edge thresholds:
slew_lower_threshold_pct_rise : 10.0;
slew_upper_threshold_pct_rise : 90.0;

2.6 Skew between Signals

Skew is the difference in timing between two or more signals, maybe data,
clock or both. For example, if a clock tree has 500 end points and has a
skew of 50ps, it means that the difference in latency between the longest
path and the shortest clock path is 50ps. Figure 2-15 shows an example of a
clock tree. The beginning point of a clock tree typically is a node where a
clock is defined. The end points of a clock tree are typically clock pins of
synchronous elements, such as flip-flops. Clock latency is the total time it
takes from the clock source to an end point. Clock skew is the difference in
arrival times at the end points of the clock tree.

An ideal clock tree is one where the clock source is assumed to have an in-
finite drive, that is, the clock can drive infinite sources with no delay. In ad-
dition, any cells present in the clock tree are assumed to have zero delay. In

Figure 2-15 Clock tree, clock latency and clock skew.

Clock skew

Clock latency

Clock
definition

D Q

CK
D Q

CK
D Q

CK

PLL

Clock source

Skew between Signals SECTION 2.6

31

the early stages of logical design, STA is often performed with ideal clock
trees so that the focus of the analysis is on the data paths. In an ideal clock
tree, clock skew is 0ps by default. Latency of a clock tree can be explicitly
specified using the set_clock_latency command. The following example
models the latency of a clock tree:

set_clock_latency 2.2 [get_clocks BZCLK]
Both rise and fall latency is 2.2ns.
Use options -rise and -fall if different.

Clock skew for a clock tree can also be implied by explicitly specifying its
value using the set_clock_uncertainty command:

set_clock_uncertainty 0.250 -setup [get_clocks BZCLK]
set_clock_uncertainty 0.100 -hold [get_clocks BZCLK]

The set_clock_uncertainty specifies a window within which a clock edge can
occur. The uncertainty in the timing of the clock edge is to account for sev-
eral factors such as clock period jitter and additional margins used for tim-
ing verification. Every real clock source has a finite amount of jitter - a
window within which a clock edge can occur. The clock period jitter is de-
termined by the type of clock generator utilized. In reality, there are no ide-
al clocks, that is, all clocks have a finite amount of jitter and the clock
period jitter should be included while specifying the clock uncertainty.

Before the clock tree is implemented, the clock uncertainty must also in-
clude the expected clock skew of the implementation.

One can specify different clock uncertainties for setup checks and for hold
checks. The hold checks do not require the clock jitter to be included in the
uncertainty and thus a smaller value of clock uncertainty is generally spec-
ified for hold.

Figure 2-16 shows an example of a clock with a setup uncertainty of 250ps.
Figure 2-16(b) shows how the uncertainty takes away from the time avail-

CHAPTER 2 STA Concepts

32

able for the logic to propagate to the next flip-flop stage. This is equivalent
to validating the design to run at a higher frequency.

As specified above, the set_clock_uncertainty can also be used to model any
additional margin. For example, a designer may use a 50ps timing margin
as additional pessimism during design. This component can be added and
included in the set_clock_uncertainty command. In general, before the clock
tree is implemented, the set_clock_uncertainty command is used to specify a
value that includes clock jitter plus estimated clock skew plus additional
pessimism.

set_clock_latency 2.0 [get_clocks USBCLK]
set_clock_uncertainty 0.2 [get_clocks USBCLK]
The 200ps may be composed of 50ps clock jitter,
100ps clock skew and 50ps additional pessimism.

We shall see later how set_clock_uncertainty influences setup and hold
checks. It is best to think of clock uncertainty as an offset to the final slack
calculation.

Figure 2-16 Clock setup uncertainty.

250ps

BZCLK

(a) At clock source.

(b) At clock pin of flip-flop.

(Cycle time - 250ps)

BZCLK

Timing Arcs and Unateness SECTION 2.7

33

2.7 Timing Arcs and Unateness

Every cell has multiple timing arcs. For example, a combinational logic cell,
such as and, or, nand, nor, adder cell, has timing arcs from each input to each
output of the cell. Sequential cells such as flip-flops have timing arcs from
the clock to the outputs and timing constraints for the data pins with re-
spect to the clock. Each timing arc has a timing sense, that is, how the out-
put changes for different types of transitions on input. The timing arc is
positive unate if a rising transition on an input causes the output to rise (or
not to change) and a falling transition on an input causes the output to fall
(or not to change). For example, the timing arcs for and and or type cells are
positive unate. See Figure 2-17(a).

A negative unate timing arc is one where a rising transition on an input
causes the output to have a falling transition (or not to change) and a fall-

Figure 2-17 Timing sense of arcs.

1

0

(a) Positive unate arc.

(b) Negative unate arc.

(c) Non-unate arc.

or

CHAPTER 2 STA Concepts

34

ing transition on an input causes the output to have a rising transition (or
not to change). For example, the timing arcs for nand and nor type cells are
negative unate. See Figure 2-17(b).

In a non-unate timing arc, the output transition cannot be determined sole-
ly from the direction of change of an input but also depends upon the state
of the other inputs. For example, the timing arcs in an xor cell (exclusive-or)
are non-unate.1 See Figure 2-17(c).

Unateness is important for timing as it specifies how the edges (transitions)
can propagate through a cell and how they appear at the output of the cell.

One can take advantage of the non-unateness property of a timing arc,
such as when an xor cell is used, to invert the polarity of a clock. See the ex-
ample in Figure 2-18. If input POLCTRL is a logic-0, the clock DDRCLK on
output of the cell UXOR0 has the same polarity as the input clock MEM-
CLK. If POLCTRL is a logic-1, the clock on the output of the cell UXOR0 has
the opposite polarity as the input clock MEMCLK.

2.8 Min and Max Timing Paths

The total delay for the logic to propagate through a logic path is referred to
as the path delay. This corresponds to the sum of the delays through the
various logic cells and nets along the path. In general, there are multiple
paths through which the logic can propagate to the required destination
point. The actual path taken depends upon the state of the other inputs
along the logic path. An example is illustrated in Figure 2-19. Since there
are multiple paths to the destination, the maximum and minimum timing
to the destination points can be obtained. The paths corresponding to the
maximum timing and minimum timing are referred to as the max path and
min path respectively. A max path between two end points is the path with
the largest delay (also referred to as the longest path). Similarly, a min

1. It is possible to specify state-dependent timing arcs for an xor cell which are positive
unate and negative unate. This is described in Chapter 3.

Min and Max Timing Paths SECTION 2.8

35

path is the path with the smallest delay (also referred to as the shortest
path). Note that the longest and shortest refer to the cumulative delay of
the path, not to the number of cells in the path.

Figure 2-19 shows an example of a data path between flip-flops. A max
path between flip-flops UFF1 and UFF3 is assumed to be the one that goes
through UNAND0, UBUF2, UOR2 and UNAND6 cells. A min path be-
tween the flip-flops UFF1 and UFF3 is assumed to be the one that goes
through the UOR4 and UNAND6 cells. Note that in this example, the max
and min are with reference to the destination point which is the D pin of
the flip-flop UFF3.

A max path is often called a late path, while a min path is often called an
early path.

Figure 2-18 Controlling clock polarity using non-unate cell.

POLCTRL

MEMCLK
DDRCLK

POLCTRL

MEMCLK

DDRCLK

UXOR0

CHAPTER 2 STA Concepts

36

When a flip-flop to flip-flop path such as from UFF1 to UFF3 is considered,
one of the flip-flops launches the data and the other flip-flop captures the
data. In this case, since UFF1 launches the data, UFF1 is referred to as the
launch flip-flop. And since UFF3 captures the data, UFF3 is referred to as
the capture flip-flop. Notice that the launch and capture terminology are
always with reference to a flip-flop to flip-flop path. For example, UFF3
would become a launch flip-flop for the path to whatever flip-flop captures
the data produced by UFF3.

2.9 Clock Domains

In synchronous logic design, a periodic clock signal latches the new data
computed into the flip-flops. The new data inputs are based upon the flip-
flop values from a previous clock cycle. The latched data thus gets used for
computing the data for the next clock cycle.

A clock typically feeds a number of flip-flops. The set of flip-flops being fed
by one clock is called its clock domain. In a typical design, there may be

Figure 2-19 Max and min timing paths.

Min path

Max path

UFF1

UFF2

UFF3

UNAND0

UBUF2

UOR4

UOR2

UNAND6

D Q

CK

D Q

CK

D Q

CK

Clock Domains SECTION 2.9

37

more than one clock domain. For example, 200 flip-flops may be clocked by
USBCLK and 1000 flip-flops may be fed by clock MEMCLK. Figure 2-20 de-
picts the flip-flops along with the clocks. In this example, we say that there
are two clock domains.

A question of interest is whether the clock domains are related or indepen-
dent of each other. The answer depends on whether there are any data
paths that start from one clock domain and end in the other clock domain.
If there are no such paths, we can safely say that the two clock domains are
independent of each other. This means that there is no timing path that
starts from one clock domain and ends in the other clock domain.

Figure 2-20 Two clock domains.

Figure 2-21 Clock domain crossing.

USBCLK MEMCLK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

DUA

USBCLK MEMCLK

(Can be clock
synchronizer logic)

D Q

CK

D Q

CK

CHAPTER 2 STA Concepts

38

If indeed there are data paths that cross between clock domains (see Figure
2-21), a decision has to be made as to whether the paths are real or not. An
example of a real path is a flip-flop with a 2x speed clock driving into a flip-
flop with a 1x speed clock. An example of a false path is where the designer
has explicitly placed clock synchronizer logic between the two clock do-
mains. In this case, even though there appears to be a timing path from one
clock domain to the next, it is not a real timing path since the data is not
constrained to propagate through the synchronizer logic in one clock cycle.
Such a path is referred to as a false path - not real - because the clock syn-
chronizer ensures that the data passes correctly from one domain to the
next. False paths between clock domains can be specified using the
set_false_path specification, such as:

set_false_path -from [get_clocks USBCLK] \
-to [get_clocks MEMCLK]

This specification is explained in more detail in Chapter 8.

Even though it is not depicted in Figure 2-21, a clock domain crossing can
occur both ways, from USBCLK clock domain to MEMCLK clock domain,
and from MEMCLK clock domain to USBCLK clock domain. Both scenarios
need to be understood and handled properly in STA.

What is the reason to discuss paths between clock domains? Typically a de-
sign has a large number of clocks and there can be a myriad number of
paths between the clock domains. Identifying which clock domain cross-
ings are real and which clock crossings are not real is an important part of
the timing verification effort. This enables the designer to focus on validat-
ing only the real timing paths.
Figure 2-22 shows another example of clock domains. A multiplexer selects
a clock source - it is either one or the other depending on the mode of oper-
ation of the design. There is only one clock domain, but two clocks, and
these two clocks are said to be mutually-exclusive, as only one clock is ac-
tive at one time. Thus, in this example, it is important to note that there can
never be a path between the two clock domains for USBCLK and
USBCLKx2 (assuming that the multiplexer control is static and that such
paths do not exist elsewhere in the design).

Operating Conditions SECTION 2.10

39

2.10 Operating Conditions

Static timing analysis is typically performed at a specific operating condi-
tion1. An operating condition is defined as a combination of Process, Volt-
age and Temperature (PVT). Cell delays and interconnect delays are
computed based upon the specified operating condition.

There are three kinds of manufacturing process models that are provided
by the semiconductor foundry for digital designs: slow process models, typ-
ical process models, and fast process models. The slow and fast process
models represent the extreme corners of the manufacturing process of a
foundry. For robust design, the design is validated at the extreme corners
of the manufacturing process as well as environment extremes for temper-
ature and power supply. Figure 2-23(a) shows how a cell delay changes
with the process corners. Figure 2-23(b) shows how cell delays vary with
power supply voltage, and Figure 2-23(c) shows how cell delays can vary

Figure 2-22 Mutually-exclusive clocks.

1. STA may be performed on a design with cells that have different voltages. We shall see
later how these are handled. STA can also be performed statistically, which is described in
Chapter 10.

USBCLK

USBCLKx2

FAST_SLOW

D Q

CK
D Q

CK
D Q

CK

CHAPTER 2 STA Concepts

40

with temperature. Thus it is important to decide the operating conditions
that should be used for various static timing analyses.

The choice of what operating condition to use for STA is also governed by
the operating conditions under which cell libraries are available. Three
standard operating conditions are:

i. WCS (Worst-Case Slow): Process is slow, temperature is highest
(say 125C) and voltage is lowest (say nominal 1.2V minus 10%).
For nanometer technologies that use low power supplies, there
can be another worst-case slow corner that corresponds to the
slow process, lowest power supply, and lowest temperature. The
delays at low temperatures are not always smaller than the de-

Figure 2-23 Delay variations with PVT.

Delay

Process

Best

Worst

Delay

Worst

Nom

Best
Voltage

(a) Delay vs process. (b) Delay vs voltage.

(c) Delay vs temperature.

Delay

Temperature
Best
Nom

Worst

Nom

Slow Typ Fast Min Nom Max

Min Nom Max

Temperature
inversion

Operating Conditions SECTION 2.10

41

lays at higher temperatures. This is because the device threshold
voltage (Vt) margin with respect to the power supply is reduced
for nanometer technologies. In such cases, at low power supply,
the delay of a lightly loaded cell is higher at low temperatures
than at high temperatures. This is especially true of high Vt
(higher threshold, larger delay) or even standard Vt (regular
threshold, lower delay) cells. This anomalous behavior of delays
increasing at lower temperatures is called temperature inversion.
See Figure 2-23(c).

ii. TYP (Typical): Process is typical, temperature is nominal (say
25C) and voltage is nominal (say 1.2V).

iii. BCF (Best-Case Fast): Process is fast, temperature is lowest (say
-40C) and voltage is highest (say nominal 1.2V plus 10%).

The environment conditions for power analysis are generally different
than the ones used for static timing analysis. For power analysis, the oper-
ating conditions may be:

i. ML (Maximal Leakage): Process is fast, temperature is highest (say
125C) and the voltage is also the highest (say 1.2V plus 10%).
This corner corresponds to the maximum leakage power. For
most designs, this corner also corresponds to the largest active
power.

ii. TL (Typical Leakage): Process is typical, temperature is highest
(say 125C) and the voltage is nominal (say 1.2V). This refers to
the condition where the leakage is representative for most de-
signs since the chip temperature will be higher due to power dis-
sipated in normal operation.

The static timing analysis is based on the libraries that are loaded and
linked in for the STA. An operating condition for the design can be explicit-
ly specified using the set_operating_conditions command.

CHAPTER 2 STA Concepts

42

set_operating_conditions “WCCOM” -library mychip
Use the operating condition called WCCOM defined in the
cell library mychip.

The cell libraries are available at various operating conditions and the op-
erating condition chosen for analysis depends on what has been loaded for
the STA.

q

C H A P T E R

3

Standard Cell Library

his chapter describes timing information present in library cell de-
scriptions. A cell could be a standard cell, an IO buffer, or a complex
IP such as a USB core.

In addition to timing information, the library cell description contains sev-
eral attributes such as cell area and functionality, which are unrelated to
timing but are relevant during the RTL synthesis process. In this chapter,
we focus only on the attributes relevant to the timing and power calcula-
tions.

A library cell can be described using various standard formats. While the
content of various formats is essentially similar, we have described the li-
brary cell examples using the Liberty syntax.

T

 J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs: A Practical Approach, 43
DOI: 10.1007/978-0-387-93820-2_3, © Springer Science + Business Media, LLC 2009

CHAPTER 3 Standard Cell Library

44

The initial sections in this chapter describe the linear and the non-linear
timing models followed by advanced timing models for nanometer tech-
nologies which are described in Section 3.7.

3.1 Pin Capacitance

Every input and output of a cell can specify capacitance at the pin. In most
cases, the capacitance is specified only for the cell inputs and not for the
outputs, that is, the output pin capacitance in most cell libraries is 0.

pin (INP1) {
capacitance: 0.5;
rise_capacitance: 0.5;
rise_capacitance_range: (0.48, 0.52);
fall_capacitance: 0.45;
fall_capacitance_range: (0.435, 0.46);
. . .

}

The above example shows the general specification for the pin capacitance
values for the input INP1. In its most basic form, the pin capacitance is
specified as a single value (0.5 units in above example). (The capacitance
unit is normally picofarad and is specified in the beginning of the library
file). The cell description can also specify separate values for
rise_capacitance (0.5 units) and fall_capacitance (0.45 units) which refer to the
values used for rising and falling transitions at the pin INP1. The
rise_capacitance and fall_capacitance values can also be specified as a range
with the lower and upper bound values being specified in the description.

3.2 Timing Modeling

The cell timing models are intended to provide accurate timing for various
instances of the cell in the design environment. The timing models are nor-

Timing Modeling SECTION 3.2

45

mally obtained from detailed circuit simulations of the cell to model the ac-
tual scenario of the cell operation. The timing models are specified for each
timing arc of the cell.

Let us first consider timing arcs for a simple inverter logic cell shown in
Figure 3-1. Since it is an inverter, a rising (falling) transition at the input
causes a falling (rising) transition at the output. The two kinds of delay
characterized for the cell are:

• Tr : Output rise delay
• Tf : Output fall delay

Notice that the delays are measured based upon the threshold points de-
fined in a cell library (see Section 2.4), which is typically 50% Vdd. Thus,
delays are measured from input crossing its threshold point to the output
crossing its threshold point.

Figure 3-1 Timing arc delays for an inverter cell.

A Z

Tf
Tr

Combinational timing arc

A

Z

Delay threshold
points

CHAPTER 3 Standard Cell Library

46

The delay for the timing arc through the inverter cell is dependent on two
factors:

i. the output load, that is, the capacitance load at the output pin of
the inverter, and

ii. the transition time of the signal at the input.

The delay values have a direct correlation with the load capacitance - the
larger the load capacitance, the larger the delay. In most cases, the delay in-
creases with increasing input transition time. There are a few scenarios
where the input threshold (used for measuring delay) is significantly dif-
ferent from the internal switching point of the cell. In such cases, the delay
through the cell may show non-monotonic behavior with respect to the in-
put transition time - a larger input transition time may produce a smaller
delay especially if the output is lightly loaded.

The slew at the output of a cell depends mainly upon the output capaci-
tance - output transition time increases with output load. Thus, a large
slew at the input (large transition time) can improve at the output depend-
ing upon the cell type and its output load. Figure 3-2 shows cases where
the transition time at the output of a cell can improve or deteriorate de-
pending on the load at the output of the cell.

3.2.1 Linear Timing Model

A simple timing model is a linear delay model, where the delay and the out-
put transition time of the cell are represented as linear functions of the two
parameters: input transition time and the output load capacitance. The
general form of the linear model for the delay, D, through the cell is illus-
trated below.

D = D0 + D1 * S + D2 * C

where D0, D1, D2 are constants, S is the input transition time, and C is the
output load capacitance. The linear delay models are not accurate over the
range of input transition time and output capacitance for submicron tech-

Timing Modeling SECTION 3.2

47

nologies, and thus most cell libraries presently use the more complex mod-
els such as the non-linear delay model.

3.2.2 Non-Linear Delay Model

Most of the cell libraries include table models to specify the delays and tim-
ing checks for various timing arcs of the cell. Some newer timing libraries
for nanometer technologies also provide current source based advanced
timing models (such as CCS, ECSM, etc.) which are described later in this
chapter. The table models are referred to as NLDM (Non-Linear Delay
Model) and are used for delay, output slew, or other timing checks. The ta-
ble models capture the delay through the cell for various combinations of

Figure 3-2 Slew changes going through a cell.

(a) Slew improves.

(b) Slew degrades (due to large output load).

Input

Output

Input

Output

Tf

Tf

CHAPTER 3 Standard Cell Library

48

input transition time at the cell input pin and total output capacitance at
the cell output.

An NLDM model for delay is presented in a two-dimensional form, with
the two independent variables being the input transition time and the out-
put load capacitance, and the entries in the table denoting the delay. Here
is an example of such a table for a typical inverter cell:

pin (OUT) {
max_transition : 1.0;
timing() {
related_pin : "INP1";
timing_sense : negative_unate;
cell_rise(delay_template_3x3) {
index_1 ("0.1, 0.3, 0.7"); /* Input transition */
index_2 ("0.16, 0.35, 1.43"); /* Output capacitance */
values (/* 0.16 0.35 1.43 */ \
/* 0.1 */ "0.0513, 0.1537, 0.5280", \
/* 0.3 */ "0.1018, 0.2327, 0.6476", \
/* 0.7 */ "0.1334, 0.2973, 0.7252");

}
cell_fall(delay_template_3x3) {
index_1 ("0.1, 0.3, 0.7"); /* Input transition */
index_2 ("0.16, 0.35, 1.43"); /* Output capacitance */
values (/* 0.16 0.35 1.43 */ \
/* 0.1 */ "0.0617, 0.1537, 0.5280", \
/* 0.3 */ "0.0918, 0.2027, 0.5676", \
/* 0.7 */ "0.1034, 0.2273, 0.6452");

}

In the above example, the delays of the output pin OUT are described. This
portion of the cell description contains the rising and falling delay models
for the timing arc from pin INP1 to pin OUT, as well as the max_transition
allowed time at pin OUT. There are separate models for the rise and fall de-
lays (for the output pin) and these are labeled as cell_rise and cell_fall re-
spectively. The type of indices and the order of table lookup indices are
described in the lookup table template delay_template_3x3.

Timing Modeling SECTION 3.2

49

lu_table_template(delay_template_3x3) {
variable_1 : input_net_transition;
variable_2 : total_output_net_capacitance;
index_1 ("1000, 1001, 1002");
index_2 ("1000, 1001, 1002");

}/* The input transition and the output capacitance can be
in either order, that is, variable_1 can be the output
capacitance. However, these designations are usually
consistent across all templates in a library. */

This lookup table template specifies that the first variable in the table is the
input transition time and the second variable is the output capacitance. The
table values are specified like a nested loop with the first index (index_1)
being the outer (or least varying) variable and the second index (index_2)
being the inner (or most varying) variable and so on. There are three en-
tries for each variable and thus it corresponds to a 3-by-3 table. In most cas-
es, the entries for the table are also formatted like a table and the first index
(index_1) can then be treated as a row index and the second index (index_2)
becomes equivalent to the column index. The index values (for example
1000) are dummy placeholders which are overridden by the actual index
values in the cell_fall and cell_rise delay tables. An alternate way of specify-
ing the index values is to specify the index values in the template definition
and to not specify them in the cell_rise and cell_fall tables. Such a template
would look like this:

lu_table_template(delay_template_3x3) {
variable_1 : input_net_transition;
variable_2 : total_output_net_capacitance;
index_1 ("0.1, 0.3, 0.7");
index_2 ("0.16, 0.35, 1.43");

}

Based upon the delay tables, an input fall transition time of 0.3ns and an
output load of 0.16pf will correspond to the rise delay of the inverter of
0.1018ns. Since a falling transition at the input results in the inverter output

CHAPTER 3 Standard Cell Library

50

rise, the table lookup for the rise delay involves a falling transition at the
inverter input.

This form of representing delays in a table as a function of two variables,
transition time and capacitance, is called the non-linear delay model, since
non-linear variations of delay with input transition time and load capaci-
tance are expressed in such tables.

The table models can also be 3-dimensional - an example is a flip-flop with
complementary outputs, Q and QN, which is described in Section 3.8.

The NLDM models are used not only for the delay but also for the transi-
tion time at the output of a cell which is characterized by the input transi-
tion time and the output load. Thus, there are separate two-dimensional
tables for computing the output rise and fall transition times of a cell.

pin (OUT) {
max_transition : 1.0;
timing() {
related_pin : "INP";
timing_sense : negative_unate;
rise_transition(delay_template_3x3) {
index_1 ("0.1, 0.3, 0.7"); /* Input transition */
index_2 ("0.16, 0.35, 1.43"); /* Output capacitance */
values (/* 0.16 0.35 1.43 */ \
/* 0.1 */ "0.0417, 0.1337, 0.4680", \
/* 0.3 */ "0.0718, 0.1827, 0.5676", \
/* 0.7 */ "0.1034, 0.2173, 0.6452");

}
fall_transition(delay_template_3x3) {
index_1 ("0.1, 0.3, 0.7"); /* Input transition */
index_2 ("0.16, 0.35, 1.43"); /* Output capacitance */
values (/* 0.16 0.35 1.43 */ \
/* 0.1 */ "0.0817, 0.1937, 0.7280", \
/* 0.3 */ "0.1018, 0.2327, 0.7676", \
/* 0.7 */ "0.1334, 0.2973, 0.8452");

}

Timing Modeling SECTION 3.2

51

. . .
}
. . .

}

There are two such tables for transition time: rise_transition and
fall_transition. As described in Chapter 2, the transition times are measured
based on the specific slew thresholds, usually 10%-90% of the power sup-
ply.

As illustrated above, an inverter cell with an NLDM model has the follow-
ing tables:

• Rise delay
• Fall delay
• Rise transition
• Fall transition

Given the input transition time and output capacitance of such a cell, as
shown in Figure 3-3, the rise delay is obtained from the cell_rise table for
15ps input transition time (falling) and 10fF load, and the fall delay is ob-
tained from the cell_fall table for 20ps input transition time (rising) and 10fF
load.

Where is the information which specifies that the cell is inverting? This in-
formation is specified as part of the timing_sense field of the timing arc. In
some cases, this field is not specified but is expected to be derived from the
pin function.

Figure 3-3 Transition time and capacitance for computing cell delays.

20ps 15ps
10fF

CHAPTER 3 Standard Cell Library

52

For the example inverter cell, the timing arc is negative_unate which implies
that the output pin transition direction is opposite (negative) of the input
pin transition direction. Thus, the cell_rise table lookup corresponds to the
falling transition time at the input pin.

Example of Non-Linear Delay Model Lookup

This section illustrates the lookup of the table models through an example.
If the input transition time and the output capacitance correspond to a ta-
ble entry, the table lookup is trivial since the timing value corresponds di-
rectly to the value in the table. The example below corresponds to a general
case where the lookup does not correspond to any of the entries available
in the table. In such cases, two-dimensional interpolation is utilized to pro-
vide the resulting timing value. The two nearest table indices in each di-
mension are chosen for the table interpolation. Consider the table lookup
for fall transition (example table specified above) for the input transition
time of 0.15ns and an output capacitance of 1.16pF. The corresponding sec-
tion of the fall transition table relevant for two-dimensional interpolation is
reproduced below.

fall_transition(delay_template_3x3) {
index_1 ("0.1, 0.3 . . .");
index_2 (". . . 0.35, 1.43");
values (\
". . . 0.1937, 0.7280", \
". . . 0.2327, 0.7676"
. . .

In the formulation below, the two index_1 values are denoted as x1 and x2;
the two index_2 values are denoted as y1 and y2 and the corresponding ta-
ble values are denoted as T11, T12, T21 and T22 respectively.

Timing Modeling SECTION 3.2

53

If the table lookup is required for (x0, y0), the lookup value T00 is obtained
by interpolation and is given by:

T00 = x20 * y20 * T11 + x20 * y01 * T12 +
x01 * y20 * T21 + x01 * y01 * T22

where

x01 = (x0 - x1) / (x2 - x1)
x20 = (x2 - x0) / (x2 - x1)
y01 = (y0 - y1) / (y2 - y1)
y20 = (y2 - y0) / (y2 - y1)

Substituting 0.15 for index_1 and 1.16 for index_2 results in the
fall_transition value of:

T00 = 0.75 * 0.25 * 0.1937 + 0.75 * 0.75 * 0.7280 +
0.25 * 0.25 * 0.2327 + 0.25 * 0.75 * 0.7676 = 0.6043

Note that the equations above are valid for interpolation as well as extrap-
olation - that is when the indices (x0, y0) lie outside the characterized range
of indices. As an example, for the table lookup with 0.05 for index_1 and 1.7
for index_2, the fall transition value is obtained as:

T00 = 1.25 * (-0.25) * 0.1937 + 1.25 * 1.25 * 0.7280 +
(-0.25) * (-0.25) * 0.2327 + (-0.25) * 1.25 * 0.7676

= 0.8516

3.2.3 Threshold Specifications and Slew Derating

The slew1 values are based upon the measurement thresholds specified in
the library. Most of the previous generation libraries (0.25mm or older)
used 10% and 90% as measurement thresholds for slew or transition time.

1. Slew is same as transition time.

CHAPTER 3 Standard Cell Library

54

The slew thresholds are chosen to correspond to the linear portion of the
waveform. As technology becomes finer, the portion where the actual
waveform is most linear is typically between 30% and 70% points. Thus,
most of the newer generation timing libraries specify slew measurement
points as 30% and 70% of Vdd. However, because the transition times were
previously measured between 10% and 90%, the transition times measured
between 30% and 70% are usually doubled for populating the library. This
is specified by the slew derate factor which is typically specified as 0.5. The
slew thresholds of 30% and 70% with slew derate as 0.5 results in equiva-
lent measurement points of 10% and 90%. An example settings of thresh-
old is illustrated below.

/* Threshold definitions */
slew_lower_threshold_pct_fall : 30.0;
slew_upper_threshold_pct_fall : 70.0;
slew_lower_threshold_pct_rise : 30.0;
slew_upper_threshold_pct_rise : 70.0;
input_threshold_pct_fall : 50.0;
input_threshold_pct_rise : 50.0;
output_threshold_pct_fall : 50.0;
output_threshold_pct_rise : 50.0;
slew_derate_from_library : 0.5;

The above settings specify that the transition times in the library tables
have to be multiplied by 0.5 to obtain the transition times which corre-
spond to the slew threshold (30-70) settings. This means that the values in
the transition tables (as well as corresponding index values) are effectively
10-90 values. During characterization, the transition is measured at 30-70
and the transition data in the library corresponds to extrapolation of mea-
sured values to 10% to 90% ((70 - 30)/(90 - 10) = 0.5).

Another example with a different set of slew threshold settings may con-
tain:

/* Threshold definitions 20/80/1 */
slew_lower_threshold_pct_fall : 20.0;

Timing Modeling SECTION 3.2

55

slew_upper_threshold_pct_fall : 80.0;
slew_lower_threshold_pct_rise : 20.0;
slew_upper_threshold_pct_rise : 80.0;
/* slew_derate_from_library not specified */

In this example of 20-80 slew threshold settings, there is no
slew_derate_from_library specified (implies a default of 1.0), which means
that the transition time data in the library is not derated. The values in the
transition tables correspond directly to the 20-80 characterized slew values.
See Figure 3-4.

Here is another example of slew threshold settings in a cell library.

slew_lower_threshold_pct_rise : 20.00;
slew_upper_threshold_pct_rise : 80.00;
slew_lower_threshold_pct_fall : 20.00;
slew_upper_threshold_pct_fall : 80.00;
slew_derate_from_library : 0.6;

In this case, the slew_derate_from_library is set to 0.6 and characterization
slew trip points are specified as 20% and 80%. This implies that transition
table data in the library corresponds to 0% to 100% ((80 - 20)/(100 - 0) = 0.6)
extrapolated values. This is shown in Figure 3-5.

Figure 3-4 No derating of slew.

Slew time in library

20%

80%

CHAPTER 3 Standard Cell Library

56

When slew derating is specified, the slew value internally used during de-
lay calculation is:

library_transition_time_value * slew_derate

This is the slew used internally by the delay calculation tool and corre-
sponds to the characterized slew threshold measurement points.

3.3 Timing Models - Combinational Cells

Let us consider the timing arcs for a two-input and cell. Both the timing
arcs for this cell are positive_unate; therefore an input pin rise corresponds
to an output rise and vice versa.

For the two-input and cell, there are four delays:

• A -> Z: Output rise
• A -> Z: Output fall
• B -> Z: Output rise

Figure 3-5 Slew derating applied.

Actual characterized
transition time

Extrapolated transition
time in library

20%

80%

Timing Models - Combinational Cells SECTION 3.3

57

• B -> Z: Output fall

This implies that for the NLDM model, there would be four table models
for specifying delays. Similarly, there would be four such table models for
specifying the output transition times as well.

3.3.1 Delay and Slew Models

An example of a timing model for input INP1 to output OUT for a three-
input nand cell is specified as follows.

pin (OUT) {
max_transition : 1.0;
timing() {
related_pin : "INP1";
timing_sense : negative_unate;
cell_rise(delay_template_3x3) {
index_1 ("0.1, 0.3, 0.7");
index_2 ("0.16, 0.35, 1.43");
values (\
"0.0513, 0.1537, 0.5280", \
"0.1018, 0.2327, 0.6476", \
"0.1334, 0.2973, 0.7252");

}
rise_transition(delay_template_3x3) {
index_1 ("0.1, 0.3, 0.7");

Figure 3-6 Combinational timing arcs.

A

B
Z

Tr_a
Tf_a

Tr_b
Tf_b

Combinational
timing arcs

CHAPTER 3 Standard Cell Library

58

index_2 ("0.16, 0.35, 1.43");
values (\
"0.0417, 0.1337, 0.4680", \
"0.0718, 0.1827, 0.5676", \
"0.1034, 0.2173, 0.6452");

}
cell_fall(delay_template_3x3) {
index_1 ("0.1, 0.3, 0.7");
index_2 ("0.16, 0.35, 1.43");
values (\
"0.0617, 0.1537, 0.5280", \
"0.0918, 0.2027, 0.5676", \
"0.1034, 0.2273, 0.6452");

}
fall_transition(delay_template_3x3) {
index_1 ("0.1, 0.3, 0.7");
index_2 ("0.16, 0.35, 1.43");
values (\
"0.0817, 0.1937, 0.7280", \
"0.1018, 0.2327, 0.7676", \
"0.1334, 0.2973, 0.8452");

}
. . .

}
. . .

}

In this example, the characteristics of the timing arc from INP1 to OUT are
described using two cell delay tables, cell_rise and cell_fall, and two transi-
tion tables, rise_transition and fall_transition. The output max_transition val-
ue is also included in the above example.

Positive or Negative Unate

As described in Section 2.7, the timing arc in the nand cell example is nega-
tive unate which implies that the output pin transition direction is opposite
(negative) of the input pin transition direction. Thus, the cell_rise table

Timing Models - Combinational Cells SECTION 3.3

59

lookup corresponds to the falling transition time at the input pin. On the
other hand, the timing arcs through an and cell or or cell are positive unate
since the output transition is in the same direction as the input transition.

3.3.2 General Combinational Block

Consider a combinational block with three inputs and two outputs.

A block such as this can have a number of timing arcs. In general, the tim-
ing arcs can be from each input to each output of the block. If the logic path
from input to output is non-inverting or positive unate, then the output has
the same polarity as the input. If it is an inverting logic path or negative un-
ate, the output has an opposite polarity to input; thus, when the input rises,
the output falls. These timing arcs represent the propagation delays
through the block.

Some timing arcs through a combinational cell can be positive unate as
well as negative unate. An example is the timing arc through a two-input
xor cell. A transition at an input of a two-input xor cell can cause an output
transition in the same or in the opposite transition direction depending on
the logic state of the other input of the cell. The timing for these arcs can be
described as non-unate or as two different sets of positive unate and nega-
tive unate timing models which are state-dependent. Such state-dependent
tables are described in greater detail in Section 3.5.

Figure 3-7 General combinational block.

A

B

C

Z

ZN

CHAPTER 3 Standard Cell Library

60

3.4 Timing Models - Sequential Cells

Consider the timing arcs of a sequential cell shown in Figure 3-8.

For synchronous inputs, such as pin D (or SI, SE), there are the following
timing arcs:

i. Setup check arc (rising and falling)

ii. Hold check arc (rising and falling)

For asynchronous inputs, such as pin CDN, there are the following timing
arcs:

i. Recovery check arc

ii. Removal check arc

Figure 3-8 Sequential cell timing arcs.

D

CK CDN

Q

QN

SE

SI
Setup

Hold
Prop delay

Removal
Recovery,

(rise, fall)

(rise, fall)

(rise, fall)

Timing Models - Sequential Cells SECTION 3.4

61

For synchronous outputs of a flip-flop, such as pins Q or QN, there is the
following timing arc:

i. CK-to-output propagation delay arc (rising and falling)

All of the synchronous timing arcs are with respect to the active edge of
the clock, the edge of the clock that causes the sequential cell to capture the
data. In addition, the clock pin and asynchronous pins such as clear, can
have pulse width timing checks. Figure 3-9 shows the timing checks using
various signal waveforms.

Figure 3-9 Timing arcs on an active rising clock edge.

CK

D

Q

CDN

Pulse width
check

Setup Hold

Recovery Removal

CK-to-Q

CHAPTER 3 Standard Cell Library

62

3.4.1 Synchronous Checks: Setup and Hold

The setup and hold synchronous timing checks are needed for proper
propagation of data through the sequential cells. These checks verify that
the data input is unambiguous at the active edge of the clock and the prop-
er data is latched in at the active edge. These timing checks validate if the
data input is stable around the active clock edge. The minimum time be-
fore the active clock when the data input must remain stable is called the
setup time. This is measured as the time interval from the latest data signal
crossing its threshold (normally 50% of Vdd) to the active clock edge cross-
ing its threshold (normally 50% of Vdd). Similarly, the hold time is the min-
imum time the data input must remain stable just after the active edge of
the clock. This is measured as the time interval from the active clock edge
crossing its threshold to the earliest data signal crossing its threshold. As
mentioned previously, the active edge of the clock for a sequential cell is
the rising or falling edge that causes the sequential cell to capture data.

Example of Setup and Hold Checks

The setup and hold constraints for a synchronous pin of a sequential cell
are normally described in terms of two-dimensional tables as illustrated
below. The example below shows the setup and hold timing information
for the data pin of a flip-flop.

pin (D) {
direction : input;
. . .
timing () {
related_pin : "CK";
timing_type : "setup_rising";
rise_constraint ("setuphold_template_3x3") {
index_1("0.4, 0.57, 0.84"); /* Data transition */
index_2("0.4, 0.57, 0.84"); /* Clock transition */
values(/* 0.4 0.57 0.84 */ \
/* 0.4 */ "0.063, 0.093, 0.112", \
/* 0.57 */ "0.526, 0.644, 0.824", \
/* 0.84 */ "0.720, 0.839, 0.930");

Timing Models - Sequential Cells SECTION 3.4

63

}
fall_constraint ("setuphold_template_3x3") {
index_1("0.4, 0.57, 0.84"); /* Data transition */
index_2("0.4, 0.57, 0.84"); /* Clock transition */
values(/* 0.4 0.57 0.84 */ \
/* 0.4 */ "0.762, 0.895, 0.969", \
/* 0.57 */ "0.804, 0.952, 0.166", \
/* 0.84 */ "0.159, 0.170, 0.245");

}
}

}

timing () {
related_pin : "CK";
timing_type : "hold_rising";
rise_constraint ("setuphold_template_3x3") {
index_1("0.4, 0.57, 0.84"); /* Data transition */
index_2("0.4, 0.57, 0.84"); /* Clock transition */
values(/* 0.4 0.57 0.84 */ \
/* 0.4 */ "-0.220, -0.339, -0.584", \
/* 0.57 */ "-0.247, -0.381, -0.729", \
/* 0.84 */ "-0.398, -0.516, -0.864");

}
fall_constraint ("setuphold_template_3x3") {
index_1("0.4, 0.57, 0.84"); /* Data transition */
index_2("0.4, 0.57, 0.84");/* Clock transition */
values(/* 0.4 0.57 0.84 */ \
/* 0.4 */ "-0.028, -0.397, -0.489", \
/* 0.57 */ "-0.408, -0.527, -0.649", \
/* 0.84 */ "-0.705, -0.839, -0.580");

}
}

The example above shows setup and hold constraints on the input pin D
with respect to the rising edge of the clock CK of a sequential cell. The two-
dimensional models are in terms of the transition times at the
constrained_pin (D) and the related_pin (CK). The lookup for the two-

CHAPTER 3 Standard Cell Library

64

dimensional table is based upon the template setuphold_template_3x3 de-
scribed in the library. For the above example, the lookup table template
setuphold_template_3x3 is described as:

lu_table_template(setuphold_template_3x3) {
variable_1 : constrained_pin_transition;
variable_2 : related_pin_transition;
index_1 ("1000, 1001, 1002");
index_2 ("1000, 1001, 1002");

}
/* The constrained pin and the related pin can be in either or-
der, that is, variable_1 could be the related pin transition.
However, these designations are usually consistent across all
templates in a library. */

Like in previous examples, the setup values in the table are specified like a
nested loop with the first index, index_1, being the outer (or least varying)
variable and the second index, index_2, being the inner (or most varying)
variable and so on. Thus, with a D pin rise transition time of 0.4ns and CK
pin rise transition time of 0.84ns, the setup constraint for the rising edge of
the D pin is 0.112ns - the value is read from the rise_constraint table. For the
falling edge of the D pin, the setup constraint will examine the
fall_constraint table of the setup tables. For lookup of the setup and hold
constraint tables where the transition times do not correspond to the index
values, the general procedure for non-linear model lookup described in Sec-
tion 3.2 is applicable.

Note that the rise_constraint and fall_constraint tables of the setup constraint
refer to the constrained_pin. The clock transition used is determined by the
timing_type which specifies whether the cell is rising edge-triggered or fall-
ing edge-triggered.

Negative Values in Setup and Hold Checks

Notice that some of the hold values in the example above are negative. This
is acceptable and normally happens when the path from the pin of the flip-
flop to the internal latch point for the data is longer than the corresponding

Timing Models - Sequential Cells SECTION 3.4

65

path for the clock. Thus, a negative hold check implies that the data pin of
the flip-flop can change ahead of the clock pin and still meet the hold time
check.

The setup values of a flip-flop can also be negative. This means that at the
pins of the flip-flop, the data can change after the clock pin and still meet
the setup time check.

Can both setup and hold be negative? No; for the setup and hold checks to
be consistent, the sum of setup and hold values should be positive. Thus, if
the setup (or hold) check contains negative values - the corresponding hold
(or setup) should be sufficiently positive so that the setup plus hold value
is a positive quantity. See Figure 3-10 for an example with a negative hold
value. Since the setup has to occur prior to the hold, setup plus hold is a
positive quantity. The setup plus hold time is the width of the region
where the data signal is required to be steady.

For flip-flops, it is helpful to have a negative hold time on scan data input
pins. This gives flexibility in terms of clock skew and can eliminate the
need for almost all buffer insertion for fixing hold violations in scan mode
(scan mode is the one in which flip-flops are tied serially forming a scan
chain - output of flip-flop is typically connected to the scan data input pin
of the next flip-flop in series; these connections are for testability).

Figure 3-10 Negative value for hold timing check.

CK

D

Setup

Negative hold

CHAPTER 3 Standard Cell Library

66

Similar to the setup or hold check on the synchronous data inputs, there
are constraint checks governing the asynchronous pins. These are de-
scribed next.

3.4.2 Asynchronous Checks

Recovery and Removal Checks

Asynchronous pins such as asynchronous clear or asynchronous set over-
ride any synchronous behavior of the cell. When an asynchronous pin is
active, the output is governed by the asynchronous pin and not by the
clock latching in the data inputs. However, when the asynchronous pin be-
comes inactive, the active edge of the clock starts latching in the data input.
The asynchronous recovery and removal constraint checks verify that the
asynchronous pin has returned unambiguously to an inactive state at the
next active clock edge.

The recovery time is the minimum time that an asynchronous input is sta-
ble after being de-asserted before the next active clock edge.

Similarly, the removal time is the minimum time after an active clock edge
that the asynchronous pin must remain active before it can be de-asserted.

The asynchronous removal and recovery checks are described in Section
8.6 and Section 8.7 respectively.

Pulse Width Checks

In addition to the synchronous and asynchronous timing checks, there is a
check which ensures that the pulse width at an input pin of a cell meets the
minimum requirement. For example, if the width of pulse at the clock pin
is smaller than the specified minimum, the clock may not latch the data
properly. The pulse width checks can be specified for relevant synchro-
nous and asynchronous pins also. The minimum pulse width checks can be
specified for high pulse and also for low pulse.

Timing Models - Sequential Cells SECTION 3.4

67

Example of Recovery, Removal and Pulse Width Checks

An example of recovery time, removal time, and pulse width check for an
asynchronous clear pin CDN of a flip-flop is given below. The recovery
and removal checks are with respect to the clock pin CK. Since the recovery
and removal checks are defined for an asynchronous pin being de-assert-
ed, only rise constraints exists in the example below. The minimum pulse
width check for the pin CDN is for a low pulse. Since the CDN pin is active
low, there is no constraint for the high pulse width on this pin and is thus
not specified.

pin(CDN) {
direction : input;
capacitance : 0.002236;
. . .
timing() {
related_pin : "CDN";
timing_type : min_pulse_width;
fall_constraint(width_template_3x1) { /*low pulse check*/
index_1 ("0.032, 0.504, 0.788"); /* Input transition */
values (/* 0.032 0.504 0.788 */ \

"0.034, 0.060, 0.377");
}

}
timing() {
related_pin : "CK";
timing_type : recovery_rising;
rise_constraint(recovery_template_3x3) { /* CDN rising */
index_1 ("0.032, 0.504, 0.788"); /* Data transition */
index_2 ("0.032, 0.504, 0.788"); /* Clock transition */
values(/* 0.032 0.504 0.788 */ \
/* 0.032 */ "-0.198, -0.122, 0.187", \
/* 0.504 */ "-0.268, -0.157, 0.124", \
/* 0.788 */ "-0.490, -0.219, -0.069");

}
}

CHAPTER 3 Standard Cell Library

68

timing() {
related_pin : "CP";
timing_type : removal_rising;
rise_constraint(removal_template_3x3) { /* CDN rising */
index_1 ("0.032, 0.504, 0.788"); /* Data transition */
index_2 ("0.032, 0.504, 0.788"); /* Clock transition */
values(/* 0.032 0.504 0.788 */ \
/* 0.032 */ "0.106, 0.167, 0.548", \
/* 0.504 */ "0.221, 0.381, 0.662", \
/* 0.788 */ "0.381, 0.456, 0.778");

}
}

}

3.4.3 Propagation Delay

The propagation delay of a sequential cell is from the active edge of the
clock to a rising or falling edge on the output. Here is an example of a
propagation delay arc for a negative edge-triggered flip-flop, from clock
pin CKN to output Q. This is a non-unate timing arc as the active edge of
the clock can cause either a rising or a falling edge on the output Q. Here is
the delay table:

timing() {
related_pin : "CKN";
timing_type : falling_edge;
timing_sense : non_unate;
cell_rise(delay_template_3x3) {
index_1 ("0.1, 0.3, 0.7"); /* Clock transition */
index_2 ("0.16, 0.35, 1.43"); /* Output capacitance */
values (/* 0.16 0.35 1.43 */ \
/* 0.1 */ "0.0513, 0.1537, 0.5280", \
/* 0.3 */ "0.1018, 0.2327, 0.6476", \
/* 0.7 */ "0.1334, 0.2973, 0.7252");

}

Timing Models - Sequential Cells SECTION 3.4

69

rise_transition(delay_template_3x3) {
index_1 ("0.1, 0.3, 0.7");
index_2 ("0.16, 0.35, 1.43");
values (\
"0.0417, 0.1337, 0.4680", \
"0.0718, 0.1827, 0.5676", \
"0.1034, 0.2173, 0.6452");

}
cell_fall(delay_template_3x3) {
index_1 ("0.1, 0.3, 0.7");
index_2 ("0.16, 0.35, 1.43");
values (\
"0.0617, 0.1537, 0.5280", \
"0.0918, 0.2027, 0.5676", \
"0.1034, 0.2273, 0.6452");

}
fall_transition(delay_template_3x3) {
index_1 ("0.1, 0.3, 0.7");
index_2 ("0.16, 0.35, 1.43");
values (\
"0.0817, 0.1937, 0.7280", \
"0.1018, 0.2327, 0.7676", \
"0.1334, 0.2973, 0.8452");

}
}

As in the earlier examples, the delays to the output are expressed as two-
dimensional tables in terms of input transition time and the capacitance at
the output pin. However in this example, the input transition time to use is
the falling transition time at the CKN pin since this is a falling edge-
triggered flip-flop. This is indicated by the construct timing_type in the ex-
ample above. A rising edge-triggered flip-flop will specify rising_edge as its
timing_type.

timing() {
related_pin : "CKP";
timing_type : rising_edge;

CHAPTER 3 Standard Cell Library

70

timing_sense : non_unate;
cell_rise(delay_template_3x3) {
. . .

}
. . .

}

3.5 State-Dependent Models

In many combinational blocks, the timing arcs between inputs and outputs
depend on the state of other pins in the block. These timing arcs between
input and output pins can be positive unate, negative unate, or both posi-
tive as well as negative unate arcs. An example is the xor or xnor cell where
the timing to the output can be positive unate or negative unate. In such
cases, the timing behaviors can be different depending upon the state of
other inputs of the block. In general, multiple timing models depending
upon the states of the pins are described. Such models are referred to as
state-dependent models.

XOR, XNOR and Sequential Cells

Consider an example of a two-input xor cell. The timing path from an input
A1 to output Z is positive unate when the other input A2 is logic-0. When
the input A2 is logic-1, the path from A1 to Z is negative unate. These two
timing models are specified using state-dependent models. The timing
model from A1 to Z when A2 is logic-0 is specified as follows:

pin (Z) {
direction : output;
max_capacitance : 0.0842;
function : "(A1^A2)";
timing() {
related_pin : "A1";
when : "!A2";
sdf_cond : "A2 == 1'b0";

State-Dependent Models SECTION 3.5

71

timing_sense : positive_unate;
cell_rise(delay_template_3x3) {
index_1 ("0.0272, 0.0576, 0.1184"); /* Input slew */
index_2 ("0.0102, 0.0208, 0.0419"); /* Output load */
values(\
"0.0581, 0.0898, 0.2791", \
"0.0913, 0.1545, 0.2806", \
"0.0461, 0.0626, 0.2838");

}
. . .

}

The state-dependent condition is specified using the when condition. While
the cell model excerpt only illustrates the cell_rise delay, other timing mod-
els (cell_fall, rise_transition and fall_transition tables) are also specified with
the same when condition. A separate timing model is specified for the other
when condition - for the case when A2 is logic-1.

timing() {
related_pin : "A1";
when : "A2";
sdf_cond : "A2 == 1'b1";
timing_sense : negative_unate;
cell_fall(delay_template_3x3) {
index_1 ("0.0272, 0.0576, 0.1184");
index_2 ("0.0102, 0.0208, 0.0419");
values(\
"0.0784, 0.1019, 0.2269", \
"0.0943, 0.1177, 0.2428", \
"0.0997, 0.1796, 0.2620");

}
. . .

}

CHAPTER 3 Standard Cell Library

72

The sdf_cond is used to specify the condition of the timing arc that is to be
used when generating SDF - see the example in Section 3.9 and the COND
construct described in Appendix B.

State-dependent models are used for various types of timing arcs. Many
sequential cells specify the setup or hold timing constraints using state-
dependent models. An example of a scan flip-flop using state-dependent
models for hold constraint is specified next. In this case, two sets of models
are specified - one when the scan enable pin SE is active and another when
the scan enable pin is inactive.

pin (D) {
. . .
timing() {
related_pin : "CK";
timing_type : hold_rising;
when : "!SE";
fall_constraint(hold_template_3x3) {
index_1("0.08573, 0.2057, 0.3926");
index_2("0.08573, 0.2057, 0.3926");
values("-0.05018, -0.02966, -0.00919",\

"-0.0703, -0.05008, -0.0091",\
"-0.1407, -0.1206, -0.1096");

}
. . .

}
}

The above model is used when the SE pin is at logic-0. A similar model is
specified with the when condition SE as logic-1.

Some timing relationships are specified using both state-dependent as well
as non-state-dependent models. In such cases, the timing analysis will use
the state-dependent model if the state of the cell is known and is included
in one of the state-dependent models. If the state-dependent models do not
cover the condition of the cell, the timing from the non-state-dependent
model is utilized. For example, consider a case where the hold constraint is

Interface Timing Model for a Black Box SECTION 3.6

73

specified by only one when condition for SE at logic-0 and no separate
state-dependent model is specified for SE at logic-1. In such a scenario, if
the SE is set to logic-1, the hold constraint from the non-state-dependent
model is used. If there is no non-state-dependent model for the hold con-
straint, there will not be any active hold constraint!

State-dependent models can be specified for any of the attributes in the
timing library. Thus state-dependent specifications can exist for power,
leakage power, transition time, rise and fall delays, timing constraints, and
so on. An example of the state dependent leakage power specification is
given below:

leakage_power() {
when : "A1 !A2";
value : 259.8;

}
leakage_power() {
when : "A1 A2";
value : 282.7;

}

3.6 Interface Timing Model for a Black Box

This section describes the timing arcs for the IO interfaces of a black box
(an arbitrary module or block). A timing model captures the timing for the
IO interfaces of the black box. The black box interface model can have com-
binational as well as sequential timing arcs. In general, these arcs can also
be state-dependent.

For the example shown in Figure 3-11, the timing arcs can be placed under
the following categories:

• Input to output combinational arc: This corresponds to a direct
combinational path from input to output, such as from the input
port FIN to the output port FOUT.

CHAPTER 3 Standard Cell Library

74

• Input sequential arc: This is described as setup or hold time for the
input connected to a D-pin of the flip-flop. In general, there can
be combinational logic from the input of the block before it is
connected to a D-pin of the flip-flop. An example of this is a set-
up check at port DIN with respect to clock ACLK.

• Asynchronous input arc: This is similar to the recovery or removal
timing constraint for the input asynchronous pins of a flip-flop.
An example is the input ARST to the asynchronous clear pin of
flip-flop UFF0.

• Output sequential arc: This is similar to the output propagation
timing for the clock to output connected to Q of the flip-flop. In
general, there can be combinational logic between the flip-flop
output and the output of the module. An example is the path
from clock BCLK to the output of flip-flop UFF1 to the output
port DOUT.

In addition to the timing arcs above, there can also be pulse width checks
on the external clock pins of the black box. It is also possible to define inter-
nal nodes and to define generated clocks on these internal nodes as well as

Figure 3-11 Design modeled with interface timing.

ACLK

BCLK

DOUTDIN

FIN FOUT

UFF0 UFF1

CLARST

D Q

CK

D Q

CK

Advanced Timing Modeling SECTION 3.7

75

specify timing arcs to and from these nodes. In summary, a black box mod-
el can have the following timing arcs:

i. Input to output timing arcs for combinational logic paths.

ii. Setup and hold timing arcs from the synchronous inputs to the
related clock pins.

iii. Recovery and removal timing arcs for the asynchronous inputs
to the related clock pins.

iv. Output propagation delay from clock pins to the output pins.

The interface timing model as described above is not intended to capture
the internal timing of the black box, but only the timing of its interfaces.

3.7 Advanced Timing Modeling

The timing models, such as NLDM, represent the delay through the timing
arcs based upon output load capacitance and input transition time. In real-
ity, the load seen by the cell output is comprised of capacitance as well as
interconnect resistance. The interconnect resistance becomes an issue since
the NLDM approach assumes that the output loading is purely capacitive.
Even with non-zero interconnect resistance, these NLDM models have
been utilized when the effect of interconnect resistance is small. In pres-
ence of resistive interconnect, the delay calculation methodologies retrofit
the NLDM models by obtaining an equivalent effective capacitance at the
output of the cell. The “effective” capacitance methodology used within
delay calculation tools obtains an equivalent capacitance that has the same
delay at the output of the cell as the cell with RC interconnect. The effective
capacitance approach is described as part of delay calculation in Section
5.2.

As the feature size shrinks, the effect of interconnect resistance can result in
large inaccuracy as the waveforms become highly non-linear. Various
modeling approaches provide additional accuracy for the cell output driv-
ers. Broadly, these approaches obtain higher accuracy by modeling the out-

CHAPTER 3 Standard Cell Library

76

put stage of the driver by an equivalent current source. Examples of these
approaches are - CCS (Composite Current Source), or ECSM (Effective
Current Source Model). For example, the CCS timing models provide the
additional accuracy for modeling cell output drivers by using a time-vary-
ing and voltage-dependent current source. The timing information is pro-
vided by specifying detailed models for the receiver pin capacitance1 and
output charging currents under different scenarios. The details of the CCS
model are described next.

3.7.1 Receiver Pin Capacitance

The receiver pin capacitance corresponds to the input pin capacitance spec-
ified for the NLDM models. Unlike the pin capacitance for the NLDM
models, the CCS models allow separate specification of receiver capaci-
tance in different portions of the transitioning waveform. Due to intercon-
nect RC and the equivalent input non-linear capacitance due to the Miller
effect from the input devices within the cell, the receiver capacitance value
varies at different points on the transitioning waveform. This capacitance
is thus modeled differently in the initial (or leading) portion of waveform
versus the trailing portion of the waveform.

The receiver pin capacitance can be specified at the pin level (like in NLDM
models) where all timing arcs through that pin use that capacitance value.
Alternately, the receiver capacitance can be specified at the timing arc level
in which case different capacitance models can be specified for different
timing arcs. These two methods of specifying the receiver pin capacitance
are described next.

1. Input pin capacitance - equivalent to pin capacitance in NLDM.

Advanced Timing Modeling SECTION 3.7

77

Specifying Capacitance at the Pin Level

When specified at the pin level, an example of a one-dimensional table
specification for receiver pin capacitance is given next.

pin (IN) {
. . .
receiver_capacitance1_rise ("Lookup_table_4") {
index_1: ("0.1, 0.2, 0.3, 0.4"); /* Input transition */
values("0.001040, 0.001072, 0.001074, 0.001085");

}

The index_1 specifies the indices for input transition time for this pin. The
one-dimensional table in values specifies the receiver capacitance for rising
waveform at an input pin for the leading portion of the waveform.

Similar to the receiver_capacitance1_rise shown above, the
receiver_capacitance2_rise specifies the rise capacitance for the trailing por-
tion of the input rising waveform. The fall capacitances (pin capacitance for
falling input waveform) are specified by the attributes
receiver_capacitance1_fall and receiver_capacitance2_fall respectively.

Specifying Capacitance at the Timing Arc Level

The receiver pin capacitance can also be specified with the timing arc as a
two-dimensional table in terms of input transition time and output load.
An example of the specification at the timing arc level is given below. This
example specifies the receiver pin rise capacitance for the leading portion
of the waveform at pin IN as a function of transition time at input pin IN
and load at output pin OUT.

pin (OUT) {
. . .
timing () {
related_pin : "IN" ;
. . .

CHAPTER 3 Standard Cell Library

78

receiver_capacitance1_rise ("Lookup_table_4x4") {
index_1("0.1, 0.2, 0.3, 0.4"); /* Input transition */
index_2("0.01, 0.2, 0.4, 0.8"); /* Output capacitance */
values("0.001040 , 0.001072 , 0.001074 , 0.001075", \

"0.001148 , 0.001150 , 0.001152 , 0.001153", \
"0.001174 , 0.001172 , 0.001172 , 0.001172", \
"0.001174 , 0.001171 , 0.001177 , 0.001174");

}
. . .

}
. . .

}

The above example specifies the model for the receiver_capacitance1_rise.
The library includes similar definitions for the receiver_capacitance2_rise,
receiver_capacitance1_fall, and receiver_capacitance2_fall specifications.

The four different types of receiver capacitance types are summarized in
the table below. As illustrated above, these can be specified at the pin level
as a one-dimensional table or at the timing level as a two-dimensional ta-
ble.

Capacitance type Edge Transition

Receiver_capacitance1_rise Rising Leading portion of
transition

Receiver_capacitance1_fall Falling Leading portion of
transition

Receiver_capacitance2_rise Rising Trailing portion of
transition

Receiver_capacitance2_fall Falling Trailing portion of
transition

Table 3-12 Receiver capacitance types.

Advanced Timing Modeling SECTION 3.7

79

3.7.2 Output Current

In the CCS model, the non-linear timing is represented in terms of output
current. The output current information is specified as a lookup table that
is dependent on input transition time and output load.

The output current is specified for different combinations of input transi-
tion time and output capacitance. For each of these combinations, the out-
put current waveform is specified. Essentially, the waveform here refers to
output current values specified as a function of time. An example of the
output current for falling output waveform, specified using
output_current_fall, is as shown next.

pin (OUT) {
. . .
timing () {
related_pin : "IN" ;
. . .
output_current_fall () {
vector ("LOOKUP_TABLE_1x1x5") {
reference_time : 5.06; /* Time of input crossing
threshold */

index_1("0.040"); /* Input transition */
index_2("0.900"); /* Output capacitance */
index_3("5.079e+00, 5.093e+00, 5.152e+00,

5.170e+00, 5.352e+00");/* Time values */
/* Output charging current: */
values("-5.784e-02, -5.980e-02, -5.417e-02,

-4.257e-02, -2.184e-03");
}
. . .

}
. . .

}
. . .

}

CHAPTER 3 Standard Cell Library

80

The reference_time attribute refers to the time when the input waveform
crosses the delay threshold. The index_1 and index_2 refer to the input tran-
sition time and the output load used and index_3 is the time. The index_1
and index_2 (the input transition time and output capacitance) can have
only one value each. The index_3 refers to the time values and the table val-
ues refer to the corresponding output current. Thus, for the given input
transition time and output load, the output current waveform as a function
of time is available. Additional lookup tables for other combinations of in-
put transition time and output capacitance are also specified.

Output current for rising output waveform, specified using
output_current_rise, is described similarly.

3.7.3 Models for Crosstalk Noise Analysis

This section describes the CCS models for the crosstalk noise (or glitch)
analysis. These are described as CCSN (CCS Noise) models. The CCS
noise models are structural models and are represented for different CCBs
(Channel Connected Blocks) within the cell.

What is a CCB? The CCB refers to the source-drain channel connected por-
tion of a cell. For example, single stage cells such as an inverter, nand and
nor cells contain only one CCB - the entire cell is connected through using
one channel connection region. Multi-stage cells such as and cells, or or
cells, contain multiple CCBs.

The CCSN models are usually specified for the first CCB driven by the cell
input, and the last CCB driving the cell output. These are specified using
steady state current, output voltage and propagated noise models.

For single stage combinational cells such as nand and nor cells, the CCS
noise models are specified for each timing arc. These cells have only one
CCB and thus the models are from input pins to the output pin of the cell.

Advanced Timing Modeling SECTION 3.7

81

An example model for a nand cell is described below:

pin (OUT) {
. . .
timing () {
related_pin : "IN1";
. . .
ccsn_first_stage() { /* First stage CCB */
is_needed : true;
stage_type : both; /*CCB contains pull-up and pull-down*/
is_inverting : true;
miller_cap_rise : 0.8;
miller_cap_fall : 0.5;
dc_current (ccsn_dc) {
index_1 ("-0.9, 0, 0.5, 1.35, 1.8"); /* Input voltage */
index_2 ("-0.9, 0, 0.5, 1.35, 1.8"); /* Output voltage*/
values (\
"1.56, 0.42, . . ."); /* Current at output pin */

}
. . .
output_voltage_rise () {
vector (ccsn_ovrf) {
index_1 ("0.01"); /* Rail-to-rail input transition */
index_2 ("0.001"); /* Output net capacitance */
index_3 ("0.3, 0.5, 0.8"); /* Time */
values ("0.27, 0.63, 0.81");

}
. . .

}
output_voltage_fall () {
vector (ccsn_ovrf) {
index_1 ("0.01"); /* Rail-to-rail input transition */
index_2 ("0.001"); /* Output net capacitance */
index_3 ("0.2, 0.4, 0.6"); /* Time */
values ("0.81, 0.63, 0.27");

}
. . .

CHAPTER 3 Standard Cell Library

82

}
propagated_noise_low () {
vector (ccsn_pnlh) {
index_1 ("0.5"); /* Input glitch height */
index_2 ("0.6"); /* Input glitch width */
index_3 ("0.05"); /* Output net capacitance */
index_4 ("0.3, 0.4, 0.5, 0.7"); /* Time */
values ("0.19, 0.23, 0.19, 0.11");

}
propagated_noise_high () {
. . .

}
}

}

We now describe the attributes of the CCS noise model. The attribute
ccsn_first_stage indicates that the model is for the first stage CCB of the
nand cell. As mentioned before, the nand cell has only one CCB. The attri-
bute is_needed is almost always true with the exception being that for non-
functional cells such as load cells and antenna cells. The stage_type with
value both specifies that this stage has both pull-up and pull-down struc-
tures. The miller_cap_rise and miller_cap_fall represent the Miller capaci-
tances1 for the rising and falling output transitions respectively.

DC Current

The dc_current tables represents the DC current at the output pin for differ-
ent combinations of input and output pin voltages. The index_1 specifies
the input voltage and index_2 specifies the output voltage. The values in the
two-dimensional table specify the DC current at the CCB output. The input
voltages and output currents are all specified in library units (normally
Volt and mA). For the example CCS noise model from input IN1 to OUT of
the nand cell, an input voltage of -0.9V and output voltage of 0V, results in
the DC current at the output of 0.42mA.

1. Miller capacitance accounts for the increase in the equivalent input capacitance of an
inverting stage due to amplification of capacitance between the input and output terminals.

Advanced Timing Modeling SECTION 3.7

83

Output Voltage

The output_voltage_rise and output_voltage_fall constructs contain the timing
information for the CCB output rising and falling respectively. These are
specified as multi-dimensional tables for the CCB output node. The multi-
dimensional tables are organized as multiple tables specifying the rising
and falling output voltages for different input transition time and output
net capacitances. Each table has index_1 specifying the rail-to-rail input
transition time rate and index_2 specifying the output net capacitance. The
index_3 specifies the times when the output voltage crosses specific thresh-
old points (in this case 30%, 70% and 90% of Vdd supply of 0.9V). In each
multi-dimensional table, the voltage crossing points are fixed and the time-
values when the CCB output node crosses the voltage is specified in
index_3.

Propagated Noise

The propagated_noise_high and propagated_noise_low models specify multi-
dimensional tables which provide noise propagation information through
the CCB. These models characterize the crosstalk glitch (or noise) propaga-
tion from an input to the output of the CCB. The characterization uses sym-
metric triangular waveform at the input. The multi-dimensional tables for
propagated_noise are organized as multiple tables specifying the glitch
waveform at the output of the CCB. These multi-dimensional tables con-
tain:

i. input glitch magnitude (in index_1),

ii. input glitch width (in index_2),

iii. CCB output net capacitance (in index_3), and

iv. time (in index_4).

The CCB output voltage (or the noise propagated through CCB) is speci-
fied in the table values.

CHAPTER 3 Standard Cell Library

84

Noise Models for Two-Stage Cells

Just like the single stage cells, the CCS noise models for two-stage cells
such as and cells and or cells, are normally described as part of the timing
arc. Since these cells contain two separate CCBs, the noise models are spec-
ified for ccsn_first_stage and another for ccsn_last_stage separately. For ex-
ample, for a two-input and cell, the CCS noise model is comprised of
separate models for the first stage and for the last stage. This is illustrated
next.

pin (OUT) {
. . .
timing () {
related_pin : "IN1";
. . .
ccsn_first_stage() {
/* IN1 to internal node between stages */
. . .

}
ccsn_last_stage() { /* Internal node to output */
. . .

}
. . .

}
timing () {
related_pin : "IN2";
. . .
ccsn_first_stage() {
/* IN2 to internal node between stages */
. . .

}
ccsn_last_stage() {
/* Internal node to output */
/* Same as from IN1 */
. . .

}
. . .

Advanced Timing Modeling SECTION 3.7

85

}
. . .

}

The model within the ccsn_last_stage specified for IN2 is the same as the
model in ccsn_last_stage described for IN1.

Noise Models for Multi-stage and Sequential Cells

The CCS noise models for complex combinational or sequential cells are
normally described as part of the pin specification. This is different from
the one-stage or two-stage cells such as nand, nor, and, or where the CCS
noise models are normally specified on a pin-pair basis as part of the tim-
ing arc. Complex multi-stage and sequential cells are normally described
by a ccsn_first_stage model for all input pins and another ccsn_last_stage
model at the output pins. The CCS noise models for these cells are not part
of the timing arc but are normally specified for a pin.

If the internal paths between inputs and outputs are up to two CCB stages,
the noise models can also be represented as part of the pin-pair timing arcs.
In general, a multi-stage cell description can have some CCS noise models
specified as part of the pin-pair timing arc while some other noise models
can be specified with the pin description.

An example below has the CCS noise models specified with the pin de-
scription as well as part of the timing arc.

pin (CDN) {
. . .

}
pin (CP) {
. . .
ccsn_first_stage() {
. . .

}
}
pin (D) {

CHAPTER 3 Standard Cell Library

86

. . .
ccsn_first_stage() {
. . .

}
}
pin (Q) {
. . .
timing() {
related_pin : "CDN";
. . .
ccsn_first_stage() {
. . .

}
ccsn_last_stage() {
. . .

}
}

}
pin (QN) {
. . .
ccsn_last_stage() {
. . .

}
}

Note that some of the CCS models for the flip-flop cell above are defined
with the pins. Those defined with the pin specification at input pins are
designated as ccsn_first_stage, and the CCS model at the output pin QN is
designated as ccsn_last_stage. In addition, two-stage CCS noise models are
described as part of the timing arc for CDN to Q. This example thus shows
that a cell can have the CCS models designated as part of pin specification
and as part of the timing group.

Advanced Timing Modeling SECTION 3.7

87

3.7.4 Other Noise Models

Apart from the CCS noise models described above, some cell libraries can
provide other models for characterizing noise. Some of these models were
utilized before the advent of the CCS noise models. These additional mod-
el are not required if the CCS noise models are available. We describe be-
low some of these earlier noise models for completeness.

Models for DC margin: The DC margin refers to the largest DC variation al-
lowed at the input pin of the cell which would keep the cell in its steady
condition, that is, without causing a glitch at the output. For example, DC
margin for input low refers to the largest DC voltage value at the input pin
without causing any transition at the output.

Models for noise immunity: The noise immunity models specify the glitch
magnitude that can be allowed at an input pin. These are normally de-
scribed in terms of two-dimensional tables with the glitch width and out-
put capacitance as the two indices. The values in the table correspond to
the glitch magnitude that can be allowed at the input pin. This means that
any glitch smaller than the specified magnitude and width will not propa-
gate through the cell. Different variations of the noise immunity models
can be specified such as:

i. noise_immunity_high

ii. noise_immunity_low

iii. noise_immunity_above_high (overshoot)

iv. noise_immunity_below_low (undershoot).

CHAPTER 3 Standard Cell Library

88

3.8 Power Dissipation Modeling

The cell library contains information related to power dissipation in the
cells. This includes active power as well as standby or leakage power. As
the names imply, the active power is related to the activity in the design
whereas the standby power is the power dissipated in the standby mode,
which is mainly due to leakage.

3.8.1 Active Power

The active power is related to the activity at the input and output pin of the
cell. The active power in the cell is due to charging of the output load as
well as internal switching. These two are normally referred to as output
switching power and internal switching power respectively.

The output switching power is independent of the cell type and depends
only upon the output capacitive load, frequency of switching and the pow-
er supply of the cell. The internal switching power depends upon the type
of the cell and this value is thus included in the cell library. The specifica-
tion of the internal switching power in the library is described next.

The internal switching power is referred to as internal power in the cell li-
brary. This is the power consumption within the cell when there is activity
at the input or the output of the cell. For a combinational cell, an input pin
transition can cause the output to switch and this results in internal switch-
ing power. For example, an inverter cell consumes power whenever the in-
put switches (has a rise or fall transition at the input). The internal power is
described in the library as:

pin (Z1) {
. . .
power_down_function : "!VDD + VSS";
related_power_pin : VDD;
related_ground_pin : VSS;
internal_power () {
related_pin : "A";

Power Dissipation Modeling SECTION 3.8

89

power (template_2x2) {
index_1 ("0.1, 0.4"); /* Input transition */
index_2 ("0.05, 0.1"); /* Output capacitance */
values (/* 0.05 0.1 */ \
/* 0.1 */ "0.045, 0.050", \
/* 0.4 */ "0.055, 0.056");

}
}

}

The example above shows the power dissipation from input pin A to the
output pin Z1 of the cell. The 2x2 table in the template is in terms of input
transition at pin A and the output capacitance at pin Z1. Note that while
the table includes the output capacitance, the table values only correspond
to the internal switching and do not include the contribution of the output
capacitance. The values represent the internal energy dissipated in the cell
for each switching transition (rise or fall). The units are as derived from
other units in the library (typically voltage is in volts (V) and capacitance is
in picofarads (pF), and this maps to energy in picojoules (pJ)). The internal
power in the library thus actually specifies the internal energy dissipated
per transition.

In addition to the power tables, the example above also illustrates the spec-
ification of the power pins, ground pins, and the power down function
which specifies the condition when the cell can be powered off. These con-
structs allow for multiple power supplies in the design and scenarios
where different supplies may be powered down. The following illustration
shows the power pin specification for each cell.

cell (NAND2) {
. . .
pg_pin (VDD) {
pg_type : primary_power;
voltage_name : COREVDD1;
. . .

}

CHAPTER 3 Standard Cell Library

90

pg_pin (VSS) {
pg_type : primary_ground;
voltage_name : COREGND1;
. . .

}
}

The power specification syntax allows for separate constructs for rise and
fall power (referring to the output sense). Just like the timing arcs, the pow-
er specification can also be state-dependent. For example, the state-
dependent power dissipation for an xor cell can be specified as dependent
on the state of various inputs.

For combinational cells, the switching power is specified on an input-
output pin pair basis. However for a sequential cell such as a flip-flop with
complementary outputs, Q and QN, the CLK->Q transition also results in a
CLK->QN transition. Thus, the library can specify the internal switching
power as a three-dimensional table, which is shown next. The three dimen-
sions in the example below are the input slew at CLK and the output capac-
itances at Q and QN respectively.

pin (Q) {
. . .
internal_power() {
related_pin : "CLK";
equal_or_opposite_output : "QN";
rise_power(energy_template_3x2x2) {
index_1 ("0.02, 0.2, 1.0"); /* Clock transition */
index_2 ("0.005, 0.2"); /* Output Q capacitance */
index_3 ("0.005, 0.2"); /* Output QN capacitance */
values (/* 0.005 0.2 */ /* 0.005 0.2 */ \
/* 0.02 */ "0.060, 0.070", "0.061, 0.068", \
/* 0.2 */ "0.061, 0.071", "0.063, 0.069", \
/* 1.0 */ "0.062, 0.080", "0.068, 0.075");

}
fall_power(energy_template_3x2x2) {
index_1 ("0.02, 0.2, 1.0");

Power Dissipation Modeling SECTION 3.8

91

index_2 ("0.005, 0.2");
index_3 ("0.005, 0.2");
values (\
"0.070, 0.080", "0.071, 0.078", \
"0.071, 0.081", "0.073, 0.079", \
"0.066, 0.082", "0.068, 0.085");

}
}

Switching power can be dissipated even when the outputs or the internal
state does not have a transition. A common example is the clock that tog-
gles at the clock pin of a flip-flop. The flip-flop dissipates power with each
clock toggle - typically due to switching of an inverter inside of the flip-
flop cell. The power due to clock pin toggle is dissipated even if the flip-
flop output does not switch. Thus for sequential cells, the input pin power
refers to the power dissipation internal to the cell, that is, when the outputs
do not transition. An example of the input pin power specification follows.

cell (DFF) {
. . .
pin (CLK) {
. . .
rise_power () {
power (template_3x1) {
index_1 ("0.1, 0.25, 0.4"); /* Input transition */
values (/* 0.1 0.25 0.4 */ \

"0.045, 0.050, 0.090");
}

}
fall_power () {
power (template_3x1) {
index_1 ("0.1, 0.25, 0.4");
values (\
"0.045, 0.050, 0.090");

}
}

}

CHAPTER 3 Standard Cell Library

92

. . .
}

This example shows the power specification when the CLK pin toggles.
This represents the power dissipation due to clock switching even when
the output does not switch.

Double Counting Clock Pin Power?

Note that a flip-flop also contains the power dissipation due to CLK->Q
transition. It is thus important that the values in the CLK->Q power specifi-
cation tables do not include the contribution due to the CLK internal power
corresponding to the condition when the output Q does not switch.

The above guideline refers to consistency of usage of power tables by the
application tool and ensures that the internal power specified due to clock
input is not double-counted during power calculation.

3.8.2 Leakage Power

Most standard cells are designed such that the power is dissipated only
when the output or state changes. Any power dissipated when the cell is
powered but there is no activity is due to non-zero leakage current. The
leakage can be due to subthreshold current for MOS devices or due to tun-
neling current through the gate oxide. In the earlier generations of CMOS
process technologies, the leakage power has been negligible and has not
been a major consideration during the design process. However, as the
technology shrinks, the leakage power is becoming significant and is no
longer negligible in comparison to active power.

As described above, the leakage power contribution is from two phenome-
na: subthreshold current in the MOS device and gate oxide tunneling. By
using high Vt cells1, one can reduce the subthreshold current; however,

1. The high Vt cells refer to cells with higher threshold voltage than the standard for the
process technology.

Power Dissipation Modeling SECTION 3.8

93

there is a trade-off due to reduced speed of the high Vt cells. The high Vt
cells have smaller leakage but are slower in speed. Similarly, the low Vt
cells have larger leakage but allow greater speed. The contribution due to
gate oxide tunneling does not change significantly by switching to high (or
low) Vt cells. Thus, a possible way to control the leakage power is to utilize
high Vt cells. Similar to the selection between high Vt and standard Vt
cells, the strength of cells used in the design is a trade-off between leakage
and speed. The higher strength cells have higher leakage power but pro-
vide higher speed. The trade-off related to power management are de-
scribed in detail in Section 10.6.

The subthreshold MOS leakage has a strong non-linear dependence with
respect to temperature. In most process technologies, the subthreshold
leakage can grow by 10x to 20x as the device junction temperature is in-
creased from 25C to 125C. The contribution due to gate oxide tunneling is
relatively invariant with respect to temperature or the Vt of the devices.
The gate oxide tunneling which was negligible at process technologies
100nm and above, has become a significant contributor to leakage at lower
temperatures for 65nm or finer technologies. For example, gate oxide tun-
neling leakage may equal the subthreshold leakage at room temperature
for 65nm or finer process technologies. At high temperatures, the sub-
threshold leakage continues to be the dominant contributor to leakage
power.

Leakage power is specified for each cell in the library. For example, an in-
verter cell may contain the following specification:

cell_leakage_power : 1.366;

This is the leakage power dissipated in the cell - the leakage power units
are as specified in the header of the library, typically in nanowatts. In gen-
eral, the leakage power depends upon the state of the cell and state depen-
dent values can be specified using the when condition.

CHAPTER 3 Standard Cell Library

94

For example, an INV1 cell can have the following specification:

cell_leakage_power : 0.70;
leakage_power() {
when : "!I";
value : 1.17;

}

leakage_power() {
when : "I";
value : 0.23;

}

where I is the input pin of the INV1 cell. It should be noted that the specifi-
cation includes a default value (outside of the when conditions) and that the
default value is generally the average of the leakage values specified with-
in the when conditions.

3.9 Other Attributes in Cell Library

In addition to the timing information, a cell description in the library spec-
ifies area, functionality and the SDF condition of the timing arcs. These are
briefly described in this section; for more details the reader is referred to
the Liberty manual.

Area Specification

The area specification provides the area of a cell or cell group.

area : 2.35;

The above specifies that the area of the cell is 2.35 area units. This can rep-
resent the actual silicon area used by the cell or it can be a relative measure
of the area.

Other Attributes in Cell Library SECTION 3.9

95

Function Specification

The function specification specifies the functionality of a pin (or pin
group).

pin (Z) {
function: "IN1 & IN2";
. . .

}

The above specifies the functionality of the Z pin of a two-input and cell.

SDF Condition

The SDF condition attribute supports the Standard Delay Format (SDF) file
generation and condition matching during backannotation. Just as the
when specifies the condition for the state-dependent models for timing
analysis, the corresponding specification for state-dependent timing usage
for SDF annotation is denoted by sdf_cond.

This is illustrated by the following example:

timing() {
related_pin : "A1";
when : "!A2";
sdf_cond : "A2 == 1'b0";
timing_sense : positive_unate;
cell_rise(delay_template_7x7) {
. . .

}
}

CHAPTER 3 Standard Cell Library

96

3.10 Characterization and Operating Conditions

A cell library specifies the characterization and operating conditions under
which the library is created. For example, the header of the library may
contain the following:

nom_process : 1;
nom_temperature : 0;
nom_voltage : 1.1;
voltage_map(COREVDD1, 1.1);
voltage_map(COREGND1, 0.0);
operating_conditions("BCCOM"){
process : 1;
temperature : 0;
voltage : 1.1;
tree_type : "balanced_tree";

}

The nominal environmental conditions (designated as nom_process,
nom_temperature and nom_voltage) specify the process, voltage and temper-
ature under which the library was characterized. The operating conditions
specify the conditions under which the cells from this library will get used.
If the characterization and operating conditions are different, the timing
values obtained during delay calculation need to be derated; this is accom-
plished by using the derating factor (k-factors) specified in the library.

The usage of derating to obtain timing values at a condition other than
what was used for characterization introduces inaccuracy in timing calcu-
lation. The derating procedure is employed only if it is not feasible to char-
acterize the library at the condition of interest.

What is the Process Variable?

Unlike temperature and voltage which are physical quantities, the process
is not a quantifiable quantity. It is likely to be one of slow, typical or fast pro-
cesses for the purposes of digital characterization and verification. Thus,

Characterization and Operating Conditions SECTION 3.10

97

what does the process value of 1.0 (or any other value) mean? The answer
is given below.

The library characterization is a time-consuming process and characteriz-
ing the library for various process corners can take weeks. The process
variable setting allows a library characterized at a specific process corner
be used for timing calculation for a different process corner. The k-factors
for process can be used to derate the delays from the characterized process
to the target process. As mentioned above, the use of derating factors intro-
duces inaccuracy during timing calculation. Derating across process condi-
tions is especially inaccurate and is rarely employed. To summarize, the
only function of specifying different process values (say 1.0 or any other) is
to allow derating across conditions which is rarely (if ever) employed.

3.10.1 Derating using K-factors

As described, the derating factors (referred to as k-factors) are used to ob-
tain delays when the operating conditions are different from the character-
ization conditions. The k-factors are approximate factors. An example of
the k-factors in a library are as specified below:

/* k-factors */
k_process_cell_fall : 1;
k_process_cell_leakage_power : 0;
k_process_cell_rise : 1;
k_process_fall_transition : 1;
k_process_hold_fall : 1;
k_process_hold_rise : 1;
k_process_internal_power : 0;
k_process_min_pulse_width_high : 1;
k_process_min_pulse_width_low : 1;
k_process_pin_cap : 0;
k_process_recovery_fall : 1;
k_process_recovery_rise : 1;
k_process_rise_transition : 1;
k_process_setup_fall : 1;
k_process_setup_rise : 1;

CHAPTER 3 Standard Cell Library

98

k_process_wire_cap : 0;
k_process_wire_res : 0;
k_temp_cell_fall : 0.0012;
k_temp_cell_rise : 0.0012;
k_temp_fall_transition : 0;
k_temp_hold_fall : 0.0012;
k_temp_hold_rise : 0.0012;
k_temp_min_pulse_width_high : 0.0012;
k_temp_min_pulse_width_low : 0.0012;
k_temp_min_period : 0.0012;
k_temp_rise_propagation : 0.0012;
k_temp_fall_propagation : 0.0012;
k_temp_recovery_fall : 0.0012;
k_temp_recovery_rise : 0.0012;
k_temp_rise_transition : 0;
k_temp_setup_fall : 0.0012;
k_temp_setup_rise : 0.0012;
k_volt_cell_fall : -0.42;
k_volt_cell_rise : -0.42;
k_volt_fall_transition : 0;
k_volt_hold_fall : -0.42;
k_volt_hold_rise : -0.42;
k_volt_min_pulse_width_high : -0.42;
k_volt_min_pulse_width_low : -0.42;
k_volt_min_period : -0.42;
k_volt_rise_propagation : -0.42;
k_volt_fall_propagation : -0.42;
k_volt_recovery_fall : -0.42;
k_volt_recovery_rise : -0.42;
k_volt_rise_transition : 0;
k_volt_setup_fall : -0.42;
k_volt_setup_rise : -0.42;

These factors are used to obtain timing when the process, voltage or tem-
perature for the operating conditions during delay calculation are different
from the nominal conditions in the library. Note that k_volt factors are neg-
ative, implying that the delays reduce with increasing voltage supply,

Characterization and Operating Conditions SECTION 3.10

99

whereas the k_temp factors are positive, implying that the delays normally
increase with increasing temperature (except for cells exhibiting tempera-
ture inversion phenomenon described in Section 2.10). The k-factors are
used as follows:

Result with derating = Original_value *
(1 + k_process * DELTA_Process

+ k_volt * DELTA_Volt
+ k_temp * DELTA_Temp)

For example, assume that a library is characterized at 1.08V and 125C with
slow process models. If the delays are to be obtained for 1.14V and 100C,
the cell rise delays for the slow process models can be obtained as:

Derated_delay = Library_delay *
(1 + k_volt_cell_rise * 0.06

- k_temp_cell_rise * 25)

Assuming the k_factors outlined above are used, the previous equation
maps to:

Derated_delay = Library_delay * (1 - 0.42 * 0.06 - 0.0012 * 25)
= Library_delay * 0.9448

The delay at the derated condition works out to about 94.48% of the origi-
nal delay.

3.10.2 Library Units

A cell description has all values in terms of library units. The units are de-
clared in the library file using the Liberty command set. Units for voltage,
time, capacitance, and resistance are declared as shown in the following ex-
ample:

library("my_cell_library") {
voltage_unit : "1V";

CHAPTER 3 Standard Cell Library

100

time_unit : "1ns";
capacitive_load_unit (1.000000, pf);
current_unit : 1mA;
pulling_resistance_unit : "1kohm";
. . .

}

In this text, we shall assume that the library time units are in nanoseconds
(ns), voltage is in volts (V), internal power is in picojoules (pJ) per transi-
tion, leakage power is in nanowatts (nW), capacitance values are in pico-
farad (pF), resistance values are in Kohms and area units are square micron
(mm2), unless explicitly specified to help with an explanation.

q

C H A P T E R

4

Interconnect Parasitics

his chapter provides an overview of various techniques for handling
and representing interconnect parasitics for timing verification of the
designs. In digital designs, a wire connecting pins of standard cells

and blocks is referred to as a net. A net typically has only one driver while
it can drive a number of fanout cells or blocks. After physical implementa-
tion, the net can travel on multiple metal layers of the chip. Various metal
layers can have different resistance and capacitance values. For equivalent
electrical representation, a net is typically broken up into segments with
each segment represented by equivalent parasitics. We refer to an intercon-
nect trace as a synonym to a segment, that is, it is part of a net on a specific
metal layer.

T

 J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs: A Practical Approach, 101
DOI: 10.1007/978-0-387-93820-2_4, © Springer Science + Business Media, LLC 2009

CHAPTER 4 Interconnect Parasitics

102

4.1 RLC for Interconnect

The interconnect resistance comes from the interconnect traces in various
metal layers and vias in the design implementation. Figure 4-1 shows ex-
ample nets traversing various metal layers and vias. Thus, the interconnect
resistance can be considered as resistance between the output pin of a cell
and the input pins of the fanout cells.

The interconnect capacitance contribution is also from the metal traces and
is comprised of grounded capacitance as well as capacitance between
neighboring signal routes.

The inductance arises due to current loops. Typically the effect of induc-
tance can be ignored within the chip and is only considered for package
and board level analysis. In chip level designs, the current loops are narrow
and short - which means that the current return path is through a power or
ground signal routed in close proximity. In most cases, the on-chip induc-
tance is not considered for the timing analysis. Any further description of
on-chip inductance analysis is beyond the scope of this book. Representa-
tion of interconnect resistance and capacitance is described next.

Figure 4-1 Nets on metal layers.

MOS devices in silicon

M1

M2

M3

M4

M5

M6

Contacts to
MOS devices

Vias
Interconnect segments

RLC for Interconnect SECTION 4.1

103

The resistance and capacitance (RC) for a section of interconnect trace is
ideally represented by a distributed RC tree as shown in Figure 4-2. In this
figure, the total resistance and capacitance of the RC tree - Rt and Ct respec-
tively - correspond to Rp * L and Cp * L where Rp, Cp are per unit length val-
ues of interconnect resistance and capacitance for the trace and L is the
trace length. The Rp, Cp values are typically obtained from the extracted
parasitics for various configurations and is provided by the ASIC foundry.

Rt = Rp * L
Ct = Cp * L

The RC interconnect can be represented by various simplified models.
These are described in the subsections below.

T-model

In the T-model representation, the total capacitance Ct is modeled as con-
nected halfway in the resistive tree. The total resistance Rt is broken in two
sections (each being Rt / 2), with the Ct connection represented at the mid-
point of the resistive tree as shown in Figure 4-3.

Figure 4-2 Interconnect trace.

(a) Trace of length L.

(b) Distributed RC tree.

CHAPTER 4 Interconnect Parasitics

104

Pi-model

In the Pi-model shown in Figure 4-4, the total capacitance Ct is broken into
two sections (each being Ct / 2) and connected on either side of the resis-
tance.

More accurate representations of the distributed RC tree are obtained by
breaking Rt and Ct into multiple sections. For N-sections, each of the inter-
mediate sections of R and C are Rt / N and Ct / N. The end sections can be
modeled along the concept of the T-model or the Pi-model. Figure 4-5
shows such an N-section with the end sections modeled using a T-model,
while Figure 4-6 shows an N-section with the end sections modeled using
the Pi-model.

With the broad overview of modeling of RC interconnect, we now describe
how the parasitic interconnects are utilized during the pre-layout phase
(by estimation) or post-layout phase (by detailed extraction). The next sec-
tion describes the modeling of parasitic interconnect during the pre-layout
process.

Figure 4-3 T-model representation.

Figure 4-4 Pi-model representation.

Rt / 2 Rt / 2

Ct

Rt

Ct / 2 Ct / 2

Wireload Models SECTION 4.2

105

4.2 Wireload Models

Prior to floorplanning or layout, wireload models can be used to estimate
capacitance, resistance and the area overhead due to interconnect. The
wireload model is used to estimate the length of a net based upon the num-
ber of its fanouts. The wireload model depends upon the area of the block,
and designs with different areas may choose different wireload models.
The wireload model also maps the estimated length of the net into the re-
sistance, capacitance and the corresponding area overhead due to routing.

The average wire length within a block correlates well with the size of the
block; average net length increases as the block size is increased. Figure 4-7
shows that for different areas (chip or block size), different wireload mod-
els would typically be used in determining the parasitics. Thus, the figure
depicts a smaller capacitance for the smaller sized block.

Figure 4-5 Rt / (2 * N) on ends plus (N-1) sections of Rt / N.

Figure 4-6 Ct / (2 * N) on ends plus (N-1) sections of Ct / N.

Rt / (2*N) Rt / NRt / N Rt / N Rt / (2*N)

Ct / N Ct / N Ct / N Ct / N Ct / N

Rt / N

Ct / NCt / (2*N)

Rt / N Rt / N Rt / N

Ct / (2*N)Ct / N Ct / N Ct / N

CHAPTER 4 Interconnect Parasitics

106

Here is an example of a wireload model.

wire_load (“wlm_conservative”) {
resistance : 5.0;
capacitance : 1.1;
area : 0.05;
slope : 0.5;
fanout_length (1, 2.6);
fanout_length (2, 2.9);
fanout_length (3, 3.2);
fanout_length (4, 3.6);
fanout_length (5, 4.1);

}

Resistance is resistance per unit length of the interconnect, capacitance is ca-
pacitance per unit length of the interconnect, and area is area overhead per

Figure 4-7 Different wireload models for different areas.

wlm_light wlm_conservative

wlm_aggressive

5x5 10x10

20x20

Wireload Models SECTION 4.2

107

unit length of the interconnect. The slope is the extrapolation slope to be
used for data points that are not specified in the fanout length table.

The wireload model illustrates how the length of the wire can be described
as a function of fanout. The example above is depicted in Figure 4-8. For
any fanout number not explicitly listed in the table, the interconnect length
is obtained using linear extrapolation with the specified slope. For exam-
ple, a fanout of 8 results in the following:

Length = 4.1 + (8 - 5) * 0.5 = 5.6 units
Capacitance = Length * cap_coeff(1.1) = 6.16 units
Resistance = Length * res_coeff(5.0) = 28.0 units
Area overhead due to interconnect = Length * area_coeff(0.05)
= 0.28 area units

The units for the length, capacitance, resistance and area are as specified in
the library.

Figure 4-8 Fanout vs wire length.

Fanout

Length

1 2 3 4 5 8

5.6

3.6
4.1

2.6
2.9

3.2

CHAPTER 4 Interconnect Parasitics

108

4.2.1 Interconnect Trees

Once the resistance and capacitance estimates, say Rwire and Cwire, of the
pre-layout interconnect are determined, the next question is on the struc-
ture of the interconnect. How is the interconnect RC structure located with
respect to the driving cell? This is important since the interconnect delay
from a driver pin to a load pin depends upon how the interconnect is struc-
tured. In general, the interconnect delay depends upon the interconnect re-
sistance and capacitance along the path. Thus, this delay can be different
depending on the topology assumed for the net.

For pre-layout estimation, the interconnect RC tree can be represented us-
ing one of the following three different representations (see Figure 4-9).
Note that the total interconnect length (and thus the resistance and capaci-
tance estimates) is the same in each of the three cases.

• Best-case tree:

In the best-case tree, it is assumed that the destination (load) pin
is physically adjacent to the driver. Thus, none of the wire resis-
tance is in the path to the destination pin. All of the wire capaci-
tance and the pin capacitances from other fanout pins still act as
load on the driver pin.

• Balanced tree:

In this scenario, it is assumed that each destination pin is on a
separate portion of the interconnect wire. Each path to the desti-
nation sees an equal portion of the total wire resistance and ca-
pacitance.

• Worst-case tree:

In this scenario, it is assumed that all the destination pins are to-
gether at the far end of the wire. Thus each destination pin sees
the total wire resistance and the total wire capacitance.

Wireload Models SECTION 4.2

109

Figure 4-9 RC tree representations used during pre-layout.

(a) Best-case RC tree.

Cwire

Cpin1

Cpin2

Cpin3

Cwire/N

Cpin1

Cpin2

Cpin3

Rwire/N

Cwire/N

Cwire/N
Rwire/N

Rwire/N

(b) Balanced RC tree.

Cpin1

Cpin2

Cpin3

Cwire

Rwire

(c) Worst-case RC tree.

= Distributed RC

Rwire

CHAPTER 4 Interconnect Parasitics

110

4.2.2 Specifying Wireload Models

A wireload model is specified using the following command:

set_wire_load_model “wlm_cons” -library “lib_stdcell”
Says to use the wireload model wlm_cons present in the
cell library lib_stdcell.

When a net crosses a hierarchical boundary, different wireload models can
be applied to different parts of the net in each hierarchical boundary based
upon the wireload mode. These wireload modes are:

i. top

ii. enclosed

iii. segmented

The wireload mode can be specified using the set_wire_load_mode specifica-
tion as shown below.

set_wire_load_mode enclosed

In the top wireload mode, all nets within the hierarchy inherit the wireload
model of the top-level, that is, any wireload models specified in lower-level
blocks are ignored. Thus, the top-level wireload model takes precedence.
For the example shown in Figure 4-10, the wlm_cons wireload model speci-
fied in block B1 takes precedence over all the other wireload models speci-
fied in blocks B2, B3 and B4.

In the enclosed wireload mode, the wireload model of the block that fully
encompasses the net is used for the entire net. For the example shown in
Figure 4-11, the net NETQ is subsumed in block B2 and thus the wireload
model of block B2, wlm_light, is used for this net. Other nets which are fully
contained in block B3 use the wlm_aggr wireload model, whereas nets fully
contained within block B5 use the wlm_typ wireload model.

Wireload Models SECTION 4.2

111

In the segmented wireload mode, each segment of the net gets its wireload
model from the block that encompasses the net segment. Each portion of
the net uses the appropriate wireload model within that level. Figure 4-12
illustrates an example of a net NETQ that has segments in three blocks. The
interconnect for the fanout of this net within block B3 uses the wireload
model wlm_aggr, the segment of net within block B4 utilizes the wireload

Figure 4-10 TOP wireload mode.

Figure 4-11 ENCLOSED wireload mode.

wlm_cons

wlm_light

wlm_aggr wlm_typ

wlm_cons

B1

B2

B3 B4

wlm_cons
wlm_light

wlm_aggr
wlm_typ

wlm_light

B1

B2

B3
B5

NETQ

CHAPTER 4 Interconnect Parasitics

112

model wlm_typ, and the segment within block B2 uses the wireload model
wlm_light.

Typically a wireload model is selected based upon the chip area of the
block. However these can be modified or changed at the user’s discretion.
For example, one can select the wireload model wlm_aggr for a block area
between 0 and 400, the wireload model wlm_typ for area between 400 and
1000, and the wireload model wlm_cons for area 1000 or higher. Wireload
models are typically defined in a cell library - however a user can define a
custom wireload model as well. A default wireload model may optionally
be specified in the cell library as:

default_wire_load: "wlm_light";

A wireload selection group, which selects a wireload model based upon
area, is defined in a cell library. Here is one such example:

wire_load_selection (WireAreaSelGrp){
wire_load_from_area(0, 50000, "wlm_light");
wire_load_from_area(50000, 100000, "wlm_cons");
wire_load_from_area(100000, 200000, "wlm_typ");

Figure 4-12 SEGMENTED wireload mode.

wl_cons

wl_light

wl_aggr wl_typ

wlm_aggr wlm_typwlm_light

B1
B2

B3 B4
NETQ

Representation of Extracted Parasitics SECTION 4.3

113

wire_load_from_area(200000, 500000, "wlm_aggr");
}

A cell library can contain many such selection groups. A particular one can
be selected for use in STA by using the set_wire_load_selection_group specifi-
cation.

set_wire_load_selection_group WireAreaSelGrp

This section described the modeling of estimated parasitics before the
physical implementation, that is, during the pre-layout phase. The next
section describes the representation of parasitics extracted from the layout.

4.3 Representation of Extracted Parasitics

Parasitics extracted from a layout can be described in three formats:

i. Detailed Standard Parasitic Format (DSPF)

ii. Reduced Standard Parasitic Format (RSPF)

iii. Standard Parasitic Extraction Format (SPEF)

Some tools provide a proprietary binary representation of the parasitics,
such as SBPF; this helps in keeping the file size smaller and speeds up the
reading of the parasitics by the tools. A brief description of each of the
above three formats follows.

4.3.1 Detailed Standard Parasitic Format

In the DSPF representation, the detailed parasitics are represented in
SPICE1 format. The SPICE Comment statements are used to indicate the cell

1. Format that is readable by a circuit simulator, such as SPICE. Refer to [NAG75] or any
book on analog integrated circuits design or simulation for further information.

CHAPTER 4 Interconnect Parasitics

114

types, cell pins and their capacitances. The resistance and capacitance val-
ues are in standard SPICE syntax and the cell instantiations are also includ-
ed in this representation. The advantage of this format is that the DSPF file
can be used as an input to a SPICE simulator itself. However, the drawback
is that the DSPF syntax is too detailed and verbose with the result that the
total file size for a typical block is very large. Thus, this format is rarely em-
ployed in practice for anything but a relatively small group of nets.

Here is an example DSPF file that describes the interconnect from a prima-
ry input IN to the input pin A of buffer BUF, and another net from output
pin OUT of BUF to the primary output pin OUT.

.SUBCKT TEST_EXAMPLE OUT IN
* Net Section
*|GROUND_NET VSS
*|NET IN 4.9E-02PF
*|P (IN I 0.0 0.0 4.1)
*|I (BUF1:A BUF A I 0.0 0.7 4.3)
C1 IN VSS 2.3E-02PF
C2 BUF1:A VSS 2.6E-02PF
R1 IN BUF1:A 4.8E00
*|NET OUT 4.47E-02PF
*|S (OUT:1 8.3 0.7)
*|P (OUT O 0.0 8.3 0.0)
*|I (BUF1:OUT BUF1 OUT O 0.0 4.9 0.7)
C3 BUF1:OUT VSS 3.5E-02PF
C4 OUT:1 VSS 4.9E-03PF
C5 OUT VSS 4.8E-03PF
R2 BUF1:OUT OUT:1 12.1E00
R3 OUT:1 OUT 8.3E00
*Instance Section
X1 BUF1:A BUF1:OUT BUF
.ENDS

The nonstandard SPICE statements in DSPF are comments that start with
“*|” and have the following format:

*|I(InstancePinName InstanceName PinName PinType PinCap X Y)
*|P(PinName PinType PinCap X Y)

Representation of Extracted Parasitics SECTION 4.3

115

*|NET NetName NetCap
*|S(SubNodeName X Y)
*|GROUND_NET NetName

4.3.2 Reduced Standard Parasitic Format

In the RSPF representation, the parasitics are represented in a reduced
form. The reduced format involves a voltage source and a controlled cur-
rent source. The RSPF format is also a SPICE file since it can be read into a
SPICE-like simulator. The RSPF format requires that the detailed parasitics
are reduced and mapped into the reduced format. This is thus a drawback
of the RSPF representation since the focus of the parasitic extraction pro-
cess is normally on the extraction accuracy and not on the reduction to a
compact format like RSPF. One other limitation of the RSPF representation
is that the bidirectional signal flow cannot be represented in this format.

Here is an example of an RSPF file. The original design and the equivalent
representation are shown in Figure 4-13.

* Design Name : TEST1
* Date : 7 September 2002
* Time : 02:00:00
* Resistance Units : 1 ohms
* Capacitance Units : 1 pico farads
*| RSPF 1.0
*| DELIMITER "_"
.SUBCKT TEST1 OUT IN
*| GROUND_NET VSS
*|NET CP 0.075PF
*|DRIVER CKBUF_Z CKBUF Z
*|S (CKBUF_Z_OUTP 0.0 0.0)
R1 CKBUF_Z CKBUF_Z_OUTP 8.85
C1 CKBUF_Z_OUTP VSS 0.05PF
C2 CKBUF_Z VSS 0.025PF
*|LOAD SDFF1_CP SDFF1 CP
*|S (SDFF1_CP_INP 0.0 0.0)
E1 SDFF1_CP_INP VSS CKBUF_Z VSS 1.0
R2 SDFF1_CP_INP SDFF1_CP 52.0
C3 SDFF1_CP VSS 0.1PF

CHAPTER 4 Interconnect Parasitics

116

*|LOAD SDFF2_CP SDFF2 CP
*|S (SDFF2_CP_INP 0.0 0.0)
E2 SDFF2_CP_INP VSS CKBUF_Z VSS 1.0
R3 SDFF2_CP_INP SDFF2_CP 43.5
C4 SDFF2_CP VSS 0.1PF
*Instance Section
X1 SDFF1_Q SDFF1_QN SDFF1_D SDFF1_CP SDFF1_CD VDD VSS SDFF
X2 SDFF2_Q SDFF2_QN SDFF2_D SDFF2_CP SDFF2_CD VDD VSS SDFF
X3 CKBUF_Z CKBUF_A VDD VSS CKBUF
.ENDS
.END

Figure 4-13 RSPF example representation.

D Q

CP

D Q

CP

D Q

CP

CKBUF

A Z SDFF1

SDFF2
(a) Example logic.

(b) RSPF representation.

D Q

CP

+
-

+
-

CKBUF

Z
R1

C1C2

CKBUF_Z

SDFF1

SDFF2

R2

C3

R3

C4

V(CKBUF_Z)

V(CKBUF_Z)

Representation of Extracted Parasitics SECTION 4.3

117

This file has the following features:

• The pin-to-pin interconnect delays are modeled at each of the
fanout cell inputs with a capacitor of value 0.1pF (C3 and C4 in
the example) and a resistor (R2 and R3). The resistor value is cho-
sen such that the RC delay corresponds to the pin-to-pin inter-
connect delay. The PI segment load at the output of the driving
cell models the correct cell delay through the cell.

• The RC elements at the gate inputs are driven by ideal voltage
sources (E1 and E2) that are equal to the voltage at the output of
the driving gate.

4.3.3 Standard Parasitic Exchange Format

The SPEF is a compact format which allows the representation of the de-
tailed parasitics. An example of a net with two fanouts is shown below.

*D_NET NET_27 0.77181
*CONN
*I *8:Q O *L 0 *D CELL1
*I *10:I I *L 12.3
*CAP
1 *9:0 0.00372945
2 *9:1 0.0206066
3 *9:2 0.035503
4 *9:3 0.0186259
5 *9:4 0.0117878
6 *9:5 0.0189788
7 *9:6 0.0194256
8 *9:7 0.0122347
9 *9:8 0.00972101
10 *9:9 0.298681
11 *9:10 0.305738
12 *9:11 0.0167775
*RES
1 *9:0 *9:1 0.0327394
2 *9:1 *9:2 0.116926
3 *9:2 *9:3 0.119265
4 *9:4 *9:5 0.0122066

CHAPTER 4 Interconnect Parasitics

118

5 *9:5 *9:6 0.0122066
6 *9:6 *9:7 0.0122066
7 *9:8 *9:9 0.142205
8 *9:9 *9:10 3.85904
9 *9:10 *9:11 0.142205
10 *9:12 *9:2 1.33151
11 *9:13 *9:6 1.33151
12 *9:1 *9:9 1.33151
13 *9:5 *9:10 1.33151
14 *9:12 *8:Q 0
15 *9:13 *10:I 0
*END

The units of the parasitics R and C are specified at the beginning of the
SPEF file. A more detailed description of the SPEF is provided in Appendix
C. Due to its compactness and completeness of representation, SPEF is the
format of choice for representing the parasitics in a design.

4.4 Representing Coupling Capacitances

The previous section illustrated the cases where the capacitances of the net
are represented as grounded capacitances. Since most of the capacitances
in the nanometer technologies are sidewall capacitances, the proper repre-
sentation for these capacitances is the signal to signal coupling capacitance.

The representation of coupling capacitances in DSPF is as an add-on to the
original DSPF standard and is thus not unique. The coupling capacitances
are replicated between both sets of coupled nets. This implies that the
DSPF cannot be directly read into SPICE because of the duplication of the
coupled capacitance in both set of nets. Some tools which output DSPF re-
solved this discrepancy by including half of the coupling capacitance in
both of the coupled nets.

The RSPF is a reduced representation and thus not amenable to represent-
ing coupling capacitances.

Hierarchical Methodology SECTION 4.5

119

The SPEF standard handles the coupling capacitances in a uniform and un-
ambiguous manner and is thus the extraction format of choice when cross-
talk timing is of interest. Further, the SPEF is a compact representation in
terms of file size and is used for representing parasitics with and without
coupling.

As described in Appendix C, one of the mechanisms to manage the file size
is by having a name directory in the beginning of the file. Many extraction
tools now specify a directory of net names (mapping net names to indices)
in the beginning of the SPEF file so that the verbosity of repeating the net
names is avoided. This reduces the file size significantly. An example with
the name directory is shown in the appendix on SPEF.

4.5 Hierarchical Methodology

The large and complex designs generally require hierarchical methodology
during the physical design process for the parasitic extraction and timing
verification. In such scenarios, the parasitics of a block are extracted at the
block level and can then be utilized at the higher levels of hierarchy.

The layout extracted parasitics of a block may be utilized for timing verifi-
cation with another block whose layout has not been completed. In this
scenario, layout extracted parasitics of layout-complete blocks are often
used with wireload model based parasitic estimates for the pre-layout
blocks.

In the case of the hierarchical flow, where the top level layout is complete
but the blocks are still represented as black boxes (pre-layout), wireload
model based parasitic estimates can be used for the lower level blocks
along with the layout extracted parasitics for the top level. Once the layout
of the blocks is complete, layout extracted parasitics for the top and the
blocks can be stitched together.

CHAPTER 4 Interconnect Parasitics

120

Block Replicated in Layout

If a design block is replicated multiple times in layout, the parasitic extrac-
tion for one instantiation can be utilized for all instantiations. This requires
that the layout of the block be identical in all respects for various instantia-
tions of the block. For example, there should be no difference in terms of
layout environment as seen from the nets routed within the block. This im-
plies that the block level nets are not capacitively coupled with any nets
outside the block. One way this can be achieved is by ensuring that no top
level nets are routed over the blocks and there is adequate shielding or
spacing for the nets routed near the boundary of the block.

4.6 Reducing Parasitics for Critical Nets

This section provides a brief outline of the common techniques to manage
the impact of parasitics for critical nets.

Reducing Interconnect Resistance

For critical nets, it is important to maintain low slew values (or fast transi-
tion times), which implies that the interconnect resistance should be re-
duced. Typically, there are two ways of achieving low resistance:

• Wide trace: Having a trace wider than the minimum width reduc-
es interconnect resistance without causing a significant increase
in the parasitic capacitance. Thus, the overall RC interconnect
delay and the transition times are reduced.

• Routing in upper (thicker) metals: The upper metal layer(s) normal-
ly have low resistivity which can be utilized for routing the criti-
cal signals. The low interconnect resistance reduces the
interconnect delay as well as the transition times at the destina-
tion pins.

Reducing Parasitics for Critical Nets SECTION 4.6

121

Increasing Wire Spacing

Increasing the spacing between traces reduces the amount of coupling (and
total) capacitance of the net. Large coupling capacitance increases the
crosstalk whose avoidance is an important consideration for nets routed in
adjacent traces over a long distance.

Parasitics for Correlated Nets

In many cases, a group of nets have to be matched in terms of timing. An
example is the data signals within a byte lane of a high speed DDR inter-
face. Since it is important that all signals within a byte lane see identical
parasitics, the signals are all routed in the same metal layer. For example,
while metal layers M2 and M3 have the same average and the same statisti-
cal variations, the variations are independent so that the parasitic varia-
tions in these two metal layers do not track each other. Thus, if it is
important for timing to match for critical signals, the routing must be iden-
tical in each metal layer.

q

C H A P T E R

5

Delay Calculation

his chapter provides an overview of the delay calculation of cell-
based designs for the pre-layout and post-layout timing verification.
The previous chapters have focused on the modeling of the intercon-

nect and the cell library. The cell and interconnect modeling techniques are
utilized to obtain timing of the design.

5.1 Overview

5.1.1 Delay Calculation Basics

A typical design comprises of various combinational and sequential cells.
We use an example logic fragment shown in Figure 5-1 to describe the con-
cept of delay calculation.

T

 J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs: A Practical Approach, 123
DOI: 10.1007/978-0-387-93820-2_5, © Springer Science + Business Media, LLC 2009

CHAPTER 5 Delay Calculation

124

The library description of each cell specifies the pin capacitance values for
each of the input pins1. Thus, every net in the design has a capacitive load
which is the sum of the pin capacitance loads of every fanout of the net
plus any contribution from the interconnect. For the purposes of simplicity,
the contributions from the interconnect are not considered in this section -
those are described in the later sections. Without considering the intercon-
nect parasitics, the internal net NET0 in Figure 5-1 has a net capacitance
which is comprised of the input pin capacitances from the UAND1 and
UNOR2 cells. The output O1 has the pin capacitance of the UNOR2 cell
plus any capacitive loading for the output of the logic block. Inputs I1 and
I2 have pin capacitances corresponding to the UAND1 and UINV0 cells.
With such an abstraction, the logic design in Figure 5-1 can be described by
an equivalent representation shown in Figure 5-2.

As described in Chapter 3, the cell library contains NLDM timing models
for various timing arcs. The non-linear models are represented as two-di-
mensional tables in terms of input transition time and output capacitance.
The output transition time of a logic cell is also described as a two-dimen-
sional table in terms of input transition and total output capacitance at the
net. Thus, if the input transition time (or slew) is specified at the inputs of
the logic block, the output transition time and delays through the timing
arcs of the UINV0 cell and UAND1 cell (for the input I1) can be obtained
from the library cell descriptions. Extending the same approach through
the fanout cells, the transition times and delays through the other timing

Figure 5-1 Schematic of an example logic block.

1. The standard cell libraries normally do not specify pin capacitances for cell outputs.

I1

I2

O1

O2

NET0

UINV0

UAND1

UNOR2

Overview SECTION 5.1

125

arc of the UAND1 cell (from NET0 to O1) and through the UNOR2 cell can
be obtained. For a multi-input cell (such as UAND1), different input pins
can provide different values of output transition times. The choice of tran-
sition time used for the fanout net depends upon the slew merge option
and is described in Section 5.4. Using the approach described above, the
delays through any logic cell can be obtained based upon the transition
time at the input pins and the capacitance present at the output pins.

5.1.2 Delay Calculation with Interconnect

Pre-layout Timing

As described in Chapter 4, the interconnect parasitics are estimated using
wireload models during the pre-layout timing verification. In many cases,
the resistance contribution in the wireload models is set to 0. In such sce-
narios, the wireload contribution is purely capacitive and the delay calcu-
lation methodology described in the previous section is applicable to
obtain the delays for all the timing arcs in the design.

In cases where the wireload models include the effect of the resistance of
the interconnect, the NLDM models are used with the total net capacitance
for the delay through the cell. Since the interconnect is resistive, there is ad-
ditional delay from the output of the driving cell to the input pin of the

Figure 5-2 Logic block representation depicting capacitances.

I1

I2

O1

O2NET0
UINV0

UAND1

UNOR2

CHAPTER 5 Delay Calculation

126

fanout cell. The interconnect delay calculation process is described in Sec-
tion 5.3.

Post-layout Timing

The parasitics of the metal traces map into an RC network between driver
and destination cells. Using the example of Figure 5-1, the interconnect re-
sistance of the nets is illustrated in Figure 5-3. An internal net such as NET0
in Figure 5-1 maps into multiple subnodes as shown in Figure 5-3. Thus,
the output load of the inverter cell UINV0 is comprised of an RC structure.
Since the NLDM tables are in terms of input transition and output capaci-
tance, the resistive load at the output pin implies that the NLDM tables are
not directly applicable. Using the NLDM with resistive interconnect is de-
scribed in the next section.

5.2 Cell Delay using Effective Capacitance

As described above, the NLDM models are not directly usable when the
load at the output of the cell includes the interconnect resistance. Instead,
an “effective” capacitance approach is employed to handle the effect of re-
sistance.

Figure 5-3 Logic block representation depicting resistive nets.

I1

I2

O1

O2NET0a

NET0b

NET0c

UINV0

UAND1

UNOR2

Cell Delay using Effective Capacitance SECTION 5.2

127

The effective capacitance approach attempts to find a single capacitance
that can be utilized as the equivalent load so that the original design as
well the design with equivalent capacitance load behave similarly in terms
of timing at the output of the cell. This equivalent single capacitance is
termed as effective capacitance.

Figure 5-4(a) shows a cell with an RC interconnect at its fanout. The RC in-
terconnect is represented by an equivalent RC PI-network shown in Figure
5-4(b). The concept of effective capacitance is to obtain an equivalent out-
put capacitance Ceff (shown in Figure 5-4(c)) which has the same delay
through the cell as the original design with the RC load. In general, the cell
output waveform with the RC load is very different from the waveform
with a single capacitive load.

Figure 5-5 shows representative waveforms at the output of the cell with
total capacitance, effective capacitance and the waveform with the actual
RC interconnect. The effective capacitance Ceff is selected so that the delay
(as measured at the midpoint of the transition) at the output of the cell in
Figure 5-4(c) is the same as the delay in Figure 5-4(a). This is illustrated in
Figure 5-5.

In relation to the PI-equivalent representation, the effective capacitance can
be expressed as:

Ceff = C1 + k * C2, 0 <= k <= 1

where C1 is the near-end capacitance and C2 is the far-end capacitance as
shown in Figure 5-4(b). The value of k lies between 0 and 1. In the scenario
where the interconnect resistance is negligible, the effective capacitance is
nearly equal to the total capacitance. This is directly explainable by setting
R to 0 in Figure 5-4(b). Similarly, if the interconnect resistance is relatively
large, the effective capacitance is almost equal to the near-end capacitance
C1 (Figure 5-4(b)). This can be explained by increasing R to the limiting
case where R becomes infinite (essentially an open circuit).

CHAPTER 5 Delay Calculation

128

The effective capacitance is a function of:

i. the driving cell, and

ii. the characteristics of the load or specifically the input impedance
of the load as seen from the driving cell.

For a given interconnect, a cell with a weak output drive will see a larger
effective capacitance than a cell with a strong drive. Thus, the effective ca-
pacitance will be between the minimum value of C1 (for high interconnect
resistance or strong driving cell) and the maximum value which is the

Figure 5-4 RC interconnect with effective capacitance.

C1 C2

Rwire

(a) RC interconnect.

(b) PI model.

(c) Effective capacitance.

Ceff

Cell Delay using Effective Capacitance SECTION 5.2

129

same as the total capacitance when the interconnect resistance is negligible
or the driving cell is weak. Note that the destination pin transitions later
than the output of the driving cell. The phenomenon of near-end capaci-
tance charging faster than the far-end capacitance is also referred to as the
resistive shielding effect of the interconnect, since only a portion of the far-
end capacitance is seen by the driving cell.

Unlike the computation of the delay by direct lookup of the NLDM models
in the library, the delay calculation tools obtain the effective capacitance by
an iterative procedure. In terms of the algorithm, the first step is to obtain
the driving point impedance seen by the cell output for the actual RC load.
The driving point impedance for the actual RC load is calculated using any
of the methods such as second order AWE or Arnoldi algorithms1. The
next step in computing effective capacitance is equating the charge trans-
ferred until the midpoint of the transition in the two scenarios. The charge
transferred at the cell output when using the actual RC load (based upon
driving point impedance) is matched with the charge transfer when using

Figure 5-5 Waveform at the output of the cell with various loads.

1. See [ARN51] in Bibliography.

Time (ns)

Voltage (V)

Effective capacitance

Actual load

Total capacitance

0.5Vdd

CHAPTER 5 Delay Calculation

130

the effective capacitance as the load. Note that the charge transfer is
matched only until the midpoint of the transition. The procedure starts
with an estimate of the effective capacitance and then iteratively updates
the estimate. In most practical scenarios, the effective capacitance value
converges within a small number of iterations.

The effective capacitance approximation is thus a good model for comput-
ing delay through the cell. However, the output slew obtained using effec-
tive capacitance does not correspond to the actual waveform at the cell
output. The waveform at the cell output, especially for the trailing half of
the waveform, is not represented by the effective capacitance approxima-
tion. Note that in a typical scenario, the waveform of interest is not at the
cell output but at the destination points of the interconnect which are the
input pins of the fanout cells.

There are various approaches to compute the delay and the waveform at
the destination points of the interconnect. In many implementations, the
effective capacitance procedure also computes an equivalent Thevenin
voltage source for the driving cell. The Thevenin source comprises of a
ramp source with a series resistance Rd as shown in Figure 5-6. The series
resistance Rd corresponds to the pull-down (or pull-up) resistance of the
output stage of the cell.

This section described the computation of the delay through the driving
cell with an RC interconnect using the effective capacitance. The effective
capacitance computation also provides the equivalent Thevenin source

Figure 5-6 Thevenin source model for driving cell.

+-

Rd

RC
interconnect

E(t)

E(t)

t

Interconnect Delay SECTION 5.3

131

model which is then used to obtain the timing through the RC intercon-
nect. The process of obtaining timing through the interconnect is described
next.

5.3 Interconnect Delay

As described in Chapter 4, the interconnect parasitics of a net are normally
represented by an RC circuit. The RC interconnect can be pre-layout or
post-layout. While the post-layout parasitic interconnect can include cou-
pling to neighboring nets, the basic delay calculation treats all capacitances
(including coupling capacitances) as capacitances to ground. An example
of parasitics of a net along with its driving cell and a fanout cell is shown in
Figure 5-7.

Using the effective capacitance approach, the delay through the driving
cell and through the interconnect are obtained separately. The effective ca-
pacitance approach provides the delay through the driving cell as well as
the equivalent Thevenin source at the output of the cell. The delay through
the interconnect is then computed separately using the Thevenin source.
The interconnect portion has one input and as many outputs as the desti-
nation pins. Using the equivalent Thevenin voltage source at the input of
the interconnect, the delays to each of the destination pins are computed.
This is illustrated in Figure 5-6.

For pre-layout analysis, the RC interconnect structure is determined by the
tree type, which in turn determines the net delay. The three types of inter-
connect tree representations are described in detail in Section 4.2. The se-
lected tree type is normally defined by the library. In general, the worst-

Figure 5-7 Parasitics of a net.

R1 R2 R3

C1 C2 C3 C4

R4

CHAPTER 5 Delay Calculation

132

case slow library would select the worst-case tree type since that tree type
provides the largest interconnect delay. Similarly, the best-case tree struc-
ture, which does not include any resistance from the source pin to the des-
tination pins, is normally selected for the best-case fast corner. The
interconnect delay for the best-case tree type is thus equal to zero. The in-
terconnect delay for the typical-case tree and worst-case tree are handled
just like for the post-layout RC interconnect.

Elmore Delay

Elmore delays are applicable for RC trees. What is an RC tree? An RC tree
meets the following three conditions:

• Has a single input (source) node.
• Does not have any resistive loops.
• All capacitances are between a node and ground.

Elmore delay can be considered as finding the delay through each seg-
ment, as the R times the downstream capacitance, and then taking the sum
of the delays from the root to the sink.

The delays to various intermediate nodes are represented as:

Td1 = C1 * R1;
Td2 = C1 * R1 + C2 * (R1 + R2);
. . .
Tdn = S(i=1,N) Ci (S (j=1,i)Rj); # Elmore delay equation

Figure 5-8 Elmore delay model.

R1

C1

R2

C2

1 2
Ri-1

Ci-1

i-1
Ri

Ci

i
Rn

Cn

N

Interconnect Delay SECTION 5.3

133

Elmore delay is mathematically identical to considering the first moment
of the impulse response1. We now apply the Elmore delay model to a sim-
plified representation of a wire with Rwire and Cwire as the parasitics, plus a
load capacitance Cload to model the pin capacitance at the far-end of the
wire. The equivalent RC network can be simplified as a PI network model
or a T-representation as shown in Figure 4-4 and Figure 4-3 respectively.
Either representation provides the net delay (based upon Elmore delay
equation) as:

Rwire * (Cwire / 2 + Cload)

This is because the Cload sees the entire wire resistance in its charging path,
whereas the Cwire capacitance sees Rwire / 2 for the T-representation, and
Cwire / 2 sees Rwire in its charging path for the PI-representation. The above
approach can be extended to a more complex interconnect structure also.

An example of Elmore delay calculation for a net using wireload model
with balanced RC tree (and also worst-case RC tree) is given below.

Using a balanced tree model, the resistance and capacitance of a net is di-
vided equally among the branches of the net (assuming a fanout of N). For
a branch with pin load Cpin, the delay using balanced tree is:

net delay = (Rwire / N) * (Cwire / (2 * N) + Cpin)

In the worst-case tree model, the resistance and entire capacitance of the
net is considered for each endpoint of the net. Here Cpins is the total pin
load from all fanouts:

Net delay = Rwire * (Cwire / 2 + Cpins)

Figure 5-9 shows an example design.

1. See [RUB83] in Bibliography.

CHAPTER 5 Delay Calculation

134

If we use the worst-case tree model to calculate the delay for net N1, we
get:

Net delay = Rwire * (Cwire /2 + Cpins)
= 0.3 * (0.5 + 2.3) = 0.84

If we use the balanced tree model, we get the following delays for the two
branches of the net N1:

Net delay to NOR2 input pin = (0.3/2) * (0.5/2 + 1.3)
= 0.2325

Net delay to BUF input pin= (0.3/2) * (0.5/2 + 1.0)
= 0.1875

Higher Order Interconnect Delay Estimation

As described above, the Elmore delay is the first moment of the impulse re-
sponse. The AWE (Asymptotic Waveform Evaluation), Arnoldi or other
methods match higher order moments of response. By considering the
higher order estimates, greater accuracy for computing the interconnect
delays is obtained.

Figure 5-9 Net delay for worst-case tree using Elmore model.

pin cap=1.3

pin cap=1.0
0.3

1.0
library wire load “10x10”

N1

= Distributed RC

NOR2

BUF

Slew Merging SECTION 5.4

135

Full Chip Delay Calculation

So far, this chapter has described the computation of delays for a cell and
the interconnect at the output of a cell. Thus, given the transition at the in-
puts of the cell, the delays through the cell and the interconnect at the out-
put of the cell can be computed. The transition time at the far-end of the
interconnect (destination or sink point) is the input to the next stage and
this process is repeated throughout the entire design. The delays for each
timing arc in the design are thus calculated.

5.4 Slew Merging

What happens when multiple slews arrive at a common point, such as in
the case of a multi-input cell or a multi-driven net? Such a common point is
referred to as a slew merge point. Which slew is chosen to propagate for-
ward at the slew merge point? Consider the 2-input cell shown in Figure 5-
10.

The slew at pin Z due to signal changing on pin A arrives early but is slow
to rise (slow slew). The slew at pin Z due to signal changing on pin B ar-
rives late but is fast to rise (fast slew). At the slew merge point, such as pin

Figure 5-10 Slews at merge point.

A
B

Z
(a) Slew at pin Z due to A->Z arc.

(b) Slew at pin Z due to B->Z arc.

CHAPTER 5 Delay Calculation

136

Z, which slew should be selected for further propagation? Either of these
slew values may be correct depending upon the type of timing analysis
(max or min) being performed as described below.

There are two possibilities when doing max path analysis:

i. Worst slew propagation: This mode selects the worst slew at the
merge point to propagate. This would be the slew in Figure 5-
10(a). For a timing path that goes through pins A->Z, this selec-
tion is exact, but is pessimistic for any timing path that goes
through pins B->Z.

ii. Worst arrival propagation: This mode selects the worst arrival time
at the merge point to propagate. This corresponds to the slew in
Figure 5-10(b). The slew chosen in this case is exact for a timing
path that goes through pins B->Z but is optimistic for a timing
path that goes through pins A->Z.

Similarly, there are two possibilities when doing min path analysis:

i. Best slew propagation: This mode selects the best slew at the
merge point to propagate. This would be the slew in Figure 5-
10(b). For a timing path that goes through pins B->Z, this selec-
tion is exact, but the selection is smaller for any timing path that
goes through pins A->Z. For the paths going through A->Z, the
path delays are smaller than the actual values and is thus pessi-
mistic for min path analysis.

ii. Best arrival propagation: This mode selects the best arrival time at
the merge point to propagate. This corresponds to the slew in
Figure 5-10(a). The slew chosen in this case is exact for a timing
path that goes through pins A->Z but the selection is larger than
the actual values for a timing path that goes through pins B->Z.
For the paths going through B->Z, the path delays are larger
than the actual values and is thus optimistic for min path analy-
sis.

Different Slew Thresholds SECTION 5.5

137

A designer may perform delay calculation outside of the static timing anal-
ysis environment for generating an SDF. In such cases, the delay calcula-
tion tools normally use the worst slew propagation. The resulting SDF is
adequate for max path analysis but may be optimistic for min path analy-
sis.

Most static timing analysis tools use worst and best slew propagation as
their default as it bounds the analysis by being conservative. However, it is
possible to use the exact slew propagation when a specific path is being an-
alyzed. The exact slew propagation may require enabling an option in the
timing analysis tool. Thus, it is important to understand what slew propa-
gation mode is being used by default in a static timing analysis tool, and
understand situations when it may be overly pessimistic.

5.5 Different Slew Thresholds

In general, a library specifies the slew (transition time) threshold values
used during characterization of the cells. The question is, what happens
when a cell with one set of slew thresholds drives other cells with different
set of slew threshold settings? Consider the case shown in Figure 5-11
where a cell characterized with 20-80 slew threshold drives two fanout
cells; one with a 10-90 slew threshold and the other with a 30-70 slew
threshold and a slew derate of 0.5.

The slew settings for cell U1 are defined in the cell library as follows:

slew_lower_threshold_pct_rise : 20.00
slew_upper_threshold_pct_rise : 80.00

slew_derate_from_library : 1.00
input_threshold_pct_fall : 50.00
output_threshold_pct_fall : 50.00
input_threshold_pct_rise : 50.00
output_threshold_pct_rise : 50.00

CHAPTER 5 Delay Calculation

138

slew_lower_threshold_pct_fall : 20.00
slew_upper_threshold_pct_fall : 80.00

Figure 5-11 Different slew trip points.

20%-80%

30%-70%

U1

U2

U1/Z

U2/A

Slew at U1/Z

Slew at U2/A

10%

90%

20%

80%

Net delay

50%

50%

A Z

A Z

Slew at U3/A

70%

30%U3/A

(derated)

U3

A Z
10%-90%

(derate 0.5)

Different Slew Thresholds SECTION 5.5

139

The cell U2 from another library can have the slew settings defined as:

slew_lower_threshold_pct_rise : 10.00
slew_upper_threshold_pct_rise : 90.00

slew_derate_from_library : 1.00
slew_lower_threshold_pct_fall : 10.00
slew_upper_threshold_pct_fall : 90.00

The cell U3 from yet another library can have the slew settings defined as:

slew_lower_threshold_pct_rise : 30.00
slew_upper_threshold_pct_rise : 70.00

slew_derate_from_library : 0.5
slew_lower_threshold_pct_fall : 30.00
slew_upper_threshold_pct_fall : 70.00

Only the slew related settings for U2 and U3 are shown above; the delay
related settings for input and output thresholds are 50% and not shown
above. The delay calculation tools compute the transition times according
to the slew thresholds of the cells connecting the net. Figure 5-11 shows
how the slew at U1/Z corresponds to the switching waveform at this pin.
The equivalent Thevenin source at U1/Z is utilized to obtain the switching
waveforms at the inputs of the fanout cells. Based upon the waveforms at
U2/A and U3/A and their slew thresholds, the delay calculation tools com-
pute the slews at U2/A and at U3/A. Note that the slew at U2/A is based
upon 10-90 settings whereas the slew used for U3/A is based upon 30-70
settings which is then derated based upon the slew_derate of 0.5 as specified
in the library. This example illustrates how the slew at the input of the
fanout cell is computed based upon the switching waveform and the slew
threshold settings of the fanout cell.

During the pre-layout design phase where the interconnect resistance may
not be considered, the slews at a net with different thresholds can be com-

CHAPTER 5 Delay Calculation

140

puted in the following manner. For example, the relationship between the
10-90 slew and the 20-80 slew is:

slew2080 / (0.8 - 0.2) = slew1090 /(0.9 - 0.1)

Thus, a slew of 500ps with 10-90 measurement points corresponds to a
slew of (500ps * 0.6) / 0.8 = 375ps with 20-80 measurement points. Similar-
ly, a slew of 600ps with 20-80 measurement points corresponds to a slew of
(600ps * 0.8) / 0.6 = 800ps with 10-90 measurement points.

5.6 Different Voltage Domains

A typical design may use different power supply levels for different por-
tions of the chip. In such cases, level shifting cells are used at the interface
between different power supply domains. A level shifting cell accepts in-
put at one supply domain and provides output at the other supply domain.
As an example, a standard cell input can be at 1.2V and its output can be at
a reduced power supply, which may be 0.9V. Figure 5-12 shows an exam-
ple.

Notice that the delay is calculated from the 50% threshold points. These
points are at different voltages for different pins of the interface cells.

5.7 Path Delay Calculation

Once all the delays for each timing arc are available, the timing through the
cells in the design can be represented as a timing graph. The timing
through the combinational cells can be represented as timing arcs from in-
puts to outputs. Similarly, the interconnect is represented with correspond-
ing arcs from the source to each destination (or sink) point represented as a
separate timing arc. Once the entire design is annotated by corresponding
arcs, computing the path delay involves adding up all the net and cell tim-
ing arcs along the path.

Path Delay Calculation SECTION 5.7

141

5.7.1 Combinational Path Delay

Consider the three inverters in series as shown in Figure 5-13. While con-
sidering paths from net N0 to net N3, we consider both rising edge and fall-
ing edge paths. Assume that there is a rising edge at net N0.

The transition time (or slew) at the input of the first inverter may be speci-
fied; in the absence of such a specification, a transition time of 0 (corre-
sponding to an ideal step) is assumed. The transition time at the input
UINVa/A is determined by using the interconnect delay model as specified
in the previous section. The same delay model is also used in determining
the delay, Tn0, for net N0.

Figure 5-12 Cell with different input and output voltages.

Slew

Delay

1.2V

0.9V

10%

90%

50%

50%

10-90 slew threshold

1.2V 0.9V

A Z

A

Z

CHAPTER 5 Delay Calculation

142

The effective capacitance at the output UINVa/Z is obtained based upon
the RC load at the output of UINVa. The transition time at input UINVa/A
and the equivalent effective load at output UINVa/Z is then used to obtain
the cell output fall delay.

The equivalent Thevenin source model at pin UINVa/Z is used to deter-
mine the transition time at pin UINVb/A by using the interconnect model.
The interconnect model is also used to determine the delay, Tn1, on the net
N1.

Once the transition time at input UINVb/A is known, the process for calcu-
lating the delay through UINVb is similarly utilized. The RC interconnect
at UINVb/Z, and the pin capacitance of pin UINVc/A are used to determine
the effective load at N2. The transition time at UINVb/A is used to deter-
mine the rise delay through the inverter UINVb, and so on.

The load at the last stage is determined by any explicit load specification
provided, or in the absence of which only the wire load of net N3 is used.

The above analysis assumed a rising edge at net N0. Similar analysis can be
carried out for the case of a falling edge on net N0. Thus, in this simple ex-
ample, there are two timing paths with the following delays:

Tfall = Tn0rise + Tafall + Tn1fall + Tbrise + Tn2rise +
Tcfall + Tn3fall

Figure 5-13 Timing a combinational path.

N0 N2

UINVa UINVb UINVc

A Z

Cload

N3N1

Tn0 Tn1 Tn2 Tn3Ta Tb Tc

A Z A Z

Path Delay Calculation SECTION 5.7

143

Trise = Tn0fall + Tarise + Tn1rise + Tbfall + Tn2fall +
Tcrise + Tn3rise

In general, the rise and fall delays through the interconnect can be different
because of different Thevenin source models at the output of the driving
cell.

5.7.2 Path to a Flip-flop

Input to Flip-flop Path

Consider the timing of the path from input SDT to flip-flop UFF1 as shown
in Figure 5-14.

We need to consider both rising edge and falling edge paths. For the case
of a rising edge on input SDT, the data path delay is:

Tn1rise + Tafall + Tn2fall + Tbuf1fall + Tn3fall + Tbrise + Tn4rise

Figure 5-14 Path to a flip-flop.

UFF1

UNOR2a UNOR2b
UBUF1

N1 N2 N3

N4

SDT A Z
BZB

Z

UBUF2

MCLK

Tn1 Ta Tn2 Tbuf1 Tn3 Tb

Tn5
Tn6

N5 N6

Tbuf2

Tn4

Tsetup

D Q

CK

CHAPTER 5 Delay Calculation

144

Similarly, for a falling edge on input SDT, the data path delay is:

Tn1fall + Tarise + Tn2rise + Tbuf1rise + Tn3rise + Tbfall + Tn4fall

The capture clock path delay for a rising edge on input MCLK is:

Tn5rise + Tbuf2rise + Tn6rise

Flip-flop to Flip-flop Path

An example of a data path between two flip-flops and corresponding clock
paths is shown in Figure 5-15.

The data path delay for a rising edge on UFF0/Q is:

Tck2qrise + Tn1rise + Tafall + Tn2fall + Tbfall + Tn3fall

The launch clock path delay for a rising edge on input PCLK is:

Tn4rise + T5rise + Tn5arise

Figure 5-15 Flip-flop to flip-flop.

UFF0 UFF1
UNANDa

UANDb

N1
N2

N3

N4

N5

N6

PCLK UBUF5

UBUF6

Tn1 Tn2 Tn3

Tn4

Tck2q

Tn6

Tn5a

Tn5b

Ta Tb

T5

T6

Tsetup

D Q

CK

D Q

CK

Path Delay Calculation SECTION 5.7

145

The capture clock path delay for a rising edge on input PCLK is:

Tn4rise + T5rise + Tn5brise + T6rise + Tn6rise

Note that unateness of the cell needs to be considered as the edge direction
may change as it goes through a cell.

5.7.3 Multiple Paths

Between any two points, there can be many paths. The longest path is the
one that takes the longest time; this is also called the worst path, a late path
or a max path. The shortest path is the one that takes the shortest time; this
is also called the best path, an early path or a min path.

See the logic and the delays through the timing arcs in Figure 5-16. The lon-
gest path between the two flip-flops is through the cells UBUF1, UNOR2,
and UNAND3. The shortest path between the two flip-flops is through the
cell UNAND3.

Figure 5-16 Longest and shortest paths.

UFF0 UFF4UBUF1
UNOR2

UNAND3Longest path

Shortest path

D Q

CK

D Q

CK
2/2

2/2
4/3
4/3

4/3
1/13/3

4/3=“rise delay/fall delay”

1/1
1/1

CHAPTER 5 Delay Calculation

146

5.8 Slack Calculation

Slack is the difference between the required time and the time that a signal
arrives. In Figure 5-17, the data is required to be stable at time 7ns for the
setup requirement to be met. However data becomes stable at 1ns. Thus,
the slack is 6ns (= 7ns - 1ns).

Assuming that the data required time is obtained from the setup time of a
capture flip-flop,

Slack = Required_time - Arrival_time
Required_time = Tperiod - Tsetup(capture_flip_flop)

= 10 - 3 = 7ns
Arrival_time = 1ns
Slack = 7 - 1 = 6ns

Similarly if there is a skew requirement of 100ps between two signals and
the measured skew is 60ps, the slack in skew is 40ps (= 100ps - 60ps).

q

Figure 5-17 Slack.

Data
required

Data

CLK

DATA

Slack

arrives

0 1 5 7 10ns

C H A P T E R

6

Crosstalk and Noise

his chapter describes the signal integrity aspects of an ASIC in nano-
meter technologies. In deep submicron technologies, crosstalk plays
an important role in the signal integrity of the design. The crosstalk

noise refers to unintentional coupling of activity between two or more sig-
nals. Relevant noise and crosstalk analysis techniques, namely glitch analy-
sis and crosstalk analysis, allow these effects to be included during static
timing analysis and are described in this chapter. These techniques can be
used to make the ASIC behave robustly.

T

 J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs: A Practical Approach, 147
DOI: 10.1007/978-0-387-93820-2_6, © Springer Science + Business Media, LLC 2009

CHAPTER 6 Crosstalk and Noise

148

6.1 Overview

Noise refers to undesired or unintentional effects affecting the proper oper-
ation of the chip. In nanometer technologies, the noise can impact in terms
of functionality or in terms of timing of the devices.

Why noise and signal integrity?

There are several reasons why the noise plays an important role in the
deep submicron technologies:

• Increasing number of metal layers: For example, a 0.25mm or 0.3mm
process has four or five metal layers and it increases to ten or
higher metal layers in the 65nm and 45nm process geometries.
Figure 4-1 depicts the multiple layers of the metal interconnect.

• Vertically dominant metal aspect ratio: This means that the wires
are thin and tall unlike the wide and thin in the earlier process
geometries. Thus, a greater proportion of the capacitance is com-
prised of sidewall coupling capacitance which maps into wire to
wire capacitance between neighboring wires.

• Higher routing density due to finer geometry: Thus, more metal
wires are packed in close physical proximity.

• Larger number of interacting devices and interconnects: Thus, greater
number of active standard cells and signal traces are packed in
the same silicon area causing a lot more interactions.

• Faster waveforms due to higher frequencies: Fast edge rates cause
more current spikes as well as greater coupling impact on the
neighboring traces and cells.

• Lower supply voltage: The supply voltage reduction leaves little
margin for noise.

In this chapter, we study the effect of crosstalk noise in particular. The
crosstalk noise refers to unintentional coupling of activity between two or
more signals. The crosstalk noise is caused by the capacitive coupling be-
tween neighboring signals on the die. This results in switching activity on a
net to cause unintentional effects on the coupled signals. The affected sig-

Overview SECTION 6.1

149

nal is called the victim, and the affecting signals are termed as aggressors.
Note that two coupled nets can affect each other, and often a net can be a
victim as well as an aggressor.

Figure 6-1 shows an example of a few signal traces coupled together. The
distributed RC extraction of the coupled interconnect is depicted along
with several drivers and fanout cells. In this example, nets N1 and N2 have
Cc1 + Cc4 as coupling capacitance between them, whereas Cc2 + Cc5 is the
coupling capacitance between nets N2 and N3.

Broadly, there are two types of noise effects caused by crosstalk - glitch1,
which refers to noise caused on a steady victim signal due to coupling of
switching activity of neighboring aggressors, and change in timing (cross-
talk delta delay), caused by coupling of switching activity of the victim
with the switching activity of the aggressors. These two types of crosstalk
noise are described in the next two sections.

Figure 6-1 Example of coupled interconnect.

1. Some analysis tools refer to glitch as noise. Similarly, some tools use crosstalk to refer
to crosstalk effect on delay.

Cc = Coupled interconnect

Cc1

Cc2

Cc3
Cc4

Cc5

N1

N2

N3

CHAPTER 6 Crosstalk and Noise

150

6.2 Crosstalk Glitch Analysis

6.2.1 Basics

A steady signal net can have a glitch (positive or negative) due to charge
transferred by the switching aggressors through the coupling capacitances.
A positive glitch induced by crosstalk from a rising aggressor net is illus-
trated in Figure 6-2. The coupling capacitance between the two nets is de-
picted as one lumped capacitance Cc instead of distributed coupling, this is
to simplify the explanation below without any loss of generality. In typical
representations of the extracted netlist, the coupling capacitance may be
distributed across multiple segments as seen previously in Section 6.1.

In this example, the NAND2 cell UNAND0 switches and charges its output
net (labeled Aggressor). Some of the charge is also transferred to the victim
net through the coupling capacitance Cc and results in the positive glitch.
The amount of charge transferred is directly related to the coupling capaci-
tance, Cc, between the aggressor and the victim net. The charge transferred
on the grounded capacitances of the victim net causes the glitch at that net.
The steady value on the victim net (in this case, 0 or low) is restored be-
cause the transferred charge is dissipated through the pull-down stage of
the driving cell INV2.

Figure 6-2 Glitch due to an aggressor.

Aggressor net

Glitch

Victim net

Coupling cap, Cc

0

1

UNAND0

UNAND1INV2

Crosstalk Glitch Analysis SECTION 6.2

151

The magnitude of the glitch caused is dependent upon a variety of factors.
Some of these factors are:

i. Coupling capacitance between the aggressor net and victim: The
greater the coupling capacitance, the larger the magnitude of the
glitch.

ii. Slew of the aggressor net: The faster the slew at the aggressor net,
the larger the magnitude of glitch. In general, faster slew is be-
cause of higher output drive strength for the cell driving the ag-
gressor net.

iii. Victim net grounded capacitance: The smaller the grounded capaci-
tance on the victim net, the larger the magnitude of the glitch.

iv. Victim net driving strength: The smaller the output drive strength
of the cell driving the victim net, the larger the magnitude of the
glitch.

Overall, while the steady value on the victim net gets restored, the glitch
can affect the functionality of the circuit for the reasons stated below.

• The glitch magnitude may be large enough to be seen as a differ-
ent logic value by the fanout cells (e.g. a victim at logic-0 may ap-
pear as logic-1 for the fanout cells). This is especially critical for
the sequential cells (flip-flops, latches) or memories, where a
glitch on the clock or asynchronous set/reset can be catastrophic
to the functionality of the design. Similarly, a glitch on the data
signal at the latch input can cause incorrect data to be latched
which can also be catastrophic if the glitch occurs when the data
is being clocked in.

• Even if the victim net does not drive a sequential cell, a wide
glitch may be propagated through the fanouts of the victim net
and reach a sequential cell input with catastrophic consequences
for the design.

CHAPTER 6 Crosstalk and Noise

152

6.2.2 Types of Glitches

There are different types of glitches.

Rise and Fall Glitches

The discussion in the previous subsection illustrates a positive or rise
glitch on a victim net which is steady low. An analogous case is of a nega-
tive glitch on a steady high signal. A falling aggressor net induces a fall
glitch on a steady high signal.

Overshoot and Undershoot Glitches

What happens when a rising aggressor couples to a victim net which is
steady high? There is still a glitch which takes the victim net voltage above
its steady high value. Such a glitch is called an overshoot glitch. Similarly,
a falling aggressor when coupled to a steady low victim net causes an un-
dershoot glitch on the victim net.

All four cases of glitches induced by crosstalk are illustrated in Figure 6-3.

Figure 6-3 Types of glitches.

Victims

Aggressor

Overshoot

Fall
glitch

Rise
glitch

Undershoot

Crosstalk Glitch Analysis SECTION 6.2

153

As described in the previous subsection, the glitch is governed by the cou-
pling capacitance, aggressor slew and the drive strength of the victim net.
The glitch computation is based upon the amount of current injected by the
switching aggressor, the RC interconnect for the victim net, and the output
impedance of the cell driving the victim net. The detailed glitch calculation
is based upon the library models; the related noise models for the calcula-
tion are part of the standard cell library models described in Chapter 3. The
output dc_current models in Section 3.7 relate to the output impedance of
the cell.

6.2.3 Glitch Thresholds and Propagation

How can it be determined whether a glitch at a net can be propagated
through the fanout cells? As discussed in an earlier subsection, a glitch
caused by coupling from a switching aggressor can propagate through the
fanout cell depending upon the fanout cell and glitch attributes such as
glitch height and glitch width. This analysis can be based upon DC or AC
noise thresholds. The DC noise analysis only examines the glitch magni-
tude and is conservative whereas the AC noise analysis examines other at-
tributes such as glitch width and fanout cell output load. Various threshold
metrics used in the DC and AC analyses of the glitches are described be-
low.

DC Thresholds

The DC noise margin is a check used for glitch magnitude and refers to the
DC noise limits on the input of a cell while ensuring proper logic function-
ality. For example, the output of an inverter cell may be high (that is, stay
above the minimum value of VOH) as long as the input stays below the
max value of VIL for the cell. Similarly, the output of the inverter cell may
be low (that is, stay below VOL maximum value) as long as the input stays
above the VIH minimum value. These limits are obtained based upon the
DC transfer characteristics1 of the cell and may be populated in the cell li-
brary.

1. See [DAL08] in Bibliography.

CHAPTER 6 Crosstalk and Noise

154

VOH is the range of output voltage that is considered as a logic-one or
high. VIL is the range of input voltage that is considered a logic-zero or
low. VIH is the range of input voltage that is considered as a logic-one.
VOL is the range of output voltage that is considered as a logic-zero. An ex-
ample of the input-output DC transfer characteristics of an inverter cell is
given in Figure 6-4.

The VILmax and VIHmin limits are also referred to as DC margin limits.
The DC margins based upon VIH and VIL are steady state noise limits.
These can thus be used as a filter for determining whether a glitch will
propagate through the fanout cell. The DC noise margin limits are applica-
ble for every input pin of a cell. In general, the DC margin limits are sepa-
rate for rise_glitch (input low) and fall_glitch (input high). Models for DC
margin can be specified as part of the cell library description. A glitch be-
low the DC margin limit (for example, a rise glitch below the VILmax of the
fanout pins) cannot be propagated through the fanout irrespective of the
width of the glitch. Thus, a conservative glitch analysis checks that the
peak voltage level (for all glitches) meets the VIL and the VIH levels of the
fanout cells. As long as all nets meet the VIL and VIH levels for the fanout
cells in spite of any glitches, it can be concluded that the glitches have no
impact on the functionality of the design (since the glitches cannot cause
the output to change).

Figure 6-4 DC transfer characteristics of an inverter cell.

Vout

Vin

Unity slope points

VILmax VIHmin

VOHmin

VOLmax

Unity gain
point

Crosstalk Glitch Analysis SECTION 6.2

155

Figure 6-5 shows an example of DC margin limits. The DC noise margin
can also be fixed to the same limit for all nets in the design. One can set the
largest tolerable noise (or glitch) magnitude, above which noise can be
propagated through the cell to the output pin. Typically this check ensures
that the glitch level is less than VILmax and greater than VIHmin. The
height is often expressed as a percent of the power supply. Thus, if the DC
noise margin is set to 30%, that indicates that any glitch height greater than
30% of the voltage swing is identified as a potential glitch that can propa-
gate through the cell and potentially impact the functionality of the design.

Not all glitches with magnitude larger than the DC noise margin can
change the output of a cell. The width of the glitch is also an important con-
sideration in determining whether the glitch will propagate to the output
or not. A narrow glitch at a cell input will normally not cause any impact at
the output of a cell. However, DC noise margin uses only a constant worst-
case value irrespective of the signal noise width. See Figure 6-6. This pro-
vides a noise rejection level that is a very conservative estimate of the noise
tolerance of a cell.

Figure 6-5 Glitch check based upon DC noise margin.

Height

Vdd

Vih_min

Vil_max

Vss

Safe glitches Potentially hazardous
glitches

Will this propagate to
output?

CHAPTER 6 Crosstalk and Noise

156

AC Thresholds

As described in the subsection above, the DC margin limits for glitch anal-
ysis are conservative since these analyze the design under the worst-case
conditions. The DC margin limits verify that even if the glitch is arbitrarily
wide, it will not affect the proper operation of the design.

In most cases, a design may not pass the conservative DC noise analysis
limits. Therefore it becomes imperative to verify the impact of glitches with
respect to the glitch width and the output load of the cell. In general, if the
glitch is narrow or if the fanout cell has a large output capacitance, the
glitch would have no effect on the proper functional operation. Both the ef-
fect of glitch width and the output capacitance can be explained in terms of
the inertia of the fanout cell. In general, a single stage cell will stop any in-
put glitch which is much narrower than the delay through the cell. This is
because with a narrow glitch, the glitch is over before the fanout cell can re-
spond to it. Thus, a very narrow glitch does not have any effect on the cell.
Since the output load increases the delay through the cell, increasing the
output load has the effect of minimizing the impact of glitch at the input -
though it has the adverse effect of increasing the cell delay.

The AC noise rejection is illustrated in Figure 6-7 (for a fixed output capac-
itance). The dark shaded region represents good or acceptable glitches since
these are either too narrow or too short, or both, and thus have no effect on
the functional behavior of the cell. The lightly shaded region represents bad

Figure 6-6 DC noise rejection level.

Noise width

Noise height

DC noise margin
(Noise rejection level) Safe glitches in this area

Crosstalk Glitch Analysis SECTION 6.2

157

or unacceptable glitches since these are too wide or too tall, or both, and thus
such a glitch at the cell input affects the output of the cell. In the limiting
case of very wide glitches, the glitch threshold corresponds to the DC noise
margin as shown in Figure 6-7.

For a given cell, increasing the output load increases the noise margin since
it increases the inertial delay and the width of the glitch that can pass
through the cell. This phenomenon is illustrated through an example be-
low. Figure 6-8(a) shows an unloaded inverter cell with a positive glitch at
its input. The input glitch is taller than the DC margin of the cell and causes
a glitch at the inverter output. Figure 6-8(b) shows the same inverter cell
with some load at its output. The same input glitch at its input results in a
much smaller glitch at the output. If the output load of the inverter cell is
even higher, as in Figure 6-8(c), the output of the inverter cell does not
have any glitch. Thus, increasing the load at the output makes the cell more
immune to noise propagating from the input to the output.

As described above, the glitches below the AC threshold (the AC noise re-
jection region in Figure 6-7) can be ignored or the fanout cell can be consid-
ered to be immune from such a glitch. The AC threshold (or noise
immunity) region depends upon the output load and the glitch width. As

Figure 6-7 AC noise rejection region.

DC noise margin

AC noise rejection region

Glitch width

Safe
glitch

Potentially
hazardous
glitches

Glitch height

CHAPTER 6 Crosstalk and Noise

158

described in Chapter 3, noise immunity models include the effect of AC
noise rejection described above. The propagated_noise models described in
Section 3.7 capture the effect of AC noise threshold in addition to modeling
the propagation through the cell.

Figure 6-8 Output load determines size of propagated glitch.

* Input glitch size is same in all three cases.

(a) No output load.

(b) Medium load capacitance.

(c) High load capacitance.

Smaller glitch

Cmedium

Chigh

No glitch at output

Crosstalk Glitch Analysis SECTION 6.2

159

What happens if the glitches are larger than the AC threshold? In such a
case where the glitch magnitude exceeds the AC threshold, the glitch at the
cell input produces another glitch at the output of the cell. The output
glitch height and width is a function of input glitch width and height as
well as the output load. This information is characterized in the cell library
which contains detailed tables or functions for the output glitch magnitude
and width as a function of the input pin glitch magnitude, glitch width and
the load at the output pin. The glitch propagation is governed by
propagated_noise models which are included in the library cell description.
The propagated_noise (low and high) models are described in detail in Chap-
ter 3.

Based upon the above, the glitch is computed at the output of the fanout
cell and the same checks (and glitch propagation to the fanout) are fol-
lowed at the fanout net and so on.

While we have used the generic term glitch in the discussion above, it
should be noted that this applies separately to rise glitch (modeled by
propagated_noise_high; or noise_immunity_high in earlier models), fall glitch
(modeled by propagated_noise_low; or noise_immunity_low in earlier mod-
els), overshoot glitch (modeled by noise_immunity_above_high) and undershoot
glitch (modeled by noise_immunity_below_low) as described in the previous
sections.

To summarize, different inputs of a cell have different limits on the glitch
threshold which is a function of glitch width and output capacitance. These
limits are separate for input high (low transition glitch) and for input low
(high transition glitch). The noise analysis examines the peak as well as the
width of the glitch and analyzes whether it can be neglected or whether it
can propagate to fanouts.

CHAPTER 6 Crosstalk and Noise

160

6.2.4 Noise Accumulation with Multiple Aggressors

Figure 6-9 depicts the coupling due to a single aggressor net switching and
introducing a crosstalk glitch on the victim net. In general, a victim net
may be capacitive-coupled to many nets. When multiple nets switch con-
currently, the crosstalk coupling noise effect on the victim is compounded
due to multiple aggressors.

Most analyses for coupling due to multiple aggressors add the glitch effect
due to each aggressor and compute the cumulative effect on the victim.
This may appear conservative, however it does indicate the worst-case
glitch on the victim. An alternate approach is the use of RMS (root-mean-
squared) approach. When using the RMS option, the magnitude of the
glitch on the victim is computed by taking the root-mean-square of the
glitches caused by individual aggressors.

6.2.5 Aggressor Timing Correlation

For crosstalk glitch due to multiple aggressors, the analysis must include
the timing correlation of the aggressor nets and determine whether the
multiple aggressors can switch concurrently. The STA obtains this infor-
mation from the timing windows of the aggressor nets. During timing

Figure 6-9 Glitch from single aggressor.

Aggressor net

Glitch

Victim net

Coupling cap, Cc

0

1

UNAND0

UNAND1

Crosstalk Glitch Analysis SECTION 6.2

161

analysis, the earliest and the latest switching times of the nets are obtained.
These times represent the timing windows during which a net may switch
within a clock cycle. The switching windows (rising and falling) provide
the necessary information on whether the aggressor nets can switch to-
gether.

Based upon whether the multiple aggressors can switch concurrently, the
glitches due to individual aggressors are combined for the victim net. As a
first step, the glitch analysis computes the four types of glitches (rise, fall,
undershoot, and overshoot) separately for each potential aggressor. The
next step combines the glitch contributions from the various individual ag-
gressors. The multiple aggressors can combine separately for each type of
glitch. For example, consider a victim net V coupled to aggressor nets A1,
A2, A3 and A4. During analysis, it is possible that A1, A2, and A4 contrib-
ute to rising and overshoot glitches, whereas only A2 and A3 contribute to
undershoot and falling glitches.

Consider another example where four aggressor nets can cause a rising
glitch when the aggressor nets transition. Figure 6-10 shows the timing
windows and the glitch magnitude caused by each aggressor net. Based
upon the timing windows, the glitch analysis determines the worst possi-
ble combination of aggressor switching which results in the largest glitch.
In this example, the switching window region is divided in four bins - each
bin shows the possible aggressors switching. The glitch contribution from
each aggressor is also depicted in Figure 6-10. Bin 1 has A1 and A2 switch-
ing which can result in a glitch magnitude of 0.21 (= 0.11 + 0.10). Bin 2 has
A1, A2, and A3 switching which can result in a glitch magnitude of 0.30 (=
0.11 + 0.10 + 0.09). Bin 3 has A1 and A3 switching which can result in a
glitch magnitude of 0.20 (= 0.11 + 0.09). Bin 4 has A3 and A4 switching
which can result in a glitch magnitude of 0.32 (= 0.09 + 0.23).

Thus, bin 4 has the worst possible glitch magnitude of 0.32. Note that an
analysis without using timing windows will predict a combined glitch
magnitude of 0.53 (= 0.11 + 0.10 + 0.09 + 0.23) which can be overly pessi-
mistic.

CHAPTER 6 Crosstalk and Noise

162

6.2.6 Aggressor Functional Correlation

For multiple aggressors, the use of timing windows reduces the pessimism
in the analysis by considering the switching window during which a net
can possibly switch. In addition, another factor to be considered is the func-
tional correlation between various signals. For example, the scan1 control
signals only switch during the scan mode and are steady during functional
or mission mode of the design. Thus, the scan control signals cannot cause
a glitch on other signals during the functional mode. The scan control sig-
nals can only be aggressors during the scan mode. In some cases, the test
and functional clocks are mutually exclusive such that the test clock is ac-
tive only during testing when the functional clocks are turned off. In these
designs, the logic controlled by test clocks and the logic controlled by func-
tional clocks create two disjoint sets of aggressors. For such cases, the ag-

Figure 6-10 Switching windows and glitch magnitudes from multiple
aggressors.

1. DFT test mode.

A1

A2

A3

A4

0.11

0.10

0.09

0.23

1 2 3 4

Glitch
height

Crosstalk Glitch Analysis SECTION 6.2

163

gressors controlled by test clocks cannot be combined with the other
aggressors controlled by functional clocks for worst-case noise computa-
tion. Another example of functional correlation is two aggressors which
are the complement (logical inverse) of each other. For such cases, both sig-
nal and its complement cannot be switching in the same direction for cross-
talk noise computation.

Figure 6-11 shows an example of net N1 having coupling with three other
nets N2, N3 and N4. In functional correlation, the functionality of the nets
needs to be considered. Assume net N4 is a constant (for example, a mode
setting net) and thus cannot be an aggressor on net N1, in spite of its cou-
pling. Assume N2 is a net that is part of debug bus, but is in steady state in
functional mode. Thus, net N2 cannot be an aggressor for net N1. Assum-
ing net N3 carries functional data, only net N3 can be considered as a po-
tential aggressor for net N1.

Figure 6-11 Three couplings but only one aggressor.

N1

N2

N3

N4

Cc2

Cc3

Cc4

Functional nets

Constant net

Debug net

CHAPTER 6 Crosstalk and Noise

164

6.3 Crosstalk Delay Analysis

6.3.1 Basics

The capacitance extraction for a typical net in a nanometer design consists
of contributions from many neighboring conductors. Some of these are
grounded capacitances while many others are from traces which are part
of other signal nets. The grounded as well as inter-signal capacitances are
illustrated in Figure 6-1. All of these capacitances are considered as part of
the total net capacitance during the basic delay calculation (without con-
sidering any crosstalk). When the neighboring nets are steady (or not
switching), the inter-signal capacitances can be treated as grounded. When
a neighboring net is switching, the charging current through the coupling
capacitance impacts the timing of the net. The equivalent capacitance seen
from a net can be larger or smaller based upon the direction of the aggres-
sor net switching. This is explained in a simple example below.

Figure 6-12 shows net N1 which has a coupling capacitance Cc to a neigh-
boring net (labeled Aggressor) and a capacitance Cg to ground. This exam-
ple assumes that the net N1 has a rising transition at the output and
considers different scenarios depending on whether or not the aggressor
net is switching at the same time.

Figure 6-12 Crosstalk impact example.

Cc

Cg

Net N1

1.2V

0

= Distributed
RC

Aggressor

Crosstalk Delay Analysis SECTION 6.3

165

The capacitive charge required from the driving cell in various scenarios
can be different as described next.

i. Aggressor net steady. In this scenario, the driving cell for the net
N1 provides the charge for Cg and Cc to be charged to Vdd. The
total charge provided by the driving cell of this net is thus (Cg +
Cc) * Vdd. The base delay calculation obtains delays for this sce-
nario where no crosstalk is considered from the aggressor nets.
Table 6-13 shows the charge on Cg and Cc before and after the
switching of N1 for this scenario.

ii. Aggressor switching in same direction. In this scenario, the
driving cell is aided by the aggressor switching in the same di-
rection. If the aggressor transitions at the same time with the
same slew (identical transition time), the total charge provided
by the driving cell is only (Cg * Vdd). If the slew of the aggressor
net is faster than that of N1, the actual charge required can be
even smaller than (Cg * Vdd) since the aggressor net can provide
charging current for Cg also. Thus, the required charge from the
driving cell with the aggressor switching in same direction is
smaller than the corresponding charge for the steady aggressor
described in Table 6-13. Therefore, the aggressor switching in the
same direction results in a smaller delay for the switching net

Capacitance
Before rising

transition at net
N1

After rising
transition at

net N1

Grounded Cap, Cg V(Cg) = 0 V(Cg) = Vdd

Coupling
Cap, Cc

Aggressor net
steady LOW

V(Cc) = 0 V(Cc) = Vdd

Aggressor net
steady HIGH

V(Cc) = - Vdd V(Cc) = 0

Table 6-13 Base delay calculation - no crosstalk.

CHAPTER 6 Crosstalk and Noise

166

N1; the reduction in delay is labeled as negative crosstalk delay.
See Table 6-14. This scenario is normally considered for min path
analysis.

iii. Aggressor switching in opposite direction. In this scenario, the
coupling capacitance is charged from -Vdd to Vdd. Thus, the
charge on coupling capacitance changes by (2 * Cc * Vdd) before
and after the transitions. This additional charge is provided by
both the driving cell of net N1 as well as the aggressor net. This
scenario results in a larger delay for the switching net N1; the in-
crease in delay is labeled as positive crosstalk delay. See Table
6-15. This scenario is normally considered for max path analysis.

Capacitance

Before rising
transition at net

N1 and aggressor
net

After rising
transition at net

N1 and aggressor
net

Grounded Cap, Cg V(Cg) = 0 V(Cg) = Vdd

Coupling Cap, Cc V(Cc) = 0 V(Cc) = 0

Table 6-14 Aggressor switching in same direction - negative
crosstalk.

Capacitance

Before transition
at net N1 and

aggressor net (net
N1 is low;

aggressor net is
high)

After transition
(net N1 is high;

and aggressor net
is low)

Grounded Cap, Cg V(Cg) = 0 V(Cg) = Vdd

Coupling Cap, Cc V(Cc) = - Vdd V(Cc) = Vdd

Table 6-15 Aggressor switching in opposite direction -
positive crosstalk.

Crosstalk Delay Analysis SECTION 6.3

167

The above example illustrates the charging of Cc in various cases and how
it can impact the delay of the switching net (labelled as N1). The example
considers only a rising transition at net N1, however similar analysis holds
for falling transitions also.

6.3.2 Positive and Negative Crosstalk

The base delay calculation (without any crosstalk) assumes that the driving
cell provides all the necessary charge for rail-to-rail transition of the total
capacitance of a net, Ctotal (= Cground + Cc). As described in the previous
subsection, the charge required for the coupling capacitance Cc is larger
when the coupled (aggressor) net and victim net are switching in the oppo-
site directions. The aggressor switching in the opposite direction increases
the amount of charge required from the driving cell of the victim net and
increases the delays for the driving cell and the interconnect for the victim
net.

Similarly, when the coupled (aggressor) net and the victim net are switch-
ing in the same direction, the charge on Cc remains the same before and af-
ter the transitions of the victim and aggressor. This reduces the charge
required from the driving cell of the victim net. The delays for the driving
cell and the interconnect for the victim net are reduced.

As described above, concurrent switching of victim and aggressor affects
the timing of the victim transition. Depending upon the switching direc-
tion of the aggressor, the crosstalk delay effect can be positive (slow down
the victim transition) or negative (speed up the victim transition).

An example of positive crosstalk delay effect is shown in Figure 6-16. The
aggressor net is rising at the same time when the victim net has a falling
transition. The aggressor net switching in opposite direction increases the
delay for the victim net. The positive crosstalk impacts the driving cell as
well as the interconnect - the delay for both of these gets increased.

The case of negative crosstalk delay is illustrated in Figure 6-17. The ag-
gressor net is rising at the same time as the victim net. The aggressor net
switching in the same direction as the victim reduces the delay of the vic-

CHAPTER 6 Crosstalk and Noise

168

tim net. As before, the negative crosstalk affects the timing of the driving
cell as well as the interconnect - the delay for both of these is reduced.

Note that the worst positive and worst negative crosstalk delays are com-
puted separately for rise and fall delays. The worst set of aggressors for the

Figure 6-16 Positive crosstalk delay.

Figure 6-17 Negative crosstalk delay.

Cc

0

Cground Timing Error!

1.2V

0 Crosstalk delay

1.2V

Cc

0

Cground Timing Error!

1.2V

1.2V

0

Crosstalk delay
0

1.2V

Crosstalk Delay Analysis SECTION 6.3

169

rise max, rise min, fall max, fall min delays with crosstalk are, in general,
different. This is described in the subsections below.

6.3.3 Accumulation with Multiple Aggressors

The crosstalk delay analysis with multiple aggressors involves accumulat-
ing the contributions due to crosstalk for each of the aggressors. This is
similar to the analysis for crosstalk glitches described in Section 6.2. When
multiple nets switch concurrently, the crosstalk delay effect on the victim
gets compounded due to multiple aggressors.

Most analyses for coupling due to multiple aggressors add the incremental
contribution from each aggressor and compute the cumulative effect on the
victim. This may appear conservative, however it does indicate the worst-
case crosstalk delay on the victim.

Similar to the analysis of multiple aggressors for crosstalk glitch analysis,
contributions can also be added using root-mean-squared (RMS) which is
less pessimistic than the straight sum of individual contributions.

6.3.4 Aggressor Victim Timing Correlation

The handling of timing correlation for crosstalk delay analysis is conceptu-
ally similar to the timing correlation for crosstalk glitch analysis described
in Section 6.2. The crosstalk can affect the delay of the victim, only if the ag-
gressor can switch at the same time as the victim. This is determined using
the timing windows of the aggressor and the victim. As described in Sec-
tion 6.2, the timing windows represent the earliest and the latest switching
times during which a net may switch within a clock cycle. If the timing
windows of the aggressor and the victim overlap, the crosstalk effect on
delay is computed. For multiple aggressors, the timing windows for multi-
ple aggressors are also analyzed similarly. The possible effect in various
timing bins is computed and the timing bin with the worst crosstalk delay
impact is considered for delay analysis.

CHAPTER 6 Crosstalk and Noise

170

Consider the example below where three aggressor nets can impact the
timing of the victim net. The aggressor nets (A1, A2, A3) are capacitively
coupled to the victim net (V) and also their timing windows overlap with
that of the victim. Figure 6-18 shows the timing windows and the possible
crosstalk delay impact caused by each aggressor. Based upon the timing
windows, the crosstalk delay analysis determines the worst possible com-
bination of the aggressor switching that causes the largest crosstalk delay
impact. In this example, the timing window overlap region is divided into
three bins - each bin shows the possible aggressors switching. Bin 1 has A1
and A2 switching which can result in crosstalk delay impact of 0.26 (= 0.12
+ 0.14). Bin 2 has A1 switching which can result in crosstalk delay impact
of 0.14. Bin 3 has A3 switching which can result in crosstalk delay impact of
0.23. Thus, bin 1 has the worst possible crosstalk delay impact of 0.26.

As indicated previously, the crosstalk delay analysis computes the four
types of crosstalk delays separately. The four types of crosstalk delays are
positive rise delay (rise edge moves forward in time), negative rise delay
(rise edge moves backward in time), positive fall delay and negative fall
delay. In general, a net can have different sets of aggressors in each of these

Figure 6-18 Timing windows and crosstalk contributions from vari-
ous aggressors.

A1

A2

V

A3

0.12

0.14

0.23

1 2 3

Crosstalk
contribution

Timing Verification Using Crosstalk Delay SECTION 6.4

171

four cases. For example, a net can be coupled to aggressors A1, A2, A3 and
A4. During crosstalk delay analysis, it is possible that A1, A2, A4 contribute
to positive rise and negative fall delay contributions whereas A2 and A3
contribute to negative rise and positive fall delay contributions.

6.3.5 Aggressor Victim Functional Correlation

In addition to timing windows, crosstalk delay calculation can consider the
functional correlation between various signals. For example, the scan control
signals only switch during the scan mode and are steady during functional
or mission mode of the design. Thus, the scan control signals can not be ag-
gressors during the functional mode. The scan control signals can only be
aggressors during the scan mode in which case these signals can not be
combined with the other functional signals for worst-case noise computa-
tion.

Another example of functional correlation is a scenario where two aggres-
sors are complements of each other. For such cases, both signal and its
complement can never be switching in the same direction for crosstalk
noise computation. This type of functional correlation information, when
available, can be utilized so that the crosstalk analysis results are not pessi-
mistic by ensuring that only the signals which can actually switch together
are included as aggressors.

6.4 Timing Verification Using Crosstalk Delay

The following four types of crosstalk delay contributions are computed for
every cell and interconnect in the design:

i. Positive rise delay (rise edge moves forward in time)

ii. Negative rise delay (rise edge moves backward in time)

iii. Positive fall delay (fall edge moves forward in time)

iv. Negative fall delay (fall edge moves backward in time)

CHAPTER 6 Crosstalk and Noise

172

The crosstalk delay contributions are then utilized during timing analysis
for the verification of the max and min paths (setup and hold checks). The
clock path for the launch and capture flip-flops are handled differently.
The details of the data path and clock path analyses for the setup and hold
checks are described in this section.

6.4.1 Setup Analysis

The STA with crosstalk analysis verifies the design with the worst-case
crosstalk delays for the data path and the clock paths. Consider the logic
shown in Figure 6-19 where crosstalk can occur at various nets along the
data path and along the clock paths. The worst condition for setup check is
when both the launch clock path and the data path have positive crosstalk
and the capture clock path has negative crosstalk. The positive crosstalk
contributions on launch clock path and data path delay the arrival of data
at the capture flip-flop. In addition, the negative crosstalk on capture clock
path results in capture flip-flop being clocked early.

Figure 6-19 Crosstalk for data path and clock path.

UFF1UFF0

Capture clock path

Launch clock path

Data path

Common clock
path Common point

D Q

CK

D Q

CK

CLKM

Timing Verification Using Crosstalk Delay SECTION 6.4

173

Based upon above description, the setup (or max path) analysis assumes
that:

• Launch clock path sees positive crosstalk delay so that the data is
launched late.

• Data path sees positive crosstalk delay so that it takes longer for
the data to reach the destination.

• Capture clock path sees negative crosstalk delay so that the data
is captured by the capture flip-flop early.

Since the launch and capture clock edges for a setup check are different
(normally one clock cycle apart), the common clock path (Figure 6-19) can
have different crosstalk contributions for the launch and capture clock edg-
es.

6.4.2 Hold Analysis

The worst-case hold (or min path) analysis for STA is analogous to the
worst-case setup analysis described in the preceding subsection. Based
upon the logic shown in Figure 6-19, the worst condition for hold check oc-
curs when both the launch clock path and the data path have negative
crosstalk and the capture clock path has positive crosstalk. The negative
crosstalk contributions on launch clock path and data path result in early
arrival of the data at the capture flip-flop. In addition, the positive crosstalk
on capture clock path results in capture flip-flop being clocked late.

There is one important difference between the hold and setup analyses re-
lated to crosstalk on the common portion of the clock path. The launch and
capture clock edge are normally the same edge for the hold analysis. The
clock edge through the common clock portion cannot have different cross-
talk contributions for the launch clock path and the capture clock path.
Therefore, the worst-case hold analysis removes the crosstalk contribution
from the common clock path.

CHAPTER 6 Crosstalk and Noise

174

The worst-case hold (or min path) analysis for STA with crosstalk assumes:

• Launch clock (not including the common path) sees negative
crosstalk delay so that the data is launched early.

• Data path sees negative crosstalk delay so that it reaches the des-
tination early.

• Capture clock (not including the common path) sees positive
crosstalk delay so that the data is captured by the capture flip-
flop late.

As described above, the crosstalk impact on the common portion of the
clock tree is not considered for the hold analysis. The positive crosstalk
contribution of the launch clock and negative crosstalk contribution of the
capture clock are only computed for the non-common portions of the clock
tree. In STA reports for hold analysis, the common clock path may show
different crosstalk contributions for the launch clock path and the capture
clock path. However, the crosstalk contributions from the common clock
path are removed as a separate line item labeled as common path pessi-
mism removal. Examples of common path pessimism removal in STA re-
ports are provided in Section 10.1.

As described in the preceding subsection, the setup analysis concerns two
different edges of the clock which may potentially be impacted differently
in time. Thus, the common path crosstalk contributions are considered for
both the launch and the capture clock paths during setup analysis.

The clock signals are critical since any crosstalk on the clock tree directly
translates into clock jitter and impacts the performance of the design. Thus,
special considerations should be adopted for reducing crosstalk on the
clock signals. A common noise avoidance method is shielding of the clock
tree - this is discussed in detail in Section 6.6.

Computational Complexity SECTION 6.5

175

6.5 Computational Complexity

A large nanometer design is generally too complex to allow for every cou-
pling capacitance to be analyzed with reasonable turnaround time. The
parasitic extraction of a typical net contains coupling capacitances to many
neighboring signals. A large design will normally require appropriate set-
tings for the parasitic extraction and crosstalk delay and glitch analyses.
These settings are selected to provide acceptable accuracy for the analyses
while ensuring that the CPU requirements remain feasible. This section de-
scribes some of the techniques that can be used for the analysis of a large
nanometer design.

Hierarchical Design and Analysis

Hierarchical methodology for verifying a large design was introduced in
Section 4.5. A similar approach is also applicable for reducing the complex-
ity of extraction and analyses.

For a large design, it is normally not practical to obtain parasitic extraction
in one run. The parasitics for each hierarchical block can be extracted sepa-
rately. This in turn requires that a hierarchical design methodology be used
for the design implementation. This implies that there be no coupling be-
tween signals inside the hierarchical block and signals outside the block.
This can be achieved either with no routing over the block or by adding a
shield layer over the block. In addition, signal nets should not be routed
close to the boundary of the block and any nets routed close to the bound-
ary of the block should be shielded. This avoids any coupling with the nets
from other blocks.

Filtering of Coupling Capacitances

Even for a medium sized block, the parasitics will normally include a large
number of very small coupling capacitances. The small coupling capaci-
tances can be filtered during extraction or during the analysis procedures.

CHAPTER 6 Crosstalk and Noise

176

This filtering can be based upon the following criteria:

i. Small value: Very small coupling capacitances, for example, be-
low 1fF, can be ignored for the crosstalk or noise analysis. Dur-
ing extraction, the small couplings can be treated as grounded
capacitances.

ii. Coupling ratio: The impact of coupling on a victim is based upon
the relative value of the coupling capacitance to the total capaci-
tance of the victim net. Aggressor nets with a small coupling ra-
tio, for example, below 0.001, can be excluded from crosstalk
delay or glitch analyses.

iii. Lumping small aggressors together: Multiple aggressors with very
small contributions can be mapped to one larger virtual aggres-
sor. This can be pessimistic but can simplify the analysis. Some
of the possible pessimism can be mitigated by switching a subset
of the aggressors. The exact subset of switching aggressors can
be determined by statistical methods.

6.6 Noise Avoidance Techniques

The preceding sections described the impact and analysis of crosstalk ef-
fects. In this section, we describe some noise avoidance techniques which
can be utilized in the physical design phase.

i. Shielding: This method requires that shield wires are placed on
either side of the critical signals. The shields are connected to
power or ground rails. The shielding of critical signals ensures
that there are no active aggressors for the critical signals since
the nearest neighbors in the same metal layer are shield traces at
a fixed potential. While there can be some coupling from routes
in the different metal layers, most of the coupling capacitances
are due to the capacitive coupling in the same layer. Since the
immediate metal layers (above and below) would normally be
routed orthogonally, the capacitive coupling across layers is

Noise Avoidance Techniques SECTION 6.6

177

minimized. Thus, placing shield wires in the same metal layer
ensures that there is minimal coupling for the critical signals. In
cases where shielding with ground or power rails is not possible
due to routing congestion, signal with low switching activity
such as scan control which are fixed during functional mode can
be routed as immediate neighbors for the critical signals. These
shielding approaches ensure that there is no crosstalk due to ca-
pacitive coupling of the neighbors.

ii. Wire spacing: This reduces the coupling to the neighboring nets.

iii. Fast slew rate: A fast slew rate on the net implies that the net is
less susceptible to crosstalk and is inherently immune to cross-
talk effects.

iv. Maintain good stable supply: This is important not for crosstalk but
for minimizing jitter due to power supply variations. Significant
noise can be introduced on the clock signals due to noise on the
power supply. Adequate decoupling capacitances should be
added to minimize noise on the power supply.

v. Guard ring: A guard ring (or double guard ring) in the substrate
helps in shielding the critical analog circuitry from digital noise.

vi. Deep n-well: This is similar to the above as having deep n-well1
for the analog portions helps prevent noise from coupling to the
digital portions.

vii. Isolating a block: In a hierarchical design flow, routing halos can
be added to the boundary of the blocks; furthermore, isolation
buffers could be added to each of the IO of the block.

q

1. See [MUK86] in Bibliography.

C H A P T E R

7

Configuring the STA
Environment

his chapter describes how to set up the environment for static timing
analysis. Specification of correct constraints is important in analyzing
STA results. The design environment should be specified accurately

so that STA analysis can identify all the timing issues in the design. Prepar-
ing for STA involves amongst others, setting up clocks, specifying IO tim-
ing characteristics, and specifying false paths and multicycle paths. It is
important to understand this chapter thoroughly before proceeding with
the next chapter on timing verification.

T

 J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs: A Practical Approach, 179
DOI: 10.1007/978-0-387-93820-2_7, © Springer Science + Business Media, LLC 2009

CHAPTER 7 Configuring the STA Environment

180

7.1 What is the STA Environment?

Most digital designs are synchronous where the data computed from the
previous clock cycle is latched in the flip-flops at the active clock edge.
Consider a typical synchronous design shown in Figure 7-1. It is assumed
that the Design Under Analysis (DUA) interacts with other synchronous
designs. This means that the DUA receives the data from a clocked flip-
flop and outputs data to another clocked flip-flop external to the DUA.

To perform STA on this design, one needs to specify the clocks to the flip-
flops, and timing constraints for all paths leading into the design and for
all paths exiting the design.

The example in Figure 7-1 assumes that there is only one clock and C1, C2,
C3, C4, and C5 represent combinational blocks. The combinational blocks
C1 and C5 are outside of the design being analyzed.

In a typical design, there can be multiple clocks with many paths from one
clock domain to another. The following sections describe how the environ-
ment is specified in such scenarios.

Figure 7-1 A synchronous design.

DUA: Design Under Analysis

UFF2 UFF3UFF1 UFF4
C1 C2 C3 C4 C5

SYSCLK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

Specifying Clocks SECTION 7.2

181

7.2 Specifying Clocks

To define a clock, we need to provide the following information:

i. Clock source: it can be a port of the design, or be a pin of a cell in-
side the design (typically that is part of a clock generation logic).

ii. Period: the time period of the clock.

iii. Duty cycle: the high duration (positive phase) and the low dura-
tion (negative phase).

iv. Edge times: the times for the rising edge and the falling edge.

Figure 7-2 shows the basic definitions. By defining the clocks, all the inter-
nal timing paths (all flip-flop to flip-flop paths) are constrained; this im-
plies that all internal paths can be analyzed with just the clock
specifications. The clock specification specifies that a flip-flop to flip-flop
path must take one cycle. We shall later describe how this requirement (of
one cycle timing) can be relaxed.

Figure 7-2 A clock definition.

SYSCLK

Period

Low duration

High

0 5 20 25

duration

CHAPTER 7 Configuring the STA Environment

182

Here is a basic clock specification1.

create_clock \
-name SYSCLK \
-period 20 \
-waveform {0 5} \
[get_ports2 SCLK]

The name of the clock is SYSCLK and is defined at the port SCLK. The peri-
od of SYSCLK is specified as 20 units - the default time unit is nanoseconds
if none has been specified. (In general, the time unit is specified as part of
the technology library.) The first argument in the waveform specifies the
time at which rising edge occurs and the second argument specifies the
time at which the falling edge occurs.

There can be any number of edges specified in a waveform option. Howev-
er all the edges must be within one period. The edge times alternate start-
ing from the first rising edge after time zero, then a falling edge, then a
rising edge, and so on. This implies that all time values in the edge list
must be monotonically increasing.

-waveform {time_rise time_fall time_rise time_fall ...}

In addition, there must be an even number of edges specified. The wave-
form option specifies the waveform within one clock period, which then re-
peats itself.

If no waveform option is specified, the default is:

-waveform {0, period/2}

1. The specification and constraint are used as synonyms to each other. These are all part
of the SDC specifications.
2. See appendix on SDC regarding scenarios when object access commands, such as
get_ports and get_clocks, should be used.

Specifying Clocks SECTION 7.2

183

Here is an example of a clock specification with no waveform specification
(see Figure 7-3).

create_clock -period 5 [get_ports SCAN_CLK]

In this specification, since no -name option is specified, the name of the
clock is the same as the name of the port, which is SCAN_CLK.

Here is another example of a clock specification in which the edges of the
waveform are in the middle of a period (see Figure 7-4).

create_clock -name BDYCLK -period 15 \
-waveform {5 12} [get_ports GBLCLK]

The name of the clock is BDYCLK and it is defined at the port GBLCLK. In
practice, it is a good idea to keep the clock name the same as the port name.

Figure 7-3 Clock specification example.

Figure 7-4 Clock specification with arbitrary edges.

SCAN_CLK
0 2.5 5.0 7.5

BDYCLK

0 5 12 15 20 27

One period

CHAPTER 7 Configuring the STA Environment

184

Here are some more clock specifications.

See Figure 7-5(a):
create_clock -period 10 -waveform {5 10} [get_ports FCLK]
Creates a clock with the rising edge at 5ns and the
falling edge at 10ns.

See Figure 7-5(b):
create_clock -period 125 \
-waveform {100 150} [get_ports ARMCLK]
Since the first edge has to be rising edge,
the edge at 100ns is specified first and then the
falling edge at 150ns is specified. The falling edge
at 25ns is automatically inferred.

See Figure 7-6(a):
create_clock -period 1.0 -waveform {0.5 1.375} MAIN_CLK
The first rising edge and the next falling edge

Figure 7-5 Example clock waveforms.

FCLK

0 5 10 15

0 25 100 125

(a)

ARMCLK

(b)

150

Period

Period

Specifying Clocks SECTION 7.2

185

is specified. Falling edge at 0.375ns is inferred
automatically.

See Figure 7-6(b):
create_clock -period 1.2 -waveform {0.3 0.4 0.8 1.0} JTAG_CLK
Indicates a rising edge at 300ps, a falling edge at 400ps,
a rising edge at 800ps and a falling edge at 1ns, and this
pattern is repeated every 1.2ns.

create_clock -period 1.27 \
-waveform {0 0.635} [get_ports clk_core]

create_clock -name TEST_CLK -period 17 \
-waveform {0 8.5} -add [get_ports {ip_io_clk[0]}]
The -add option allows more than one clock
specification to be defined at a port.

Figure 7-6 Example with general clock waveforms.

0 0.375 0.500 1.000 1.375 1.500

(a)

MAIN_CLK

JTAG_CLK

0 0.3 0.4 0.8 1.0 1.2 1.5 1.6

(b)

Period

Period

CHAPTER 7 Configuring the STA Environment

186

In addition to the above attributes, one can optionally specify the transition
time (slew) at the source of the clock. In some cases, such as the output of
some PLL1 models or an input port, the tool cannot compute the transition
time automatically. In such cases, it is useful to explicitly specify the transi-
tion time at the source of the clock. This is specified using the
set_clock_transition specification.

set_clock_transition -rise 0.1 [get_clocks CLK_CONFIG]
set_clock_transition -fall 0.12 [get_clocks CLK_CONFIG]

This specification applies only for ideal clocks and is disregarded once the
clock trees are built, at which point, actual transition times at the clock pins
are used. If a clock is defined on an input port, use the set_input_transition
specification (see Section 7.7) to specify the slew on the clock.

7.2.1 Clock Uncertainty

The timing uncertainty of a clock period can be specified using the
set_clock_uncertainty specification. The uncertainty can be used to model
various factors that can reduce the effective clock period. These factors can
be the clock jitter and any other pessimism that one may want to include
for timing analysis.

set_clock_uncertainty -setup 0.2 [get_clocks CLK_CONFIG]
set_clock_uncertainty -hold 0.05 [get_clocks CLK_CONFIG]

Note that the clock uncertainty for setup effectively reduces the available
clock period by the specified amount as illustrated in Figure 7-7. For hold
checks, the clock uncertainty for hold is used as an additional timing mar-
gin that needs to be satisfied.

1. Phase-locked loop: commonly used in an ASIC to generate high-frequency clocks.

Specifying Clocks SECTION 7.2

187

The following commands specify the uncertainty to be used on paths cross-
ing the specified clock boundaries, called inter-clock uncertainty.

set_clock_uncertainty -from VIRTUAL_SYS_CLK -to SYS_CLK \
-hold 0.05

set_clock_uncertainty -from VIRTUAL_SYS_CLK -to SYS_CLK \
-setup 0.3

set_clock_uncertainty -from SYS_CLK -to CFG_CLK -hold 0.05
set_clock_uncertainty -from SYS_CLK -to CFG_CLK -setup 0.1

Figure 7-8 shows a path between two different clock domains, SYS_CLK
and CFG_CLK. Based on the above inter-clock uncertainty specifications,
100ps is used as an uncertainty for setup checks and 50ps is used as an un-
certainty for hold checks.

Figure 7-7 Specifying clock uncertainty.

Effective clock period

Setup uncertainty

Hold

Pushes the hold
requirement further

CLK_CONFIG

Data clocked
by CLK_CONFIG

uncertainty

CHAPTER 7 Configuring the STA Environment

188

7.2.2 Clock Latency

Latency of a clock can be specified using the set_clock_latency command.

Rise clock latency on MAIN_CLK is 1.8ns:
set_clock_latency 1.8 -rise [get_clocks MAIN_CLK]
Fall clock latency on all clocks is 2.1ns:
set_clock_latency 2.1 -fall [all_clocks]
The -rise, -fall refer to the edge at the clock pin of a
flip-flop.

There are two types of clock latencies: network latency and source latency.
Network latency is the delay from the clock definition point (create_clock) to
the clock pin of a flip-flop. Source latency, also called insertion delay, is
the delay from the clock source to the clock definition point. Source latency
could represent either on-chip or off-chip latency. Figure 7-9 shows both
the scenarios. The total clock latency at the clock pin of a flip-flop is the
sum of the source and network latencies.

Here are some example commands that specify source and network laten-
cies.

Specify a network latency (no -source option) of 0.8ns for
rise, fall, max and min:
set_clock_latency 0.8 [get_clocks CLK_CONFIG]
Specify a source latency:
set_clock_latency 1.9 -source [get_clocks SYS_CLK]
Specify a min source latency:

Figure 7-8 Inter-clock paths.

C1

UFF0 UFF1

SYS_CLK CFG_CLK

D Q

CK

D Q

CK

Specifying Clocks SECTION 7.2

189

set_clock_latency 0.851 -source -min [get_clocks CFG_CLK]
Specify a max source latency:
set_clock_latency 1.322 -source -max [get_clocks CFG_CLK]

One important distinction to observe between source and network latency
is that once a clock tree is built for a design, the network latency can be ig-
nored (assuming set_propagated_clock command is specified). However, the
source latency remains even after the clock tree is built. The network laten-
cy is an estimate of the delay of the clock tree prior to clock tree synthesis.
After clock tree synthesis, the total clock latency from clock source to a

Figure 7-9 Clock latencies.

DUA

PLL

Clock definition pointClock source

Source latency Network latency

(a) On-chip clock source.

(b) Off-chip clock source.

Clock source

DUA
Clock definition point

Source latency Network latency

D Q

CK

D Q

CK

CHAPTER 7 Configuring the STA Environment

190

clock pin of a flip-flop is the source latency plus the actual delay of the
clock tree from the clock definition point to the flip-flop.

Generated clocks are described in the next section and virtual clocks are
described in Section 7.9.

7.3 Generated Clocks

A generated clock is a clock derived from a master clock. A master clock is
a clock defined using the create_clock specification.

When a new clock is generated in a design that is based on a master clock,
the new clock can be defined as a generated clock. For example, if there is a
divide-by-3 circuitry for a clock, one would define a generated clock defini-
tion at the output of this circuitry. This definition is needed as STA does
not know that the clock period has changed at the output of the divide-by
logic, and more importantly what the new clock period is. Figure 7-10
shows an example of a generated clock which is a divide-by-2 of the master
clock, CLKP.

create_clock -name CLKP 10 [get_pins UPLL0/CLKOUT]
Create a master clock with name CLKP of period 10ns
with 50% duty cycle at the CLKOUT pin of the PLL.

create_generated_clock -name CLKPDIV2 -source UPLL0/CLKOUT \
-divide_by 2 [get_pins UFF0/Q]
Creates a generated clock with name CLKPDIV2 at the Q
pin of flip-flop UFF0. The master clock is at the CLKOUT
pin of PLL. And the period of the generated clock is double
that of the clock CLKP, that is, 20ns.

Can a new clock, that is, a master clock, be defined at the output of the flip-
flop instead of a generated clock? The answer is yes, that it is indeed possi-
ble. However, there are some disadvantages. Defining a master clock in-
stead of a generated clock creates a new clock domain. This is not a
problem in general except that there are more clock domains to deal with

Generated Clocks SECTION 7.3

191

in setting up the constraints for STA. Defining the new clock as a generated
clock does not create a new clock domain, and the generated clock is con-
sidered to be in phase with its master clock. The generated clock does not
require additional constraints to be developed. Thus, one must attempt to
define a new internally generated clock as a generated clock instead of decid-
ing to declare it as another master clock.

Another important difference between a master clock and a generated
clock is the notion of clock origin. In a master clock, the origin of the clock
is at the point of definition of the master clock. In a generated clock, the
clock origin is that of the master clock and not that of the generated clock.
This implies that in a clock path report, the start point of a clock path is al-
ways the master clock definition point. This is a big advantage of a generat-
ed clock over defining a new master clock as the source latency is not
automatically included for the case of a new master clock.

Figure 7-10 Generated clock at output of divider.

UPLL0

CLKOUT

QN

Divide-by-2

CLKPDIV2
Master clock CLKP

defined here

Generated clock CLKPDIV2
defined here

CLKP

CLKP

CLKPDIV2

UFF0

D Q

CK

D Q

CK

D Q

CK

CHAPTER 7 Configuring the STA Environment

192

Figure 7-11 shows an example of a multiplexer with clocks on both its in-
puts. In this case, it is not necessary to define a clock on the output of the
multiplexer. If the select signal is set to a constant, the output of the multi-
plexer automatically gets the correct clock propagated. If the select pin of
the multiplexer is unconstrained, both the clocks propagate through the
multiplexer for the purposes of the STA. In such cases, the STA may report
paths between TCLK and TCLKDIV5. Note that such paths are not possible
as the select line can select only one of the multiplexer inputs. In such a
case, one may need to set a false path or specify an exclusive clock relation-
ship between these two clocks to avoid incorrect paths being reported. This
of course assumes that there are no paths between TCLK and TCLKDIV5
elsewhere in the design.

What happens if the multiplexer select signal is not static and can change
during device operation? In such cases, clock gating checks are inferred for
the multiplexer inputs. Clock gating checks are explained in Chapter 10;
these checks ensure that the clocks at the multiplexer inputs switch safely
with respect to the multiplexer select signal.

Figure 7-12 shows an example where the clock SYS_CLK is gated by the
output of a flip-flop. Since the output of the flip-flop may not be a constant,
one way to handle this situation is to define a generated clock at the output
of the and cell which is identical to the input clock.

Figure 7-11 Multiplexer selecting between two clocks.

TCLK
TCLK_MUX_OUT

TCLKDIV5

CLK_SELECT

UFFA UFFB
D Q

CK

D Q

CK

Generated Clocks SECTION 7.3

193

create_clock 0.1 [get_ports SYS_CLK]
Create a master clock of period 100ps with 50%
duty cycle.

create_generated_clock -name CORE_CLK -divide_by 1 \
-source SYS_CLK [get_pins UAND1/Z]
Create a generated clock called CORE_CLK at the
output of the and cell and the clock waveform is
same as that of the master clock.

The next example is of a generated clock that has a frequency higher than
that of the source clock. Figure 7-13 shows the waveforms.

Figure 7-12 Clock gated by a flip-flop.

Figure 7-13 Master clock and multiply-by-2 generated clock.

SYS_CLK

SCTRL

CORE_CLK

UAND1

D Q

CK

D Q

CK

D Q

CK

PCLK

PCLKx2

0 10 20 305 40

CHAPTER 7 Configuring the STA Environment

194

create_clock -period 10 -waveform {0 5} [get_ports PCLK]
Create a master clock with name PCLK of period 10ns
with rise edge at 0ns and fall edge at 5ns.

create_generated_clock -name PCLKx2 \
-source [get_ports PCLK] \
-multiply_by 2 [get_pins UCLKMULTREG/Q]
Creates a generated clock called PCLKx2 from the
master clock PCLK and the frequency is double that of
the master clock. The generated clock is defined at the
output of the flip-flop UCLKMULTREG.

Note that the -multiply_by and the -divide_by options refer to the frequency
of the clock, even though a clock period is specified in a master clock defi-
nition.

Example of Master Clock at Clock Gating Cell Output

Consider the clock gating example shown in Figure 7-14. Two clocks are
fed to an and cell. The question is what is at the output of the and cell. If the
input to the and cell are both clocks, then it is safe to define a new main
clock at the output of the and cell, since it is highly unlikely that the output
of the cell has any phase relationship with either of the input clocks.

create_clock -name SYS_CLK -period 4 -waveform {0 2} \
[get_pins UFFSYS/Q]

create_clock -name CORE_CLK -period 12 -waveform {0 4} \
[get_pins UFFCORE/Q]

create_clock -name MAIN_CLK -period 12 -waveform {0 2} \
[get_pins UAND2/Z]
Create a master clock instead of a generated clock
at the output of the and cell.

One drawback of creating clocks at the internal pins is that it impacts the
path delay computation and forces the designer to manually compute the
source latencies.

Generated Clocks SECTION 7.3

195

Generated Clock using Edge and Edge_shift Options

Figure 7-15 shows an example of generated clocks. A divide-by-2 clock in
addition to two out-of-phase clocks are generated. The waveforms for the
clocks are also shown in the figure.

The clock definitions for this example are given below. The generated clock
definition illustrates the -edges option, which is another way to define a
generated clock. This option takes a list of edges {rise, fall, rise} of the source

Figure 7-14 Master clock at output of logic gate.

SYS_CLK

CORE_CLK

MAIN_CLK

Master clock here

0 2 4 6 8 10 12 14 16 18

0 2 12 14

SYSCLK

MAIN_CLK

UFFSYS

UFFCORE UAND2

CORE_CLK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

CHAPTER 7 Configuring the STA Environment

196

master clock to form the new generated clock. The first rise edge of the
master clock is the first edge, the first fall edge is edge 2, the next rise edge
is edge 3, and so on.

Figure 7-15 Clock generation.

DCLK

PH0CLK

PH1CLK

DCLKDIV2

DCLK

DCLKDIV2

PH0CLK

PH1CLK

2 3 4 5 6 7 8 9 10Edge 1

UBUF2

UAND0

UAND1

D Q

CK
QN

0ns 2 4 6 8

Generated Clocks SECTION 7.3

197

create_clock 2 [get_ports DCLK]
Name of clock is DCLK, has period of 2ns with a
rise edge at 0ns and a fall edge at 1ns.

create_generated_clock -name DCLKDIV2 -edges {2 4 6} \
-source DCLK [get_pins UBUF2/Z]
The generated clock with name DCLKDIV2 is defined at
the output of the buffer. Its waveform is formed by
having a rise edge at edge 2 of the source clock,
fall edge at edge 4 of the source clock and the next
rise edge at edge 6 of the source clock.

create_generated_clock -name PH0CLK -edges {3 4 7} \
-source DCLK [get_pins UAND0/Z]
The generated clock PH0CLK is formed using
the 3, 4, 7 edges of the source clock.

create_generated_clock -name PH1CLK -edges {1 2 5} \
-source DCLK [get_pins UAND1/Z]
The generated clock with name PH1CLK is defined at
the output of the and cell and is formed with
edges 1, 2 and 5 of the source clock.

What if the first edge of the generated clock is a falling edge? Consider the
generated clock G3CLK shown in Figure 7-16. Such a generated clock can
be defined by specifying the edges 5, 7 and 10, as shown in the following
clock specification. The falling edge at 1ns is inferred automatically.

Figure 7-16 Generated clock with a falling edge as first edge.

DCLK

2 3 4 5 6 7 8 9Edge 1

0ns 2 4

G3CLK

6

10

8

CHAPTER 7 Configuring the STA Environment

198

create_generated_clock -name G3CLK -edges {5 7 10} \
-source DCLK [get_pins UAND0/Z]

The -edge_shift option can be used in conjunction with the -edges option to
specify any shift of the corresponding edges to form the new generated
waveform. It specifies the amount of shift (in time units) for each edge in
the edge list. Here is an example that uses this option.

create_clock -period 10 -waveform {0 5} [get_ports MIICLK]
create_generated_clock -name MIICLKDIV2 -source MIICLK \
-edges {1 3 5} [get_pins UMIICLKREG/Q]
Create a divide-by-2 clock.

create_generated_clock -name MIIDIV2 -source MIICLK \
-edges {1 1 5} -edge_shift {0 5 0} [get_pins UMIIDIV/Q]
Creates a divide-by-2 clock with a duty cycle different
from the source clock's value of 50%.

The list of edges in the edge list must be in non-decreasing order, though
the same edge can be used for two entries to indicate a clock pulse inde-
pendent of the source clocks’ duty cycle. The -edge_shift option in the above
example specifies that the first edge is obtained by shifting (edge 1 of
source clock) by 0ns, the second edge is obtained by shifting (edge 1 of
source clock) by 5ns and the third edge is obtained by shifting (edge 5 of
source clock) by 0ns. Figure 7-17 shows the waveforms.

Generated Clock using Invert Option

Here is another example of a generated clock; this one uses the -invert op-
tion.

create_clock -period 10 [get_ports CLK]
create_generated_clock -name NCLKDIV2 -divide_by 2 -invert \
-source CLK [get_pins UINVQ/Z]

Generated Clocks SECTION 7.3

199

The -invert option applies the inversion to the generated clock after all oth-
er generated clock options are applied. Figure 7-18 shows a schematic that
generates such an inverted clock.

Figure 7-17 Generated clocks using -edge_shift option.

Figure 7-18 Inverting a clock.

Edge 1 2 3 4 5 6 7 8 9 10

MICK

MIICLKI2

MIIDIV2

0 5 10 4020 30

UCKREG0
CLK

CLK

NCLKDIV2

UINVQ

NCLKDIV2

D Q

CK

QN

CHAPTER 7 Configuring the STA Environment

200

Clock Latency for Generated Clocks

Clock latencies can be specified for generated clocks as well. A source la-
tency specified on a generated clock specifies the latency from the defini-
tion of the master clock to the definition of the generated clock. The total
clock latency to a clock pin of a flop-flop being driven by a generated clock
is thus the sum of the source latency of the master clock, the source latency
of the generated clock and the network latency of the generated clock. This
is shown in Figure 7-19.

A generated clock can have another generated clock as its source, that is,
one can have generated clocks of generated clocks, and so on. However, a
generated clock can have only one master clock. More examples of generat-
ed clocks are described in later chapters.

Typical Clock Generation Scenario

Figure 7-20 shows a scenario of how a clock distribution may appear in a
typical ASIC. The oscillator is external to the chip and produces a low fre-
quency (10-50 MHz typical) clock which is used as a reference clock by the
on-chip PLL to generate a high-frequency low-jitter clock (200-800 MHz
typical). This PLL clock is then fed to a clock divider logic that generates
the required clocks for the ASIC.

Figure 7-19 Latency on generated clock.

Clock source Master clock
definition

Generated clock
definition

Master clock
source latency

Generated clock
source latency network latency

Generated clock

D Q

CK

Constraining Input Paths SECTION 7.4

201

On some of the branches of the clock distribution, there may be clock gates
that are used to turn off the clock to an inactive portion of the design to
save power when necessary. The PLL can also have a multiplexer at its out-
put so that the PLL can be bypassed if necessary.

A master clock is defined for the reference clock at the input pin of the chip
where it enters the design, and a second master clock is defined at the out-
put of the PLL. The PLL output clock has no phase relationship with the
reference clock. Therefore, the output clock should not be a generated clock
of the reference clock. Most likely, all clocks generated by the clock divider
logic are specified as generated clocks of the master clock at the PLL out-
put.

7.4 Constraining Input Paths

This section describes the constraints for the input paths. The important
point to note here is that STA cannot check any timing on a path that is not
constrained. Thus, all paths should be constrained to enable their analysis.
Examples where one may not care about some logic and can leave such in-

Figure 7-20 Clock distribution in a typical ASIC.

Oscillator PLL

PLLbypass

Clock
divider

logic

Clock
gate

Clock
gate

Block

Block

Block

ClkA

ClkB

ClkC

ClkD

Master clock here

Generated clocks on all Clk*

DUA

CHAPTER 7 Configuring the STA Environment

202

puts unconstrained are described in later chapters. For example, one may
not care about timing through inputs that are strictly control signals, and
may determine that there is no need to specify the checks described in this
section. However, this section assumes that we want to constrain the input
paths.

Figure 7-21 shows an input path of the design under analysis (DUA). Flip-
flop UFF0 is external to the design and provides data to the flip-flop UFF1
which is internal to the design. The data is connected through the input
port INP1.

The clock definition for CLKA specifies the clock period, which is the total
amount of time available between the two flip-flops UFF0 and UFF1. The
time taken by the external logic is Tclk2q, the CK to Q delay of the launch
flip-flop UFF0, plus Tc1, the delay through the external combinational log-
ic. Thus, the delay specification on an input pin INP1 defines an external
delay of Tclk2q plus Tc1. This delay is specified with respect to a clock,
CLKA in this example.

Figure 7-21 Input port timing path.

C1 C2

DUATc1 Tc2

TsetupTclk2q

External logic

First clock edge
Next clock edge
captures data

launches data

UFF0 UFF1

CLKA

INP1
D Q

CK

D Q

CK

Constraining Input Paths SECTION 7.4

203

Here is the input delay constraint.

set Tclk2q 0.9
set Tc1 0.6
set_input_delay -clock CLKA -max [expr Tclk2q + Tc1] \
[get_ports INP1]

The constraint specifies that the external delay on input INP1 is 1.5ns and
this is with respect to the clock CLKA. Assuming the clock period for CLKA
is 2ns, then the logic for INP1 pin has only 500ps (= 2ns - 1.5ns) available
for propagating internally in the design. This input delay specification
maps into the input constraint that Tc2 plus Tsetup of UFF1 must be less
than 500ps for the flip-flop UFF1 to reliably capture the data launched by
flip-flop UFF0. Note that the external delay above is specified as a max
quantity.

Let us consider the case when we want to consider both max and min de-
lays, as shown in Figure 7-22. Here are the constraints for this example.

create_clock -period 15 -waveform {5 12} [get_ports CLKP]
set_input_delay -clock CLKP -max 6.7 [get_ports INPA]
set_input_delay -clock CLKP -min 3.0 [get_ports INPA]

The max and min delays for INPA are derived from the CLKP to INPA de-
lays. The max and min delays refer to the longest and shortest path delays
respectively. These may also normally correspond to the worst-case slow
(max timing corner) and the best-case fast (min timing corner). Thus, the
max delay corresponds to the longest path delay at the max corner and the
min delay corresponds to the shortest path delay at the min corner. In our
example, 1.1ns and 0.8ns are the max and the min delay values for the
Tck2q. The combinational path delay Tc1 has a max delay of 5.6ns and a
min delay of 2.2ns. The waveform on INPA shows the window in which
the data arrives at the design input and when it is expected to be stable.
The max delay from CLKP to INPA is 6.7ns (= 1.1ns + 5.6ns). The min delay
is 3ns (= 0.8ns + 2.2ns). These delays are specified with respect to the active
edge of the clock. Given the external input delays, the available setup time

CHAPTER 7 Configuring the STA Environment

204

internal to the design is the min of 8.3ns (= 15ns - 6.7ns) at the slow corner
and 12ns (= 15ns - 3.0ns) at the fast corner. Thus, 8.3ns is the available time
to reliably capture the data internal to the DUA.

Here are some more examples of input constraints.

set_input_delay -clock clk_core 0.5 [get_ports bist_mode]
set_input_delay -clock clk_core 0.5 [get_ports sad_state]

Since the max or min options are not specified, the value of 500ps applies
to both the max and min delays. This external input delay is specified with
respect to the rising edge of clock clk_core (the -clock_fall option has to be

Figure 7-22 Max and min delays on input port.

Comb logic
5.6ns max
2.2ns min

1.1ns max
0.8ns min

3
6.7

CLKP

INPA

0 5 158

Stable Stable

DUA
INPA

12

CLK

Tclk2qCLKP

Tc1

Data can
change here

D Q

CK

Period

Constraining Output Paths SECTION 7.5

205

used if the input delay is specified with respect to the falling edge of the
clock).

7.5 Constraining Output Paths

This section describes the constraints for the output paths with the help of
three illustrative examples below.

Example A

Figure 7-23 shows an example of a path through an output port of the de-
sign under analysis. Tc1 and Tc2 are the delays through the combinational
logic.

The period for the clock CLKQ defines the total available time between the
flip-flops UFF0 and UFF1. The external logic has a total delay of Tc2 plus
Tsetup. This total delay, Tc2 + Tsetup, has to be specified as part of the out-
put delay specification. Note that the output delay is specified relative to
the capture clock. Data must arrive at the external flip-flop UFF1 in time to
meet its setup requirement.

Figure 7-23 Output port timing path for example A.

C1 C2

DUA
External logic

Launch clock

Tclk2q Tc1 Tc2

CLKQ

Tsetup

Capture clock

UFF0 UFF1
OUTB

D Q

CK

D Q

CK

CHAPTER 7 Configuring the STA Environment

206

set Tc2 3.9
set Tsetup 1.1
set_output_delay -clock CLKQ -max [expr Tc2 + Tsetup] \
[get_ports OUTB]

This specifies that the max external delay relative to the clock edge is Tc2
plus Tsetup; and should correspond to the delay of 5ns. A min delay can be
similarly specified.

Example B

Figure 7-24 shows an example with both min and max delays. The max
path delay is 7.4ns (= max Tc2 plus Tsetup = 7 + 0.4). The min path delay is
-0.2ns (= min Tc2 minus Thold = 0 - 0.2). Therefore the output specifications
are:

create_clock -period 20 -waveform {0 15} [get_ports CLKQ]
set_output_delay -clock CLKQ -min -0.2 [get_ports OUTC]
set_output_delay -clock CLKQ -max 7.4 [get_ports OUTC]

The waveforms in Figure 7-24 show when OUTC has to be stable so that it
is reliably captured by the external flip-flop. This depicts that the data must
be ready at the output port before the required stable region starts and
must remain stable until the end of the stable region. This maps into a re-
quirement on the timing of the logic to the output port OUTC inside the
DUA.

Example C

Here is another example that shows input and output specifications. This
block has two inputs, DATAIN and MCLK, and one output DATAOUT.
Figure 7-25 shows the intended waveforms.

create_clock -period 100 -waveform {5 55} [get_ports MCLK]
set_input_delay 25 -max -clock MCLK [get_ports DATAIN]
set_input_delay 5 -min -clock MCLK [get_ports DATAIN]

Timing Path Groups SECTION 7.6

207

set_output_delay 20 -max -clock MCLK [get_ports DATAOUT]
set_output_delay -5 -min -clock MCLK [get_ports DATAOUT]

7.6 Timing Path Groups

Timing paths in a design can be considered as a collection of paths. Each
path has a startpoint and an endpoint. See Figure 7-26 for some example
paths.

In STA, the paths are timed based upon valid startpoints and valid end-
points. Valid startpoints are: input ports and clock pins of synchronous de-

Figure 7-24 Max and min delays on the example B output path.

DUA

OUTC

CLKQ

7ns max
0ns min

Tsetup 0.4
Thold 0.2

CLKQ

OUTC Stable

Data can

0 15 20

0.2

Comb logic

Data cannot
change herechange here

Tc2

7.4

D Q

CK

CHAPTER 7 Configuring the STA Environment

208

vices, such as flip-flops and memories. Valid endpoints are output ports
and data input pins of synchronous devices. Thus, a valid timing path can
be:

i. from an input port to an output port,

ii. from an input port to an input of a flip-flop or a memory,

iii. from the clock pin of a flip-flop or a memory to an input of flip-
flop or a memory,

iv. from the clock pin of a flip-flop to an output port,

Figure 7-25 Example C with input and output specifications.

MCLK

DATAIN

DATAOUT

0 5 55 105

5

StableStable

Stable

20

DATAIN

MCLK
DUA

Comb
logic

Comb

25

Data can
change here

DATAOUT logic

5

D Q

CK

D Q

CK

MCLK

100

Period

Timing Path Groups SECTION 7.6

209

v. from the clock pin of a memory to an output port, and so on.

The valid paths in Figure 7-26 are:

• input port A to UFFA/D,
• input port A to output port Z,
• UFFA/CLK to UFFB/D, and
• UFFB/CLK to output port Z.

Timing paths are sorted into path groups by the clock associated with the
endpoint of the path. Thus, each clock has a set of paths associated with it.
There is also a default path group that includes all non-clocked (asynchro-
nous) paths.

In the example of Figure 7-27, the path groups are:

• CLKA group: Input port A to UFFA/D.
• CLKB group: UFFA/CK to UFFB/D.
• DEFAULT group: Input port A to output port Z, UFFB/CK to out-

put port Z.

Figure 7-26 Timing paths.

A

CLK

Z
UFFA UFFB
D Q

CK

D Q

CK

CHAPTER 7 Configuring the STA Environment

210

The static timing analysis and reporting are typically performed on each
path group separately.

7.7 Modeling of External Attributes

While create_clock, set_input_delay and set_output_delay are enough to con-
strain all paths in a design for performing timing analysis, these are not
enough to obtain accurate timing for the IO pins of the block. The follow-
ing attributes are also required to accurately model the environment of a
design. For inputs, one needs to specify the slew at the input. This informa-
tion can be provided using:

• set_drive1

• set_driving_cell
• set_input_transition

Figure 7-27 Path groups.

1. This command is obsolete and not recommended.

A

CLKA

Z
UFFA UFFB

CLKB

D Q

CK

D Q

CK
CLKA group CLKB group

DEFAULT group

DEFAULT group

Modeling of External Attributes SECTION 7.7

211

For outputs, one needs to specify the capacitive load seen by the output
pin. This is specified by using the following specification:

• set_load

7.7.1 Modeling Drive Strengths

The set_drive and set_driving_cell specifications are used to model the
drive strength of the external source that drives an input port of the block.
In absence of these specifications, by default, all inputs are assumed to
have an infinite drive strength. The default condition implies that the tran-
sition time at the input pins is 0.

The set_drive explicitly specifies a value for the drive resistance at the input
pin of the DUA. The smaller the drive value, the higher the drive strength.
A resistance value of 0 implies an infinite drive strength.

set_drive 100 UCLK
Specifies a drive resistance of 100 on input UCLK.

Rise drive is different from fall drive:
set_drive -rise 3 [all_inputs]
set_drive -fall 2 [all_inputs]

Figure 7-28 Representation for set_drive specification example.

100
CLK

DUA

Vss

Vdd

CHAPTER 7 Configuring the STA Environment

212

The drive of an input port is used to calculate the transition time at the first
cell. The drive value specified is also used to compute the delay from the
input port to the first cell in the presence of any RC interconnect.

Delay_to_first_gate =
(drive * load_on_net) + interconnect_delay

The set_driving_cell specification offers a more convenient and accurate
approach in describing the drive capability of a port. The set_driving_cell
can be used to specify a cell driving an input port.

set_driving_cell -lib_cell INV3 \
-library slow [get_ports INPB]
The input INPB is driven by an INV3 cell
from library slow.

set_driving_cell -lib_cell INV2 \
-library tech13g [all_inputs]
Specifies that the cell INV2 from a library tech13g is
the driving cell for all inputs.

set_driving_cell -lib_cell BUFFD4 -library tech90gwc \
[get_ports {testmode[3]}]
The input testmode[3] is driven by a BUFFD4 cell
from library tech90gwc.

Figure 7-29 Representation for set_driving_cell specification example.

INPBINV3

DUA

Modeling of External Attributes SECTION 7.7

213

Like the drive specification, the driving cell of an input port is used to cal-
culate the transition time at the first cell and to compute the delay from the
input port to the first cell in the presence of any interconnect.

One caveat of the set_driving_cell specification is that the incremental delay
of the driving cell due to the capacitive load on the input port is included
as an additional delay on the input.

As an alternate to the above approaches, the set_input_transition specifi-
cation offers a convenient way of expressing the slew at an input port. A
reference clock can optionally be specified. Here is the specification for the
example shown in Figure 7-30 along with additional examples.

set_input_transition 0.85 [get_ports INPC]
Specifies an input transition of 850ps on port INPC.

set_input_transition 0.6 [all_inputs]
Specifies a transition of 600ps on all input ports.

set_input_transition 0.25 [get_ports SD_DIN*]
Specifies a transition of 250ps on all ports with
pattern SD_DIN*.
Min and max values can optionally be specified using
the -min and -max options.

Figure 7-30 Representation for set_input_transition specification ex-
ample.

INPC

DUA

0.85ns

CHAPTER 7 Configuring the STA Environment

214

In summary, a slew value at an input is needed to determine the delay of
the first cell in the input path. In the absence of this specification, an ideal
transition value of 0 is assumed, which may not be realistic.

7.7.2 Modeling Capacitive Load

The set_load specification places a capacitive load on output ports to mod-
el the external load being driven by the output port. By default, the capaci-
tive load on ports is 0. The load can be specified as an explicit capacitance
value or as an input pin capacitance of a cell.

set_load 5 [get_ports OUTX]
Places a 5pF load on output port OUTX.

set_load 25 [all_outputs]
Sets 25pF load capacitance on all outputs.

set_load -pin_load 0.007 [get_ports {shift_write[31]}]
Place 7fF pin load on the specified output port.
A load on the net connected to the port can be
specified using the -wire_load option.
If neither -pin_load nor -wire_load option is used,
the default is the -pin_load option.

It is important to specify the load on outputs since this value impacts the
delay of the cell driving the output. In the absence of such a specification, a
load of 0 is assumed which may not be realistic.

Figure 7-31 Capacitive load on output port.

OUTX OUTY
DUA DUA

Design Rule Checks SECTION 7.8

215

The set_load specification can also be used for specifying a load on an inter-
nal net in the design. Here is an example:

set_load 0.25 [get_nets UCNT5/NET6]
Sets the net capacitance to be 0.25pF.

7.8 Design Rule Checks

Two of the frequently used design rules for STA are max transition and max
capacitance. These rules check that all ports and pins in the design meet the
specified limits for transition time1 and capacitance. These limits can be
specified using:

• set_max_transition
• set_max_capacitance

As part of the STA, any violations to these design rules are reported in
terms of slack. Here are some examples.

set_max_transition 0.6 IOBANK
Sets a limit of 600ps on IOBANK.

set_max_capacitance 0.5 [current_design]
Max capacitance is set to 0.5pf on all nets in
current design.

The capacitance on a net is calculated by taking the sum of all the pin ca-
pacitances plus any IO load plus any interconnect capacitance on the net.
Figure 7-32 shows an example.

Total cap on net N1 =
pin cap of UBUF1:pin/A +

1. As mentioned earlier, the terms “slew” and “transition time” are used interchangeably
in this text.

CHAPTER 7 Configuring the STA Environment

216

pin cap of UOR2:pin/B +
load cap specified on output port OUTP +
wire/routing cap
= 0.05 + 0.03 + 0.07 + 0.02
= 0.17pF

Total cap on net N2 =
pin cap of UBUF2/A +
wire/routing cap from input to buffer
= 0.04 + 0.03
= 0.07pF

Transition time is computed as part of the delay calculation. For the exam-
ple of Figure 7-32 (assuming linear delay model for UBUF2 cell),

Transition time on pin UBUF2/A =
drive of 21 * total cap on net N2
= 2 * 0.07 = 0.14ns = 140ps

Figure 7-32 Capacitance on various nets.

1. The library units for drive is assumed to be in Kohms.

set_load 0.07
set_drive 2

pin cap 0.03

pin cap 0.05

rise_resistance 1

0.02

UBUF1

UBUF2

UOR2

N1

0.04

A
N2

Z

A

B

OUTP

Virtual Clocks SECTION 7.9

217

Transition time on output port OUTP =
drive resistance of UBUF2/Z * total cap of net N1 =
1 * 0.17 = 0.17ns = 170ps

There are other design rule checks that can also be specified for a design.
These are: set_max_fanout (specifies a fanout limit on all pins in design),
set_max_area (for a design); however these checks apply for synthesis and
not for STA.

7.9 Virtual Clocks

A virtual clock is a clock that exists but is not associated with any pin or
port of the design. It is used as a reference in STA analysis to specify input
and output delays relative to a clock. An example where virtual clock is ap-
plicable is shown in Figure 7-33. The design under analysis gets its clock
from CLK_CORE, but the clock driving input port ROW_IN is CLK_SAD.
How does one specify the IO constraint on input port ROW_IN in such cas-
es? The same issue occurs on the output port STATE_O.

To handle such cases, a virtual clock can be defined with no specification of
the source port or pin. In the example of Figure 7-33, the virtual clock is de-
fined for CLK_SAD and CLK_CFG.

create_clock -name VIRTUAL_CLK_SAD -period 10 -waveform {2 8}

Figure 7-33 Virtual clocks for CLK_SAD and CLK_CFG.

CLK_SAD
CLK_CFG

CLK_CORE
DUA

ROW_IN
STATE_O

2.1
3.3CK->Q=0.6

Tsetup=1.2
Tc1

Tc2
D Q

CK

D Q

CK

CHAPTER 7 Configuring the STA Environment

218

create_clock -name VIRTUAL_CLK_CFG -period 8 \
-waveform {0 4}

create_clock -period 10 [get_ports CLK_CORE]

Having defined these virtual clocks, the IO constraints can be specified rel-
ative to this virtual clock.

set_input_delay -clock VIRTUAL_CLK_SAD -max 2.7 \
[get_ports ROW_IN]

set_output_delay -clock VIRTUAL_CLK_CFG -max 4.5 \
[get_ports STATE_O]

Figure 7-34 shows the timing relationships on the input path. This con-
strains the input path in the design under analysis to be 5.3ns or less.

Figure 7-35 shows the timing relationships on the output path. This con-
strains the output path in the design under analysis to be 3.5ns or less.

Figure 7-34 Virtual clock and core clock waveform for input path.

2.1

Total cycle on input path
8

Available time for

5.3

VIRTUAL_CLK_SAD

CLK_CORE

0 5 10

2 8 12

CK->Q 0.6

Tc1
input path in DUA

Refining the Timing Analysis SECTION 7.10

219

The -min option, when specified in the set_input_delay and set_output_delay
constraints, is used for verifying the fast (or min) paths. The use of virtual
clocks is just one approach to constrain the inputs and outputs (IO); a de-
signer may choose other methods to constrain the IOs as well.

7.10 Refining the Timing Analysis

Four common commands that are used to constrain the analysis space are:

i. set_case_analysis: Specifies constant value on a pin of a cell, or on
an input port.

ii. set_disable_timing: Breaks a timing arc of a cell.

iii. set_false_path: Specifies paths that are not real which implies that
these paths are not checked in STA.

iv. set_multicycle_path: Specifies paths that can take longer than one
clock cycle.

Figure 7-35 Virtual clock and core clock waveform for output path.

Available time for
3.5

Total cycle on output path

8

3.3

0

5 10

CLK_CORE

VIRTUAL_CLK_CFG

4 8

1.2

output path in DUA

0

Tc2

Setup

CHAPTER 7 Configuring the STA Environment

220

The set_false_path and set_multicycle_path specifications are discussed in
greater detail in Chapter 8.

7.10.1 Specifying Inactive Signals

In a design, certain signals have a constant value in a specific mode of the
chip. For example, if a chip has DFT logic in it, then the TEST pin of the
chip should be at 0 in normal functional mode. It is often useful to specify
such constant values to STA. This helps in reducing the analysis space in
addition to not reporting any paths that are irrelevant. For example, if the
TEST pin is not set as a constant, some odd long paths may exist that
would never be true in functional mode. Such constant signals are speci-
fied by using the set_case_analysis specification.

set_case_analysis 0 TEST

set_case_analysis 0 [get_ports {testmode[3]}]
set_case_analysis 0 [get_ports {testmode[2]}]
set_case_analysis 0 [get_ports {testmode[1]}]
set_case_analysis 0 [get_ports {testmode[0]}]

If a design has many functional modes and only one functional mode is be-
ing analyzed, case analysis can be used to specify the actual mode to be an-
alyzed.

set_case_analysis 1 func_mode[0]
set_case_analysis 0 func_mode[1]
set_case_analysis 1 func_mode[2]

Note that the case analysis can be specified on any pin in the design. An-
other common application of case analysis is when the design can run on
multiple clocks, and the selection of the appropriate clock is controlled by
multiplexers. To make STA analysis easier and reduce CPU run time, it is
beneficial to do STA for each clock selection separately. Figure 7-36 shows
an example of the multiplexers selecting different clocks with different set-
tings.

Refining the Timing Analysis SECTION 7.10

221

set_case_analysis 1 UCORE/UMUX0/CLK_SEL[0]
set_case_analysis 1 UCORE/UMUX1/CLK_SEL[1]
set_case_analysis 0 UCORE/UMUX2/CLK_SEL[2]

The first set_case_analysis causes PLLdiv16 to be selected for MIICLK. The
clock path for PLLdiv8 is blocked and does not propagate through the mul-
tiplexer. Thus, no timing paths are analyzed using clock PLLdiv8 (assum-
ing that the clock does not go to any flip-flip prior to the multiplexer).
Similarly, the last set_case_analysis causes SCANCLK to be selected for AD-
CCLK and the clock path for CLK200 is blocked.

7.10.2 Breaking Timing Arcs in Cells

Every cell has timing arcs from its inputs to outputs, and a timing path
may go through one of these cell arcs. In some situations, it is possible that
a certain path through a cell cannot occur. For example, consider the sce-
nario where a clock is connected to the select line of a multiplexer and the
output of the multiplexer is part of a data path. In such a case, it may be
useful to break the timing arc between the select pin and the output pin of
the multiplexer. An example is shown in Figure 7-37. The path through the
select line of multiplexer is not a valid data path. Such a timing arc can be
broken by using the set_disable_timing SDC command.

set_disable_timing -from S -to Z [get_cells UMUX0]

Figure 7-36 Selecting clock mode for timing analysis.

CLK_SEL[0] CLK_SEL[1] CLK_SEL[2]

MAINCLK ADCCLKMIICLK
PLLCLKPLLdiv8

PLLdiv16 CLK200

SCANCLK

PLLdiv2

UMUX0 UMUX1 UMUX2

0

1

0

1

0

1

CHAPTER 7 Configuring the STA Environment

222

Since the arc no longer exists, there are consequently fewer timing paths to
analyze. Another example of a similar usage is to disable the minimum
clock pulse width check of a flip-flop.

One should use caution when using the set_disable_timing command as it
removes all timing paths through the specified pins. Where possible, it is
preferable to use the set_false_path and the set_case_analysis commands.

7.11 Point-to-Point Specification

Point-to-point paths can be constrained by using the set_min_delay and
set_max_delay specifications. These constrain the path delay between the
from-pin and the to-pin to the values specified in the constraint. This con-
straint overrides any default single cycle timing paths and any multicycle
path constraints for such paths. The set_max_delay constraint specifies the
maximum delay for the specified path(s), while the set_min_delay con-
straint specifies the minimum delay for the specified path(s).

set_max_delay 5.0 -to UFF0/D
All paths to D-pin of flip-flop should take 5ns max.

Figure 7-37 An example timing arc to be disabled.

UFFSYS

UFFCORE

PHYCLK

UMUX0

A

B S
Z

D Q

CK

D Q

CK D Q

CK

Point-to-Point Specification SECTION 7.11

223

set_max_delay 0.6 -from UFF2/Q -to UFF3/D
All paths between the two flip-flops should take a
max of 600ps.

set_max_delay 0.45 -from UMUX0/Z -through UAND1/A -to UOR0/Z
Sets max delay for the specified paths.

set_min_delay 0.15 -from {UAND0/A UXOR1/B} -to {UMUX2/SEL}

In the above examples, one needs to be careful that using non-standard
startpoint and endpoint internal pins will force these to be the start and
end points and will segment a path at those points.

One can also specify similar point-to-point constraints from one clock to
another clock.

set_max_delay 1.2 -from [get_clocks SYS_CLK] \
-to [get_clocks CFG_CLK]
All paths between these two clock domains are restricted
to a max of 1200ps.

set_min_delay 0.4 -from [get_clocks SYS_CLK] \
-to [get_clocks CFG_CLK]
The min delay between any path between the two
clock domains is specified as 400ps.

If there are multiple timing constraints on a path, such as clock frequency,
set_max_delay and set_min_delay, the most restrictive constraint is the one
always checked. Multiple timing constraints can be caused by some global
constraints being applied first and then some local constraints applied lat-
er.

CHAPTER 7 Configuring the STA Environment

224

7.12 Path Segmentation

Breaking up a timing path into smaller paths that can be timed is referred
to as path segmentation.

A timing path has a startpoint and an endpoint. Additional startpoints and
endpoints on a timing path can be created by using the set_input_delay and
the set_output_delay specifications. The set_input_delay, which defines a
startpoint, is typically specified on an output pin of a cell, while the
set_output_delay, which defines a new endpoint, is typically specified on an
input pin of a cell. These specifications define a new timing path which is a
subset of the original timing path.

Consider the path shown in Figure 7-38. Once a clock is defined for SYS-
CLK, the timing path that is timed is from UFF0/CK to UFF1/D. If one is in-
terested in reporting only the path delay from UAND2/Z to UAND6/A,
then the following two commands are applicable:

set STARTPOINT [get_pins UAND2/Z]
set ENDPOINT [get_pins UAND6/A]
set_input_delay 0 $STARTPOINT
set_output_delay 0 $ENDPOINT

Figure 7-38 Path segmentation.

D Q

CK

D Q

CK

UFF0 UFF1UAND2 UBUF3
UXOR4 UINV5 UAND6

SYSCLK

Z
A

New path to be timed

Original timing path

Path Segmentation SECTION 7.12

225

Defining these constraints causes the original timing path from UFF0/CK to
UFF1/D to be segmented and creates an internal startpoint and an internal
endpoint at UAND2/Z and UAND6/A respectively. A timing report would
now show this new path explicitly. Note that two additional timing paths
are also created automatically, one from UFF0/CK to UAND2/Z and anoth-
er from UAND6/A to UFF1/D. Thus the original timing path has been bro-
ken up into three segments, each of which is timed separately.

The set_disable_timing, set_max_delay and set_min_delay commands also
cause timing paths to get segmented.

q

C H A P T E R

8

Timing Verification

his chapter describes the checks that are performed as part of static
timing analysis. These checks are intended to exhaustively verify the
timing of the design under analysis.

The two primary checks are the setup and hold checks. Once a clock is de-
fined at the clock pin of a flip-flop, setup and hold checks are automatically
inferred for the flip-flop. The timing checks are generally performed at
multiple conditions including the worst-case slow condition and best-case
fast condition. Typically, the worst-case slow condition is critical for setup
checks and best-case fast condition is critical for hold checks - though the
hold checks may be performed at the worst-case slow condition also.

The examples presented in this chapter assume that the net delays are zero;
this is done for simplicity and does not alter the concepts presented herein.

T

 J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs: A Practical Approach, 227
DOI: 10.1007/978-0-387-93820-2_8, © Springer Science + Business Media, LLC 2009

CHAPTER 8 Timing Verification

228

8.1 Setup Timing Check

A setup timing check verifies the timing relationship between the clock
and the data pin of a flip-flop so that the setup requirement is met. In other
words, the setup check ensures that the data is available at the input of the
flip-flop before it is clocked in the flip-flop. The data should be stable for a
certain amount of time, namely the setup time of the flip-flop, before the
active edge of the clock arrives at the flip-flop. This requirement ensures
that the data is captured reliably into the flip-flop. Figure 8-1 shows the set-
up requirement of a typical flip-flop. A setup check verifies the setup re-
quirement of the flip-flop.

In general, there is a launch flip-flop - the flip-flop that launches the data,
and a capture flip-flop - the flip-flop that captures the data whose setup
time must be satisfied. The setup check validates the long (or max) path
from the launch flip-flop to the capture flip-flop. The clocks to these two
flip-flops can be the same or can be different. The setup check is from the
first active edge of the clock in the launch flip-flop to the closest following

Figure 8-1 Setup requirement of a flip-flop.

D

CK

Setup time
of flip-flopData can change

any time here

D Q

CK

Setup Timing Check SECTION 8.1

229

active edge of the capture flip-flop. The setup check ensures that the data
launched from the previous clock cycle is ready to be captured after one
cycle.

We now examine a simple example, shown in Figure 8-2, where both the
launch and capture flip-flops have the same clock. The first rising edge of
clock CLKM appears at time Tlaunch at launch flip-flop. The data launched
by this clock edge appears at time Tlaunch + Tck2q + Tdp at the D pin of the
flip-flop UFF1. The second rising edge of the clock (setup is normally
checked after one cycle) appears at time Tcycle + Tcapture at the clock pin of
the capture flip-flop UFF1. The difference between these two times must be
larger than the setup time of the flip-flop, so that the data can be reliably
captured in the flip-flop.

The setup check can be mathematically expressed as:

Tlaunch + Tck2q + Tdp < Tcapture + Tcycle - Tsetup

where Tlaunch is the delay of the clock tree of the launch flip-flop UFF0, Tdp
is the delay of the combinational logic data path and Tcycle is the clock peri-
od. Tcapture is the delay of the clock tree for the capture flip-flop UFF1.

In other words, the total time it takes for data to arrive at the D pin of the
capture flip-flop must be less than the time it takes for the clock to travel to
the capture flip-flop plus a clock cycle delay minus the setup time.

Since the setup check poses a max1 constraint, the setup check always uses
the longest or the max timing path. For the same reason, this check is nor-
mally verified at the slow corner where the delays are the largest.

1. It imposes an upper bound on the data path delay.

CHAPTER 8 Timing Verification

230

Figure 8-2 Data and clock signals for setup timing check.

Launch
flip-flop

Capture

Setup limit

Data must be stable
during the setup time

TsetupTck2q

Launch edge

Capture edge

flip-flop

UFF1/CK

UFF0/CK

Tlaunch

Tcapture

UFF1UFF0

UFF1/D

Combinational
logic (Tdp)

CLKM

Tcycle

Tlaunch

Tcapture

CLKM

D Q

CK

D Q

CK

Tsetup

Setup Timing Check SECTION 8.1

231

8.1.1 Flip-flop to Flip-flop Path

Here is a path report of a setup check.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: max

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock network delay (ideal) 0.00 0.00
UFF0/CK (DFF) 0.00 0.00 r
UFF0/Q (DFF) <- 0.16 0.16 f
UNOR0/ZN (NR2) 0.04 0.20 r
UBUF4/Z (BUFF) 0.05 0.26 r
UFF1/D (DFF) 0.00 0.26 r
data arrival time 0.26

clock CLKM (rise edge) 10.00 10.00
clock network delay (ideal) 0.00 10.00
clock uncertainty -0.30 9.70
UFF1/CK (DFF) 9.70 r
library setup time -0.04 9.66
data required time 9.66

data required time 9.66
data arrival time -0.26

slack (MET) 9.41

The report shows that the launch flip-flop (specified by Startpoint) has in-
stance name UFF0 and it is triggered by the rising edge of clock CLKM. The
capture flip-flop (specified by Endpoint) is UFF1 and is also triggered by the
rising edge of clock CLKM. The Path Group line indicates that it belongs to
the path group CLKM. As discussed in the previous chapter, all paths in a
design are categorized into path groups based on the clock of the capture
flip-flop. The Path Type line indicates that the delays shown in this report

CHAPTER 8 Timing Verification

232

are all max path delays indicating that this is a setup check. This is because
setup checks correspond to the max (or longest path) delays through the
logic. Note that the hold checks correspond to the min (or shortest path)
delays through the logic.

The Incr column specifies the incremental cell or net delay for the port or
pin indicated. The Path column shows the cumulative delay for the arrival
and the data required paths. Here is the clock specification used for this ex-
ample.

create_clock -name CLKM -period 10 -waveform {0 5} \
[get_ports CLKM]

set_clock_uncertainty -setup 0.3 [all_clocks]
set_clock_transition -rise 0.2 [all_clocks]
set_clock_transition -fall 0.15 [all_clocks]

The launch path takes 0.26ns to get to the D pin of flip-flop UFF1 - this is
the arrival time at the input of the capture flip-flop. The capture edge
(which is one cycle away since this is a setup check) is at 10ns. A clock un-
certainty of 0.3ns was specified for this clock - thus, the clock period is re-
duced by the uncertainty margin. The clock uncertainty includes the
variation in cycle time due to jitter in the clock source and any other timing
margin used for analysis. The setup time of the flip-flop 0.04ns (called li-
brary setup time), is deducted from the total capture path yielding a re-
quired time of 9.66ns. Since the arrival time is 0.26ns, there is a positive
slack of 9.41ns on this timing path. Note that the difference between the re-
quired time and arrival time may appear to be 9.40ns - however the actual
value is 9.41ns which appears in the report. The anomaly exists because the
report shows only two digits after the decimal whereas the internally com-
puted and stored values have greater precision than those reported.

What is the clock network delay in the timing report and why is it marked as
ideal? This line in the timing report indicates that the clock trees are treated
as ideal, that any buffers in the clock path are assumed to have zero delay.
Once the clock trees are built, the clock network can be marked as propagat-
ed - which causes the clock paths to show up with real delays, as shown in
the next example timing report. The 0.11ns delay is the clock network de-

Setup Timing Check SECTION 8.1

233

lay on the launch clock and the 0.12ns delay is the clock network delay on
the capture flip-flop.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: max

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock network delay (propagated) 0.11 0.11
UFF0/CK (DFF) 0.00 0.11 r
UFF0/Q (DFF) <- 0.14 0.26 f
UNOR0/ZN (NR2) 0.04 0.30 r
UBUF4/Z (BUFF) 0.05 0.35 r
UFF1/D (DFF) 0.00 0.35 r
data arrival time 0.35

clock CLKM (rise edge) 10.00 10.00
clock network delay (propagated) 0.12 10.12
clock uncertainty -0.30 9.82
UFF1/CK (DFF) 9.82 r
library setup time -0.04 9.78
data required time 9.78

data required time 9.78
data arrival time -0.35

slack (MET) 9.43

The timing path report can optionally include the expanded clock paths,
that is, with the clock trees explicitly shown. Here is such an example.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: max

CHAPTER 8 Timing Verification

234

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF1/C (CKB) 0.06 0.11 r
UFF0/CK (DFF) 0.00 0.11 r
UFF0/Q (DFF) <- 0.14 0.26 f
UNOR0/ZN (NR2) 0.04 0.30 r
UBUF4/Z (BUFF) 0.05 0.35 r
UFF1/D (DFF) 0.00 0.35 r
data arrival time 0.35

clock CLKM (rise edge) 10.00 10.00
clock source latency 0.00 10.00
CLKM (in) 0.00 10.00 r
UCKBUF0/C (CKB) 0.06 10.06 r
UCKBUF2/C (CKB) 0.07 10.12 r
UFF1/CK (DFF) 0.00 10.12 r
clock uncertainty -0.30 9.82
library setup time -0.04 9.78
data required time 9.78

data required time 9.78
data arrival time -0.35

slack (MET) 9.43

Notice that the clock buffers, UCKBUF0, UCKBUF1 and UCKBUF2 appear
in the path report above and provide details of how the clock tree delays
are computed.

How is the delay of the first clock cell UCKBUF0 computed? As described
in previous chapters, the cell delay is calculated based on the input transi-
tion time and the output capacitance of the cell. Thus, the question is what
transition time is used at the input of the first cell in the clock tree. The
transition time (or slew) on the input pin of the first clock cell can be explic-
itly specified using the set_input_transition command.

Setup Timing Check SECTION 8.1

235

set_input_transition -rise 0.3 [get_ports CLKM]
set_input_transition -fall 0.45 [get_ports CLKM]

In the set_input_transition specification shown above, we specified the in-
put rise transition time to be 0.3ns and the fall transition time to be 0.45ns.
In the absence of the input transition specifications, ideal slew is assumed
at the origin of the clock tree, which implies that both the rise and fall tran-
sition times are 0ns.

The “r” and “f” characters in the timing report indicate the rising (and fall-
ing) edge of the clock or data signal. The previous path report shows the
path starting from the falling edge of UFF0/Q and ending on the rising
edge of UFF1/D. Since UFF1/D can be either 0 or 1, there can be a path end-
ing at the falling edge of UFF1/D as well. Here is such a path.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: max

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF1/C (CKB) 0.06 0.11 r
UFF0/CK (DFF) 0.00 0.11 r
UFF0/Q (DFF) <- 0.14 0.26 r
UNOR0/ZN (NR2) 0.02 0.28 f
UBUF4/Z (BUFF) 0.06 0.33 f
UFF1/D (DFF) 0.00 0.33 f
data arrival time 0.33

clock CLKM (rise edge) 10.00 10.00
clock source latency 0.00 10.00
CLKM (in) 0.00 10.00 r
UCKBUF0/C (CKB) 0.06 10.06 r
UCKBUF2/C (CKB) 0.07 10.12 r
UFF1/CK (DFF) 0.00 10.12 r

CHAPTER 8 Timing Verification

236

clock uncertainty -0.30 9.82
library setup time -0.03 9.79
data required time 9.79

data required time 9.79
data arrival time -0.33

slack (MET) 9.46

Note that the edge at the clock pin of the flip-flop (called the active edge)
remains unchanged. It can only be a rising or falling active edge, depend-
ing upon whether the flip-flop is rising-edge triggered or falling-edge trig-
gered respectively.

What is clock source latency? This is also called insertion delay and is the time
it takes for a clock to propagate from its source to the clock definition point
of the design under analysis as depicted in Figure 8-3. This corresponds to
the latency of the clock tree that is outside of the design. For example, if
this design were part of a larger block, the clock source latency specifies the
delay of the clock tree up to the clock pin of the design under analysis. This
latency can be explicitly specified using the set_clock_latency command.

Figure 8-3 The two types of clock latencies.

DUA

CLKM
MAINCLK

Clock source
latency

Clock network latency

Source
of clock

D Q

CK

(insertion delay)

Setup Timing Check SECTION 8.1

237

set_clock_latency -source -rise 0.7 [get_clocks CLKM]
set_clock_latency -source -fall 0.65 [get_clocks CLKM]

In the absence of such a command, a latency of 0 is assumed. That was the
assumption used in earlier path reports. Note that the source latency does
not affect paths that are internal to the design and have the same launch
clock and capture clock. This is because the same latency gets added to
both the launch clock path and the capture clock path. However this laten-
cy does impact timing paths that go through the inputs and outputs of the
design under analysis.

Without the -source option, the set_clock_latency command defines the clock
network latency - this is the latency from the clock definition point in the
DUA to the clock pin of a flip-flop. The clock network latency is used to
model the delay through the clock path before the clock trees are built, that
is, prior to clock tree synthesis. Once a clock tree is built and is marked as
propagated, this clock network latency specification is ignored. The
set_clock_latency command can be used to model the delay from the master
clock to one of its generated clocks as described in Section 7.3. This com-
mand is also used to model off-chip clock latency when clock generation
logic is not part of the design.

8.1.2 Input to Flip-flop Path

Here is an example path report through an input port to a flip-flop. Figure
8-4 shows the schematic related to the input path and the clock waveforms.

Startpoint: INA (input port clocked by VIRTUAL_CLKM)
Endpoint: UFF2 (rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: max

Point Incr Path

clock VIRTUAL_CLKM (rise edge) 0.00 0.00
clock network delay (ideal) 0.00 0.00
input external delay 2.55 2.55 f

CHAPTER 8 Timing Verification

238

INA (in) <- 0.00 2.55 f
UINV1/ZN (INV) 0.02 2.58 r
UAND0/Z (AN2) 0.06 2.63 r
UINV2/ZN (INV) 0.02 2.65 f
UFF2/D (DFF) 0.00 2.65 f
data arrival time 2.65

clock CLKM (rise edge) 10.00 10.00
clock source latency 0.00 10.00
CLKM (in) 0.00 10.00 r
UCKBUF0/C (CKB) 0.06 10.06 r
UCKBUF2/C (CKB) 0.07 10.12 r
UCKBUF3/C (CKB) 0.06 10.18 r
UFF2/CK (DFF) 0.00 10.18 r
clock uncertainty -0.30 9.88
library setup time -0.03 9.85
data required time 9.85

data required time 9.85
data arrival time -2.65

slack (MET) 7.20

The first thing to notice is input port clocked by VIRTUAL_CLKM. As dis-
cussed in Section 7.9, this clock can be considered as an imaginary (virtual)
flip-flop outside of the design that is driving the input port INA of the de-
sign. The clock of this virtual flip-flop is VIRTUAL_CLKM. In addition, the
max delay from the clock pin of this virtual flip-flop to the input port INA
is specified as 2.55ns - this appears as input external delay in the report. Both
of these parameters are specified using the following SDC commands.

create_clock -name VIRTUAL_CLKM -period 10 -waveform {0 5}
set_input_delay -clock VIRTUAL_CLKM \
-max 2.55 [get_ports INA]

Notice that the definition of the virtual clock VIRTUAL_CLKM does not
have any pin from the design associated with it; this is because it is consid-
ered to be defined outside of the design (it is virtual). The input delay spec-

Setup Timing Check SECTION 8.1

239

ification, set_input_delay, specifies the delay with respect to the virtual
clock.

The input path starts from the port INA; how does one compute the delay
of the first cell UINV1 connected to port INA? One way to accomplish this
is by specifying the driving cell of the input port INA. This driving cell is
used to determine the drive strength and thus the slew on the port INA,
which is then used to compute the delay of the cell UINV1. In the absence
of any slew specification on the input port INA, the transition at the port is
assumed to be ideal, which corresponds to a transition time of 0ns.

Figure 8-4 Setup check for the path through input port.

VIRTUAL_CLKM

Max delay = 2.55
DUA

INA

VIRTUAL_CLKM

CLKM

0 5 10

Data requiredData arrives

2.65 9.85Setup check

D Q

CK

D Q

CKCLKM

UFF2

to next rise edge

at UFF2/D

Min delay = 1.1

Tc = 0.1

CHAPTER 8 Timing Verification

240

set_driving_cell -lib_cell BUFF \
-library lib013lwc [get_ports INA]

Figure 8-4 also shows how the setup check is done. The time by which data
must arrive at UFF2/D is 9.85ns. However, the data arrives at 2.65ns, thus
the report shows a positive slack of 7.2ns on this path.

Input Path with Actual Clock

Input arrival times can be specified with respect to an actual clock also;
these do not necessarily have to be specified with respect to a virtual clock.
Examples of actual clocks are clocks on internal pins in the design, or on in-
put ports. Figure 8-5 depicts an example where the input constraint on port
CIN is specified relative to a clock on input port CLKP. This constraint is
specified as:

set_input_delay -clock CLKP -max 4.3 [get_ports CIN]

Here is the input path report corresponding to this specification.

Startpoint: CIN (input port clocked by CLKP)
Endpoint: UFF4 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: max

Point Incr Path

clock CLKP (rise edge) 0.00 0.00
clock network delay (propagated) 0.00 0.00
input external delay 4.30 4.30 f
CIN (in) 0.00 4.30 f
UBUF5/Z (BUFF) 0.06 4.36 f
UXOR1/Z (XOR2) 0.10 4.46 r
UFF4/D (DFF) 0.00 4.46 r
data arrival time 4.46

clock CLKP (rise edge) 12.00 12.00
clock source latency 0.00 12.00

Setup Timing Check SECTION 8.1

241

CLKP (in) 0.00 12.00 r
UCKBUF4/C (CKB) 0.06 12.06 r
UCKBUF5/C (CKB) 0.06 12.12 r
UFF4/CK (DFF) 0.00 12.12 r
clock uncertainty -0.30 11.82
library setup time -0.05 11.77
data required time 11.77

data required time 11.77
data arrival time -4.46

slack (MET) 7.31

Figure 8-5 Path through input port using core clock.

Delay = 4.3 DUA

CIN

0 6 12

Data requiredData arrives

4.46 11.77Setup check

D Q

CK

D Q

CKCLKP

UFF4

to next rise edge

at UFF4/D

UFF4/CK

CLKP

CLKP

Virtual
flip-flop

Tc = 0.16

CHAPTER 8 Timing Verification

242

Notice that the Startpoint specifies the reference clock for the input port to
be CLKP as expected.

8.1.3 Flip-flop to Output Path

Similar to the input port constraint described above, an output port can be
constrained either with respect to a virtual clock, or an internal clock of the
design, or an input clock port, or an output clock port. Here is an example
that shows the output pin ROUT constrained with respect to a virtual
clock. The output constraint is as follows:

set_output_delay -clock VIRTUAL_CLKP \
-max 5.1 [get_ports ROUT]

set_load 0.02 [get_ports ROUT]

To determine the delay of the last cell connected to the output port correct-
ly, one needs to specify the load on this port. The output load is specified
above using the set_load command. Note that the port ROUT may have
load contribution internal to the DUA and the set_load specification pro-
vides the additional load, which is the load contribution from outside the
DUA. In the absence of the set_load specification, a value of 0 for the exter-
nal load is assumed (which may not be realistic as this design would most
probably be used in some other design). Figure 8-6 shows the timing path
to the virtual flip-flop that has the virtual clock.

The path report through the output port is shown next.

Startpoint: UFF4 (rising edge-triggered flip-flop clocked by CLKP)
Endpoint: ROUT (output port clocked by VIRTUAL_CLKP)
Path Group: VIRTUAL_CLKP
Path Type: max

Point Incr Path

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r

Setup Timing Check SECTION 8.1

243

UCKBUF4/C (CKB) 0.06 0.06 r
UCKBUF5/C (CKB) 0.06 0.12 r
UFF4/CK (DFF) 0.00 0.12 r
UFF4/Q (DFF) 0.13 0.25 r
UBUF3/Z (BUFF) 0.09 0.33 r
ROUT (out) 0.00 0.33 r
data arrival time 0.33

clock VIRTUAL_CLKP (rise edge) 12.00 12.00
clock network delay (ideal) 0.00 12.00
clock uncertainty -0.30 11.70
output external delay -5.10 6.60
data required time 6.60

Figure 8-6 Setup check for path through output port.

Max delay = 5.1
DUA

ROUT

0 6 12
Data requiredData arrives

0.33 6.6
Setup check

D Q

CK

D Q

CK
VIRTUAL_CLKP

UFF4

to next rise edge

at ROUT

CLKP

Virtual

VIRTUAL_CLKP

UFF4/CK

/ CLKP

Min delay = 2.5

flip-flop

CHAPTER 8 Timing Verification

244

data required time 6.60
data arrival time -0.33

slack (MET) 6.27

Notice that the output delay specified appears as output external delay and
behaves like a required setup time for the virtual flip-flop.

8.1.4 Input to Output Path

The design can have a combinational path going from an input port to an
output port. This path can be constrained and timed just like the input and
output paths we saw earlier. Figure 8-7 shows an example of such a path.
Virtual clocks are used to specify constraints on both input and output
ports.

Here are the input and output delay specifications.

set_input_delay -clock VIRTUAL_CLKM \
-max 3.6 [get_ports INB]

set_output_delay -clock VIRTUAL_CLKM \
-max 5.8 [get_ports POUT]

Here is a path report that goes through the combinational logic from input
INB to output POUT. Notice that any internal clock latencies, if present,
have no effect on the path report.

Startpoint: INB (input port clocked by VIRTUAL_CLKM)
Endpoint: POUT (output port clocked by VIRTUAL_CLKM)
Path Group: VIRTUAL_CLKM
Path Type: max

Point Incr Path

clock VIRTUAL_CLKM (rise edge) 0.00 0.00
clock network delay (ideal) 0.00 0.00

Setup Timing Check SECTION 8.1

245

input external delay 3.60 3.60 f
INB (in) <- 0.00 3.60 f
UBUF0/Z (BUFF) 0.05 3.65 f
UBUF1/Z (BUFF) 0.06 3.72 f
UINV3/ZN (INV) 0.34 4.06 r
POUT (out) 0.00 4.06 r
data arrival time 4.06

clock VIRTUAL_CLKM (rise edge) 10.00 10.00
clock network delay (ideal) 0.00 10.00

Figure 8-7 Combinational path from input to output port.

Input virtual

Output virtual

0 5 10

Data required Data arrives

3.9 4.06

Setup check
flip-flop/CK

flip-flop/CK

Max delay = 5.8

DUA

POUT
D Q

CK

VIRTUAL_CLKM

Virtual

D Q

CK

Virtual

INB

Max delay = 3.6

to next rise edge

Min delay = 3.2Min delay = 1.8

flip-flop flip-flop

CHAPTER 8 Timing Verification

246

clock uncertainty -0.30 9.70
output external delay -5.80 3.90
data required time 3.90

data required time 3.90
data arrival time -4.06

slack (VIOLATED) -0.16

8.1.5 Frequency Histogram

If one were to plot a frequency histogram of setup slack versus number of
paths for a typical design, it would look like the one shown in Figure 8-8.
Depending upon the state of the design, whether it has been optimized or
not, the zero slack line would be more towards the right for an unopti-
mized design and more towards the left for an optimized design. For a de-
sign that has zero violations, that is no paths with negative slack, the entire
curve would be to the right of the zero slack line.

Figure 8-8 Frequency histogram of timing slack in paths.

Slack

Number of paths Zero slack

Negative slack Positive slack

Setup Timing Check SECTION 8.1

247

Here is a histogram shown in a textual form that can often be produced by
a static timing analysis tool.

{-INF 375 0}
{375 380 237}
{380 385 425}
{385 390 1557}
{390 395 1668}
{395 400 1559}
{400 405 1244}
{405 410 1079}
{410 415 941}
{415 420 431}
{420 425 404}
{425 430 1}
{430 +INF 0}

The first two indices denote the slack range and the third index is the num-
ber of paths within that slack range, for example, there are 941 paths with
slack in the range of 410ps to 415ps. The histogram indicates that this de-
sign has no failing paths, that is all paths have positive slack, and that the
most critical path has a positive slack between 375ps and 380ps.

Designs that are tough to meet timing would have their hump of the histo-
gram more towards the left, that is, have many paths with slack closer to
zero. One other observation that can be made by looking at a frequency
histogram is on the ability to further optimize the design to achieve zero
slack, that is, how difficult it is to close timing. If the number of failing
paths is small and the negative slack is also small, the design is relatively
close to meeting the required timing. However, if the number of failing
paths is large and the negative slack magnitude is also large, this implies
that the design would require a lot of effort to meet the required timing.

CHAPTER 8 Timing Verification

248

8.2 Hold Timing Check

A hold timing check ensures that a flip-flop output value that is changing
does not pass through to a capture flip-flop and overwrite its output before
the flip-flop has had a chance to capture its original value. This check is
based on the hold requirement of a flip-flop. The hold specification of a
flip-flop requires that the data being latched should be held stable for a
specified amount of time after the active edge of the clock. Figure 8-9
shows the hold requirement of a typical flip-flop.

Just like the setup check, a hold timing check is between the launch flip-
flop - the flip-flop that launches the data, and the capture flip-flop - the
flip-flop that captures the data and whose hold time must be satisfied. The
clocks to these two flip-flops can be the same or can be different. The hold
check is from one active edge of the clock in the launch flip-flop to the
same clock edge at the capture flip-flop. Thus, a hold check is independent
of the clock period. The hold check is carried out on each active edge of the
clock of the capture flip-flop.

Figure 8-9 Hold requirement of a flip-flop.

D

CK

Hold time
of flip-flop

Data can change
after hold time

D Q

CK

Hold Timing Check SECTION 8.2

249

We now examine a simple example, shown in Figure 8-10, where both the
launch and the capture flip-flops have the same clock.

Figure 8-10 Data and clock signals for hold timing check.

Hold limit

Data must stay stable for
at least the hold period.

Launch edge

Capture edge

UFF1/CK

UFF0/CK

UFF1/D

Tcycle

Tlaunch

Tcapture

CLKM

Launch
flop

Capture

TholdTck2q

flop

Tlaunch

Tcapture

UFF1UFF0

Combinational
logic (Tdp)

CLKM

D Q

CK

D Q

CK

CHAPTER 8 Timing Verification

250

Consider the second rising edge of clock CLKM. The data launched by the
rising edge of the clock takes Tlaunch + Tck2q + Tdp time to get to the D pin of
the capture flip-flop UFF1. The same edge of the clock takes Tcapture time to
get to the clock pin of the capture flip-flop. The intention is for the data
from the launch flip-flop to be captured by the capture flip-flop in the next
clock cycle. If the data is captured in the same clock cycle, the intended
data in the capture flip-flop (from the previous clock cycle) is overwritten.
The hold time check is to ensure that the intended data in the capture flip-
flop is not overwritten. The hold time check verifies that the difference be-
tween these two times (data arrival time and clock arrival time at capture
flip-flop) must be larger than the hold time of the capture flip-flop, so that
the previous data on the flip-flop is not overwritten and the data is reliably
captured in the flip-flop.

The hold check can be mathematically expressed as:

Tlaunch + Tck2q + Tdp > Tcapture + Thold

where Tlaunch is the delay of the clock tree of the launch flip-flop, Tdp is the
delay in the combinational logic data path and Tcapture is the delay on the
clock tree for the capture flip-flop. In other words, the total time required
for data launched by a clock edge to arrive at the D pin of the capture flip-
flop must be larger than the time required for the same edge of the clock to
travel to the capture flip-flop plus the hold time. This ensures that UFF1/D
remains stable until the hold time of the flip-flop after the rising edge of the
clock on its clock pin UFF1/CK.

The hold checks impose a lower bound or min constraint for paths to the
data pin on the capture flip-flop; the fastest path to the D pin of the capture
flip-flop needs to be determined. This implies that the hold checks are al-
ways verified using the shortest paths. Thus, the hold checks are typically
performed at the fast timing corner.

Even when there is only one clock in the design, the clock tree can result in
the arrival times of the clocks at the launch and capture flip-flops to be sub-
stantially different. To ensure reliable data capture, the clock edge at the

Hold Timing Check SECTION 8.2

251

capture flip-flop must arrive before the data can change. A hold timing
check ensures that (see Figure 8-11):

• Data from the subsequent launch edge must not be captured by
the setup receiving edge.

• Data from the setup launch edge must not be captured by the
preceding receiving edge.

These two hold checks are essentially the same if both the launch and cap-
ture clock belong to the same clock domain. However, when the launch
and capture clocks are at different frequencies or in different clock do-
mains, the above two conditions may map into different constraints. In
such cases, the worst hold check is the one that is reported. Figure 8-11
shows these two checks pictorially.

UFF0 is the launch flip-flop and UFF1 is the capture flip-flop. The setup
check is between the setup launch edge and the setup receiving edge. The sub-
sequent launch edge must not propagate data so fast that the setup receiving
edge does not have time to capture its data reliably. In addition, the setup
launch edge must not propagate data so fast that the preceding receiving edge
does not get a chance to capture its data. The worst hold check corresponds

Figure 8-11 Two hold checks for one setup check.

Setup
launch edge

Min path,

Subsequent

Min path,
“subsequent” to “setup”

Setup
receiving edge

“launch” to “preceding”

Preceding

UFF0/CK
(Launch flip-flop clock)

UFF1/CK
(Capture flip-flop clock)

Setup check

launch edge

receiving edge

CHAPTER 8 Timing Verification

252

to the most restrictive hold check amongst various scenarios described
above.

More general clocking such as for multicycle paths and multi-frequency
paths are discussed later in Section 8.3 and Section 8.8 respectively. The
discussion covers the relationships between setup checks and hold checks,
especially, how hold checks are derived from the setup check relationships.
While setup violations can cause the operating frequency of the design to
be lowered, the hold violations can kill a design, that is, make the design
inoperable at any frequency. Thus it is very important to understand the
hold timing checks and resolve any violations.

8.2.1 Flip-flop to Flip-flop Path

This section illustrates the flip-flop to flip-flop hold path based upon the
example depicted in Figure 8-2. Here is the path report of a hold timing
check for the example from Section 8.1 for the setup check path.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: min

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF1/C (CKB) 0.06 0.11 r
UFF0/CK (DFF) 0.00 0.11 r
UFF0/Q (DFF) <- 0.14 0.26 r
UNOR0/ZN (NR2) 0.02 0.28 f
UBUF4/Z (BUFF) 0.06 0.33 f
UFF1/D (DFF) 0.00 0.33 f
data arrival time 0.33

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00

Hold Timing Check SECTION 8.2

253

CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF2/C (CKB) 0.07 0.12 r
UFF1/CK (DFF) 0.00 0.12 r
clock uncertainty 0.05 0.17
library hold time 0.01 0.19
data required time 0.19

data required time 0.19
data arrival time -0.33

slack (MET) 0.14

Notice that the Path Type is described as min indicating that the cell delay
values along the shortest path are used which corresponds to hold timing
checks. The library hold time specifies the hold time of flip-flop UFF1. (The
hold time for flip-flops can also be negative as explained earlier in Section
3.4.) Notice that both the capture and receive timing is computed at the ris-
ing edge (active edge of flip-flop) of clock CLKM. The timing report shows
that the earliest time the new data can arrive at UFF1 while enabling the
previous data to be safely captured is 0.19ns. Since the new data arrives at
0.33ns, the report shows a positive hold slack of 0.14ns.

Figure 8-12 shows the times of the clock signals at the launch and capture
flip-flops along with the earliest allowed and actual arrival time for the
data at the capture flip-flop. Since the data arrives later than the data re-
quired time (which for hold is the earliest allowed), the hold condition is
met.

Hold Slack Calculation

An interesting point to note is the difference in the way the slack is com-
puted for setup and hold timing reports. In the setup timing reports, the ar-
rival time and the required time are computed and the slack is computed
to be the required time minus arrival time. However in the hold timing re-
ports, when we compute required time minus arrival time, a negative re-

CHAPTER 8 Timing Verification

254

sult translates into a positive slack (means hold constraint is satisfied),
while a positive result translates into a negative slack (means hold con-
straint is not satisfied).

8.2.2 Input to Flip-flop Path

The hold timing check from an input port is described next. See Figure 8-4
for an example. The min delay on the input port is specified using a virtual
clock as:

set_input_delay -clock VIRTUAL_CLKM \
-min 1.1 [get_ports INA]

Here is the hold timing report.

Startpoint: INA (input port clocked by VIRTUAL_CLKM)
Endpoint: UFF2 (rising edge-triggered flip-flop clocked by CLKM)

Figure 8-12 Clock waveforms for hold timing check on internal path.

0.11
Earliest allowed data at UFF1/D

Data arrives at UFF1/D

Hold check to same edge of CLKM

UFF1/CK

UFF0/CK

0.12 0.19 0.33

CLKM

0 5

Launch clock

Capture clock

Hold Timing Check SECTION 8.2

255

Path Group: CLKM
Path Type: min

Point Incr Path

clock VIRTUAL_CLKM (rise edge) 0.00 0.00
clock network delay (ideal) 0.00 0.00
input external delay 1.10 1.10 f
INA (in) <- 0.00 1.10 f
UINV1/ZN (INV) 0.02 1.13 r
UAND0/Z (AN2) 0.06 1.18 r
UINV2/ZN (INV) 0.02 1.20 f
UFF2/D (DFF) 0.00 1.20 f
data arrival time 1.20

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF2/C (CKB) 0.07 0.12 r
UCKBUF3/C (CKB) 0.06 0.18 r
UFF2/CK (DFF) 0.00 0.18 r
clock uncertainty 0.05 0.23
library hold time 0.01 0.25
data required time 0.25

data required time 0.25
data arrival time -1.20

slack (MET) 0.95

The set_input_delay appears as input external delay. The hold check is done
at time 0 between rising edge of VIRTUAL_CLKM and rising edge of
CLKM. The required arrival time for data to be captured by UFF2 without
violating its hold time is 0.25ns - this indicates that the data should arrive
after 0.25ns. Since the data can arrive only at 1.2ns, this shows a positive
slack of 0.95ns.

CHAPTER 8 Timing Verification

256

8.2.3 Flip-flop to Output Path

Here is a hold timing check at an output port. See Figure 8-6 for the exam-
ple. The output port specification appears as:

set_output_delay -clock VIRTUAL_CLKP \
-min 2.5 [get_ports ROUT]

The output delay is specified with respect to a virtual clock. Here is the
hold report.

Startpoint: UFF4 (rising edge-triggered flip-flop clocked by CLKP)
Endpoint: ROUT (output port clocked by VIRTUAL_CLKP)
Path Group: VIRTUAL_CLKP
Path Type: min

Point Incr Path

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.06 0.06 r
UCKBUF5/C (CKB) 0.06 0.12 r
UFF4/CK (DFF) 0.00 0.12 r
UFF4/Q (DFF) 0.13 0.25 f
UBUF3/Z (BUFF) 0.08 0.33 f
ROUT (out) 0.00 0.33 f
data arrival time 0.33

clock VIRTUAL_CLKP (rise edge) 0.00 0.00
clock network delay (ideal) 0.00 0.00
clock uncertainty 0.05 0.05
output external delay -2.50 -2.45
data required time -2.45

data required time -2.45
data arrival time -0.33

slack (MET) 2.78

Hold Timing Check SECTION 8.2

257

Notice that the set_output_delay appears as output external delay.

Flip-flop to Output Path with Actual Clock

Here is a path report of a hold timing check to an output port. See Figure 8-
13. The output min delay is specified with respect to a real clock.

set_output_delay -clock CLKP -min 3.5 [get_ports QOUT]
set_load 0.55 [get_ports QOUT]

Figure 8-13 Path through output port.

UFF4/CK

CLKP

0 6

Data required Data arrives
0.12

-3.45

Hold check

1.01

DUA

QOUT
D Q

CK

D Q

CK

UFF4
CLKP

Virtual flop

Min delay = 3.5

Slack = 4.46

CHAPTER 8 Timing Verification

258

Here is the hold timing report.

Startpoint: UFF4 (rising edge-triggered flip-flop clocked by CLKP)
Endpoint: QOUT (output port clocked by CLKP)
Path Group: CLKP
Path Type: min

Point Incr Path

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.06 0.06 r
UCKBUF5/C (CKB) 0.06 0.12 r
UFF4/CK (DFF) 0.00 0.12 r
UFF4/Q (DFF) 0.14 0.26 r
UINV4/ZN (INV) 0.75 1.01 f
QOUT (out) 0.00 1.01 f
data arrival time 1.01

clock CLKP (rise edge) 0.00 0.00
clock network delay (propagated) 0.00 0.00
clock uncertainty 0.05 0.05
output external delay -3.50 -3.45
data required time -3.45

data required time -3.45
data arrival time -1.01

slack (MET) 4.46

The hold timing check is performed on the rising edge (active edge of flip-
flop) of clock CLKP. The above report indicates that the flip-flop to output
has a positive slack of 4.46ns for the hold time.

Hold Timing Check SECTION 8.2

259

8.2.4 Input to Output Path

Here is a hold timing check on an input to output path shown in Figure 8-7.
The specifications on the ports are:

set_load -pin_load 0.15 [get_ports POUT]
set_output_delay -clock VIRTUAL_CLKM \
-min 3.2 [get_ports POUT]

set_input_delay -clock VIRTUAL_CLKM \
-min 1.8 [get_ports INB]

set_input_transition 0.8 [get_ports INB]

Startpoint: INB (input port clocked by VIRTUAL_CLKM)
Endpoint: POUT (output port clocked by VIRTUAL_CLKM)
Path Group: VIRTUAL_CLKM
Path Type: min

Point Incr Path

clock VIRTUAL_CLKM (rise edge) 0.00 0.00
clock network delay (ideal) 0.00 0.00
input external delay 1.80 1.80 r
INB (in) <- 0.00 1.80 r
UBUF0/Z (BUFF) 0.04 1.84 r
UBUF1/Z (BUFF) 0.06 1.90 r
UINV3/ZN (INV) 0.22 2.12 f
POUT (out) 0.00 2.12 f
data arrival time 2.12

clock VIRTUAL_CLKM (rise edge) 0.00 0.00
clock network delay (ideal) 0.00 0.00
clock uncertainty 0.05 0.05
output external delay -3.20 -3.15
data required time -3.15

data required time -3.15
data arrival time -2.12

slack (MET) 5.27

CHAPTER 8 Timing Verification

260

The specification on the output port is specified with respect to a virtual
clock and hence the hold check is performed on the rising (default active)
edge of that virtual clock.

8.3 Multicycle Paths

In some cases, the combinational data path between two flip-flops can take
more than one clock cycle to propagate through the logic. In such cases, the
combinational path is declared as a multicycle path. Even though the data
is being captured by the capture flip-flop on every clock edge, we direct
STA that the relevant capture edge occurs after the specified number of
clock cycles.

Figure 8-14 shows an example. Since the data path can take up to three
clock cycles, a setup multicycle check of three cycles should be specified.
The multicycle setup constraints specified to achieve this are given below.

create_clock -name CLKM -period 10 [get_ports CLKM]
set_multicycle_path 3 -setup \
-from [get_pins UFF0/Q] \
-to [get_pins UFF1/D]

The setup multicycle constraint specifies that the path from UFF0/CK to
UFF1/D can take up to three clock cycles to complete for a setup check.
This implies that the design utilizes the required data from UFF1/Q only
every third cycle instead of every cycle.

Here is a setup path report that has the multicycle constraint specified.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: max

Multicycle Paths SECTION 8.3

261

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock network delay (propagated) 0.11 0.11
UFF0/CK (DFF) 0.00 0.11 r
UFF0/Q (DFF) <- 0.14 0.26 f
UNOR0/ZN (NR2) 0.04 0.30 r
UBUF4/Z (BUFF) 0.05 0.35 r
UFF1/D (DFF) 0.00 0.35 r
data arrival time 0.35

Figure 8-14 A three-cycle multicycle path.

Up to
3-cycle delay

Three cycles

Default New
capture edgecapture edge

CLKM

1st edge 2nd edge 3rd edge

UFF1UFF0

UFF0/CK

UFF1/CK

D Q

CK

D Q

CK

to propagate

Hold
check

CHAPTER 8 Timing Verification

262

clock CLKM (rise edge) 30.00 30.00
clock network delay (propagated) 0.12 30.12
clock uncertainty -0.30 29.82
UFF1/CK (DFF) 29.82 r
library setup time -0.04 29.78
data required time 29.78

data required time 29.78
data arrival time -0.35

slack (MET) 29.43

Notice that the clock edge for the capture flip-flop is now three clock cycles
away, at 30ns.

We now examine the hold timing check on the example multicycle path. In
most common scenarios, we would want the hold check to stay as it was in
a single cycle setup case, which is the one shown in the Figure 8-14. This
ensures that the data is free to change anywhere in between the three clock
cycles. A hold multicycle of two is specified to get the same behavior of a
hold check as in a single cycle setup case. This is because in the absence of
such a hold multicycle specification, the default hold check is done on the
active edge prior to the setup capture edge which is not the intent. We need
to move the hold check two cycles prior to the default hold check edge and
hence a hold multicycle of two is specified. The intended behavior is
shown in Figure 8-15. With the multicycle hold, the min delay for the data
path can be less than one clock cycle.

set_multicycle_path 2 -hold -from [get_pins UFF0/Q] \
-to [get_pins UFF1/D]

The number of cycles denoted on a multicycle hold specifies how many
clock cycles to move back from its default hold check edge (which is one
active edge prior to the setup capture edge). Here is the path report.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKP)
Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKP)

Multicycle Paths SECTION 8.3

263

Path Group: CLKP
Path Type: min

Point Incr Path

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.07 0.07 r
UFF0/CK (DFF) 0.00 0.07 r
UFF0/Q (DFF) <- 0.15 0.22 f
UXOR1/Z (XOR2) 0.07 0.29 f
UFF1/D (DFF) 0.00 0.29 f
data arrival time 0.29

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.07 0.07 r
UCKBUF5/C (CKB) 0.06 0.13 r
UFF1/CK (DFF) 0.00 0.13 r
clock uncertainty 0.05 0.18
library hold time 0.01 0.19

Figure 8-15 Hold check moved back to launch edge.

Default hold
check

Hold check moved to launch edge

Data is free to change

Setup

Setup

Setup multicycle = 3

capture edge

launch edge

CHAPTER 8 Timing Verification

264

data required time 0.19

data required time 0.19
data arrival time -0.29

slack (MET) 0.11

Since this path has a setup multicycle of three, its default hold check is on
the active edge prior to the capture edge. In most designs, if the max path
(or setup) requires N clock cycles, it is not feasible to achieve the min path
constraint to be greater than (N-1) clock cycles. By specifying a multicycle
hold of two cycles, the hold check edge is moved back to the launch edge
(at 0ns) as shown in the above path report.

Thus, in most designs, a multicycle setup specified as N (cycles) should be
accompanied by a multicycle hold constraint specified as N-1 (cycles).

What happens when a multicycle setup of N is specified but the corre-
sponding N-1 multicycle hold is missing? In such a case, the hold check is
performed on the edge one cycle prior to the setup capture edge. The case
of such a hold check on a multicycle setup of 3 is shown in Figure 8-16.

This imposes a restriction that data can only change in the one cycle before
the setup capture edge as the figure shows. Thus the data path must have a
min delay of at least two clock cycles to meet this requirement. Here is such
a path report.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: min

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r

Multicycle Paths SECTION 8.3

265

UCKBUF1/C (CKB) 0.06 0.11 r
UFF0/CK (DFF) 0.00 0.11 r
UFF0/Q (DFF) <- 0.14 0.26 r
UNOR0/ZN (NR2) 0.02 0.28 f
UBUF4/Z (BUFF) 0.06 0.33 f
UFF1/D (DFF) 0.00 0.33 f
data arrival time 0.33

clock CLKM (rise edge) 20.00 20.00
clock source latency 0.00 20.00
CLKM (in) 0.00 20.00 r
UCKBUF0/C (CKB) 0.06 20.06 r
UCKBUF2/C (CKB) 0.07 20.12 r
UFF1/CK (DFF) 0.00 20.12 r
clock uncertainty 0.05 20.17
library hold time 0.01 20.19
data required time 20.19

data required time 20.19
data arrival time -0.33

Figure 8-16 Default hold check in a multicycle path.

Default hold
check

Data cannot change

Setup multicycle of 3

Launch
edge

Capture
edge

Edge before
capture edge

CHAPTER 8 Timing Verification

266

slack (VIOLATED) -19.85

Notice from the path report that the hold is being checked one clock edge
prior to the capture edge, leading to a large hold violation. In effect, the
hold check is requiring a minimum delay in the combinational logic of at
least two clock cycles.

Crossing Clock Domains

Let us consider the case when there is a multicycle between two different
clocks of the same period. (The case where the clock periods are different is
described later in this chapter.)

Example I:

create_clock -name CLKM \
-period 10 -waveform {0 5} [get_ports CLKM]

create_clock -name CLKP \
-period 10 -waveform {0 5} [get_ports CLKP]

The setup multicycle multiplier represents the number of clock cycles for a
given path. This is illustrated in Figure 8-17. The default setup capture
edge is always one cycle away. A setup multicycle of 2 puts the capture
edge two clock cycles away from the launch edge.

The hold multicycle multiplier represents the number of clock cycles be-
fore the setup capture edge that the hold check will occur, regardless of the
launch edge. This is illustrated in Figure 8-18. The default hold check is one
cycle before the setup capture edge. A hold multicycle specification of 1
puts the hold check one cycle prior to the default hold check, and thus be-
comes two cycles prior to the capture edge.

set_multicycle_path 2 \
-from [get_pins UFF0/CK] -to [get_pins UFF3/D]

Since no -hold option is specified, the default option

Multicycle Paths SECTION 8.3

267

Figure 8-17 Capture clock edges for various setup multicycle multipli-
er settings.

Figure 8-18 Capture clock edges for various hold multicycle multiplier
settings.

Setup

Setup capture
edge (default)

0 1 2-1Setup multipliers

launch edge

Setup capture
multicycle 2

Launch clock
CLKM

Capture clock
CLKP

Setup capture
edge (default)

-1 -201Hold
multipliers

Setup launch
edge

Launch clock
CLKM

Capture clock
CLKP

CHAPTER 8 Timing Verification

268

-setup is assumed. This implies that the setup
multiplier is 2 and the hold multiplier is 0.

Here is the setup path report corresponding to the multicycle specification.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: max

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF1/C (CKB) 0.06 0.11 r
UFF0/CK (DFF) 0.00 0.11 r
UFF0/Q (DFF) <- 0.14 0.26 f
UINV0/ZN (INV) 0.03 0.28 r
UFF3/D (DFF) 0.00 0.28 r
data arrival time 0.28

clock CLKP (rise edge) 20.00 20.00
clock source latency 0.00 20.00
CLKP (in) 0.00 20.00 r
UCKBUF4/C (CKB) 0.06 20.06 r
UFF3/CK (DFF) 0.00 20.06 r
clock uncertainty -0.30 19.76
library setup time -0.04 19.71
data required time 19.71

data required time 19.71
data arrival time -0.28

slack (MET) 19.43

Note that the path group specified in a path report is always that of the
capture flip-flop, in this case, CLKP.

Multicycle Paths SECTION 8.3

269

Next is the hold timing check path report. The hold multiplier defaults to 0
and thus the hold check is carried out at 10ns, one clock cycle prior to the
capture edge.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: min

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF1/C (CKB) 0.06 0.11 r
UFF0/CK (DFF) 0.00 0.11 r
UFF0/Q (DFF) <- 0.14 0.26 r
UINV0/ZN (INV) 0.02 0.28 f
UFF3/D (DFF) 0.00 0.28 f
data arrival time 0.28

clock CLKP (rise edge) 10.00 10.00
clock source latency 0.00 10.00
CLKP (in) 0.00 10.00 r
UCKBUF4/C (CKB) 0.06 10.06 r
UFF3/CK (DFF) 0.00 10.06 r
clock uncertainty 0.05 10.11
library hold time 0.02 10.12
data required time 10.12

data required time 10.12
data arrival time -0.28

slack (VIOLATED) -9.85

The above report shows the hold violation which can be removed by set-
ting a multicycle hold of 1. This is illustrated in a separate example next.

CHAPTER 8 Timing Verification

270

Example II:

Another example of a multicycle specified across two different clock do-
mains is given below.

set_multicycle_path 2 \
-from [get_pins UFF0/CK] -to [get_pins UFF3/D] -setup

set_multicycle_path 1 \
-from [get_pins UFF0/CK] -to [get_pins UFF3/D] -hold

The -setup and -hold options are explicitly specified.

Here is the setup path timing report for the multicycle setup of 2.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: max

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF1/C (CKB) 0.06 0.11 r
UFF0/CK (DFF) 0.00 0.11 r
UFF0/Q (DFF) <- 0.14 0.26 f
UNAND0/ZN (ND2) 0.03 0.29 r
UFF3/D (DFF) 0.00 0.29 r
data arrival time 0.29

clock CLKP (rise edge) 20.00 20.00
clock source latency 0.00 20.00
CLKP (in) 0.00 20.00 r
UCKBUF4/C (CKB) 0.07 20.07 r
UFF3/CK (DFF) 0.00 20.07 r
clock uncertainty -0.30 19.77
library setup time -0.04 19.72
data required time 19.72

Multicycle Paths SECTION 8.3

271

data required time 19.72
data arrival time -0.29

slack (MET) 19.44

Here is the hold check timing path report for the multicycle hold of 1.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: min

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF1/C (CKB) 0.06 0.11 r
UFF0/CK (DFF) 0.00 0.11 r
UFF0/Q (DFF) <- 0.14 0.26 r
UNAND0/ZN (ND2) 0.03 0.29 f
UFF3/D (DFF) 0.00 0.29 f
data arrival time 0.29

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.07 0.07 r
UFF3/CK (DFF) 0.00 0.07 r
clock uncertainty 0.05 0.12
library hold time 0.02 0.13
data required time 0.13

data required time 0.13
data arrival time -0.29

slack (MET) 0.16

CHAPTER 8 Timing Verification

272

Note that the example reports for the setup and hold checks in this section
are for the same timing corner. However, the setup checks are generally
hardest to meet (have the lowest slack) at the worst-case slow corner
whereas the hold checks are generally hardest to meet (have the lowest
slack) at the best-case fast corner.

8.4 False Paths

It is possible that certain timing paths are not real (or not possible) in the
actual functional operation of the design. Such paths can be turned off dur-
ing STA by setting these as false paths. A false path is ignored by the STA
for analysis.

Examples of false paths could be from one clock domain to another clock
domain, from a clock pin of a flip-flop to the input of another flip-flop,
through a pin of a cell, through pins of multiple cells, or a combination of
these. When a false path is specified through a pin of a cell, all paths that go
through that pin are ignored for timing analysis. The advantage of identi-
fying the false paths is that the analysis space is reduced, thereby allowing
the analysis to focus only on the real paths. This helps cut down the analy-
sis time as well. However, too many false paths which are wildcarded us-
ing the through specification can slow down the analysis.

A false path is set using the set_false_path specification. Here are some ex-
amples.

set_false_path -from [get_clocks SCAN_CLK] \
-to [get_clocks CORE_CLK]

Any path starting from the SCAN_CLK domain to the
CORE_CLK domain is a false path.

set_false_path -through [get_pins UMUX0/S]
Any path going through this pin is false.

False Paths SECTION 8.4

273

set_false_path \
-through [get_pins SAD_CORE/RSTN]]

The false path specifications can also be specified to,
through, or from a module pin instance.

set_false_path -to [get_ports TEST_REG*]
All paths that end in port named TEST_REG* are false paths.

set_false_path -through UINV/Z -through UAND0/Z
Any path that goes through both of these pins
in this order is false.

Few recommendations on setting false paths are given below. To set a false
path between two clock domains, use:

set_false_path -from [get_clocks clockA] \
-to [get_clocks clockB]

instead of:

set_false_path -from [get_pins {regA_*}/CP] \
-to [get_pins {regB_*}/D]

The second form is much slower.

Another recommendation is to minimize the usage of -through options, as it
adds unnecessary runtime complexity. The -through option should only be
used where it is absolutely necessary and there is no alternate way to spec-
ify the false path.

From an optimization perspective, another guideline is to not use a false
path when a multicycle path is the real intent. If a signal is sampled at a
known or predictable time, no matter how far out, a multicycle path speci-
fication should be used so that the path has some constraint and gets opti-
mized to meet the multicycle constraint. If a false path is used on a path

CHAPTER 8 Timing Verification

274

that is sampled many clock cycles later, optimization of the remaining logic
may invariably slow this path even beyond what may be necessary.

8.5 Half-Cycle Paths

If a design has both negative-edge triggered flip-flops (active clock edge is
falling edge) and positive-edge triggered flip-flops (active clock edge is ris-
ing edge), it is likely that half-cycle paths exist in the design. A half-cycle
path could be from a rising edge flip-flop to a falling edge flip-flop, or vice
versa. Figure 8-19 shows an example when the launch is on the falling edge
of the clock of flip-flop UFF5, and the capture is on the rising edge of the
clock of flip-flop UFF3.

Figure 8-19 A half-cycle path.

Launch edge

Capture edge

UFF5/CKN

UFF3/CK

0 6 12

CLKP

UFF3UFF5
D Q

CK

D Q

CKN

Setup check
Hold check

Half-Cycle Paths SECTION 8.5

275

Here is the setup timing check path report.

Startpoint: UFF5(falling edge-triggered flip-flop clocked by CLKP)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: max

Point Incr Path

clock CLKP (fall edge) 6.00 6.00
clock source latency 0.00 6.00
CLKP (in) 0.00 6.00 f
UCKBUF4/C (CKB) 0.06 6.06 f
UCKBUF6/C (CKB) 0.06 6.12 f
UFF5/CKN (DFN) 0.00 6.12 f
UFF5/Q (DFN) <- 0.16 6.28 r
UNAND0/ZN (ND2) 0.03 6.31 f
UFF3/D (DFF) 0.00 6.31 f
data arrival time 6.31

clock CLKP (rise edge) 12.00 12.00
clock source latency 0.00 12.00
CLKP (in) 0.00 12.00 r
UCKBUF4/C (CKB) 0.07 12.07 r
UFF3/CK (DFF) 0.00 12.07 r
clock uncertainty -0.30 11.77
library setup time -0.03 11.74
data required time 11.74

data required time 11.74
data arrival time -6.31

slack (MET) 5.43

Note the edge specification in the Startpoint and Endpoint. The falling edge
occurs at 6ns and the rising edge occurs at 12ns. Thus, the data gets only a
half-cycle, which is 6ns, to propagate to the capture flip-flop.

CHAPTER 8 Timing Verification

276

While the data path gets only half-cycle for setup check, an extra half-cycle
is available for the hold timing check. Here is the hold timing path.

Startpoint: UFF5(falling edge-triggered flip-flop clocked by CLKP)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: min

Point Incr Path

clock CLKP (fall edge) 6.00 6.00
clock source latency 0.00 6.00
CLKP (in) 0.00 6.00 f
UCKBUF4/C (CKB) 0.06 6.06 f
UCKBUF6/C (CKB) 0.06 6.12 f
UFF5/CKN (DFN) 0.00 6.12 f
UFF5/Q (DFN) <- 0.16 6.28 r
UNAND0/ZN (ND2) 0.03 6.31 f
UFF3/D (DFF) 0.00 6.31 f
data arrival time 6.31

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.07 0.07 r
UFF3/CK (DFF) 0.00 0.07 r
clock uncertainty 0.05 0.12
library hold time 0.02 0.13
data required time 0.13

data required time 0.13
data arrival time -6.31

slack (MET) 6.18

The hold check always occurs one cycle prior to the capture edge. Since the
capture edge occurs at 12ns, the previous capture edge is at 0ns, and hence
the hold gets checked at 0ns. This effectively adds a half-cycle margin for
hold checking and thus results in a large positive slack on hold.

Removal Timing Check SECTION 8.6

277

8.6 Removal Timing Check

A removal timing check ensures that there is adequate time between an
active clock edge and the release of an asynchronous control signal. The
check ensures that the active clock edge has no effect because the asynchro-
nous control signal remains active until removal time after the active clock
edge. In other words, the asynchronous control signal is released (becomes
inactive) well after the active clock edge so that the clock edge can have no
effect. This is illustrated in Figure 8-20. This check is based on the removal
time specified for the asynchronous pin of the flip-flop. Here is an excerpt
from the cell library description corresponding to the removal check.

pin(CDN) {
. . .
timing() {
related_pin : "CK";
timing_type : removal_rising;
. . .

}
}

Like a hold check, it is a min path check except that it is on an asynchro-
nous pin of a flip-flop.

Startpoint: UFF5(falling edge-triggered flip-flop clocked by CLKP)
Endpoint: UFF6 (removal check against rising-edge clock CLKP)
Path Group: **async_default**
Path Type: min

Point Incr Path

clock CLKP (fall edge) 6.00 6.00
clock source latency 0.00 6.00
CLKP (in) 0.00 6.00 f
UCKBUF4/C (CKB) 0.06 6.06 f
UCKBUF6/C (CKB) 0.07 6.13 f
UFF5/CKN (DFN) 0.00 6.13 f

CHAPTER 8 Timing Verification

278

UFF5/Q (DFN) 0.15 6.28 f
UINV8/ZN (INV) 0.03 6.31 r
UFF6/CDN (DFCN) 0.00 6.31 r
data arrival time 6.31

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.07 0.07 r
UCKBUF6/C (CKB) 0.07 0.14 r
UCKBUF7/C (CKB) 0.05 0.19 r
UFF6/CK (DFCN) 0.00 0.19 r
clock uncertainty 0.05 0.24
library removal time 0.19 0.43
data required time 0.43

Figure 8-20 Removal timing check.

Removal

Active clock edge
of flip-flop

UFF6/CDN

UFF6/CK

time

CLKP

UFF6UFF5
D Q

CK

D Q

CKN

CDN

Earliest it can change

Recovery Timing Check SECTION 8.7

279

data required time 0.43
data arrival time -6.31

slack (MET) 5.88

The Endpoint shows that it is removal check. It is on the asynchronous pin
CDN of flip-flop UFF6. The removal time for this flip-flop is listed as library
removal time with a value of 0.19ns.

All asynchronous timing checks are assigned to the async default path
group.

8.7 Recovery Timing Check

A recovery timing check ensures that there is a minimum amount of time
between the asynchronous signal becoming inactive and the next active
clock edge. In other words, this check ensures that after the asynchronous
signal becomes inactive, there is adequate time to recover so that the next
active clock edge can be effective. For example, consider the time between
an asynchronous reset becoming inactive and the clock active edge of a
flip-flop. If the active clock edge occurs too soon after the release of reset,
the state of the flip-flop may be unknown. The recovery check is illustrated
in Figure 8-21. This check is based upon the recovery time specified for the
asynchronous pin of the flip-flop in its cell library file, an excerpt of which
is shown below.

pin(RSN) {
. . .
timing() {
related_pin : "CK";
timing_type : recovery_rising;
. . .

}
}

CHAPTER 8 Timing Verification

280

Like a setup check, this is a max path check except that it is on an asynchro-
nous signal.

Here is a recovery path report.

Startpoint: UFF5(falling edge-triggered flip-flop clocked by CLKP)
Endpoint: UFF6 (recovery check against rising-edge clock CLKP)
Path Group: **async_default**
Path Type: max

Point Incr Path

clock CLKP (fall edge) 6.00 6.00
clock source latency 0.00 6.00
CLKP (in) 0.00 6.00 f

Figure 8-21 Recovery timing check.

Recovery

UFF6/CDN

time

CLKP

UFF6UFF5
D Q

CK

D Q

CKN

CDN

UFF6/CK

Latest it can
change

Timing across Clock Domains SECTION 8.8

281

UCKBUF4/C (CKB) 0.06 6.06 f
UCKBUF6/C (CKB) 0.07 6.13 f
UFF5/CKN (DFN) 0.00 6.13 f
UFF5/Q (DFN) 0.15 6.28 f
UINV8/ZN (INV) 0.03 6.31 r
UFF6/CDN (DFCN) 0.00 6.31 r
data arrival time 6.31

clock CLKP (rise edge) 12.00 12.00
clock source latency 0.00 12.00
CLKP (in) 0.00 12.00 r
UCKBUF4/C (CKB) 0.07 12.07 r
UCKBUF6/C (CKB) 0.07 12.14 r
UCKBUF7/C (CKB) 0.05 12.19 r
UFF6/CK (DFCN) 0.00 12.19 r
clock uncertainty -0.30 11.89
library recovery time 0.09 11.98
data required time 11.98

data required time 11.98
data arrival time -6.31

slack (MET) 5.67

The Endpoint shows that it is recovery check. The recovery time for the
UFF6 flip-flop is listed as the library recovery time with a value of 0.09ns. Re-
covery checks also belong to the async default path group.

8.8 Timing across Clock Domains

8.8.1 Slow to Fast Clock Domains

Let us examine the setup and hold checks when a path goes from a slower
clock domain to a faster clock domain. This is shown in Figure 8-22.

CHAPTER 8 Timing Verification

282

Here are the clock definitions for our example.

create_clock -name CLKM \
-period 20 -waveform {0 10} [get_ports CLKM]

create_clock -name CLKP \
-period 5 -waveform {0 2.5} [get_ports CLKP]

When the clock frequencies are different for the launch flip-flop and the
capture flip-flop, STA is performed by first determining a common base
period. An example of a message produced when STA is performed on
such a design with the above two clocks is given below. The faster clock is
expanded so that a common period is obtained.

Expanding clock 'CLKP' to base period of 20.00
(old period was 5.00, added 6 edges).

Figure 8-23 shows the setup check. By default, the most constraining setup
edge relationship is used, which in this case is the very next capture edge.
Here is a setup path report that shows this.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: max

Figure 8-22 Path from a slow clock to a faster clock.

CLKP

UFF3UFF0
D Q

CK

D Q

CKDiv 4 freq CLKM

Timing across Clock Domains SECTION 8.8

283

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF1/C (CKB) 0.06 0.11 r
UFF0/CK (DFF) 0.00 0.11 r
UFF0/Q (DFF) <- 0.14 0.26 f
UNAND0/ZN (ND2) 0.03 0.29 r
UFF3/D (DFF) 0.00 0.29 r
data arrival time 0.29

clock CLKP (rise edge) 5.00 5.00
clock source latency 0.00 5.00
CLKP (in) 0.00 5.00 r
UCKBUF4/C (CKB) 0.07 5.07 r
UFF3/CK (DFF) 0.00 5.07 r
clock uncertainty -0.30 4.77
library setup time -0.04 4.72
data required time 4.72

data required time 4.72
data arrival time -0.29

slack (MET) 4.44

Figure 8-23 Setup and hold checks with slow to fast path.

Default
setup checkDefault

hold check

Launch clock

Capture clock

Common base period

CLKM

CLKP

0 5 20

CHAPTER 8 Timing Verification

284

Notice that the launch clock is at time 0ns while the capture clock is at time
5ns.

As discussed earlier, hold checks are related to the setup checks and ensure
that the data launched by a clock edge does not interfere with the previous
capture. Here is the hold check timing report.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: min

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF1/C (CKB) 0.06 0.11 r
UFF0/CK (DFF) 0.00 0.11 r
UFF0/Q (DFF) <- 0.14 0.26 r
UNAND0/ZN (ND2) 0.03 0.29 f
UFF3/D (DFF) 0.00 0.29 f
data arrival time 0.29

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.07 0.07 r
UFF3/CK (DFF) 0.00 0.07 r
clock uncertainty 0.05 0.12
library hold time 0.02 0.13
data required time 0.13

data required time 0.13
data arrival time -0.29

slack (MET) 0.16

Timing across Clock Domains SECTION 8.8

285

In the above example, we can see that the launch data is available every
fourth cycle of the capture clock. Let us assume that the intention is not to
capture data on the very next active edge of CLKP, but to capture on every
4th capture edge. This assumption gives the combinational logic between
the flip-flops four periods of CLKP to propagate, which is 20ns. We can do
this by setting the following multicycle specification:

set_multicycle_path 4 -setup \
-from [get_clocks CLKM] -to [get_clocks CLKP] -end

The -end specifies that the multicycle of 4 refers to the end point or the cap-
ture clock. This multicycle specification changes the setup and hold checks
to the ones shown in Figure 8-24. Here is the setup report.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: max

Point Incr Path

Figure 8-24 Multicycle of 4 between clock domains.

Setup check
Hold check

Launch clock

Capture clock

Launch
edge

2nd launch
edge

Capture
edge

CLKM

CLKP

CHAPTER 8 Timing Verification

286

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF1/C (CKB) 0.06 0.11 r
UFF0/CK (DFF) 0.00 0.11 r
UFF0/Q (DFF) <- 0.14 0.26 f
UNAND0/ZN (ND2) 0.03 0.29 r
UFF3/D (DFF) 0.00 0.29 r
data arrival time 0.29

clock CLKP (rise edge) 20.00 20.00
clock source latency 0.00 20.00
CLKP (in) 0.00 20.00 r
UCKBUF4/C (CKB) 0.07 20.07 r
UFF3/CK (DFF) 0.00 20.07 r
clock uncertainty -0.30 19.77
library setup time -0.04 19.72
data required time 19.72

data required time 19.72
data arrival time -0.29

slack (MET) 19.44

Figure 8-24 shows the hold check - note that the hold check is derived from
the setup check and defaults to one cycle preceding the intended capture
edge. Here is the hold timing report. Notice that the hold capture edge is at
15ns, one cycle prior to the setup capture edge.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: min

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r

Timing across Clock Domains SECTION 8.8

287

UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF1/C (CKB) 0.06 0.11 r
UFF0/CK (DFF) 0.00 0.11 r
UFF0/Q (DFF) <- 0.14 0.26 r
UNAND0/ZN (ND2) 0.03 0.29 f
UFF3/D (DFF) 0.00 0.29 f
data arrival time 0.29

clock CLKP (rise edge) 15.00 15.00
clock source latency 0.00 15.00
CLKP (in) 0.00 15.00 r
UCKBUF4/C (CKB) 0.07 15.07 r
UFF3/CK (DFF) 0.00 15.07 r
clock uncertainty 0.05 15.12
library hold time 0.02 15.13
data required time 15.13

data required time 15.13
data arrival time -0.29

slack (VIOLATED) -14.84

In most designs, this is not the intended check, and the hold check should
be moved all the way back to where the launch edge is. We do this by set-
ting a hold multicycle specification of 3.

set_multicycle_path 3 -hold \
-from [get_clocks CLKM] -to [get_clocks CLKP] -end

The cycle of 3 moves the hold checking edge back three cycles, that is, to
time 0ns. The distinction with a setup multicycle is that in setup, the setup
capture edge moves forward by the specified number of cycles from the
default setup capture edge; in a hold multicycle, the hold check edge
moves backward from the default hold check edge (one cycle before setup
edge). The -end option implies that we want to move the endpoint (or cap-
ture edge) back by the specified number of cycles, which is that of the cap-
ture clock. Instead of -end, the other choice, the -start option, specifies the
number of launch clock cycles to move by; the -end option specifies the

CHAPTER 8 Timing Verification

288

number of capture clock cycles to move by. The -end is the default for a
multicycle setup and the -start is the default for multicycle hold.

With the additional multicycle hold specification, the clock edge used for
hold timing checks is moved back one cycle, and the checks look like those
shown in Figure 8-25. The hold report with the multicycle hold specifica-
tion is as follows.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: min

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF1/C (CKB) 0.06 0.11 r
UFF0/CK (DF) 0.00 0.11 r
UFF0/Q (DF) <- 0.14 0.26 r
UNAND0/ZN (ND2) 0.03 0.29 f
UFF3/D (DF) 0.00 0.29 f
data arrival time 0.29

Figure 8-25 Hold time relaxed with multicycle hold specification.

Setup checkHold check

Launch clock
CLKM

Capture clock
CLKP

0 5 20

Timing across Clock Domains SECTION 8.8

289

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.07 0.07 r
UFF3/CK (DF) 0.00 0.07 r
clock uncertainty 0.05 0.12
library hold time 0.02 0.13
data required time 0.13

data required time 0.13
data arrival time -0.29

slack (MET) 0.16

In summary, if a setup multicycle of N cycles is specified, then most likely
a hold multicycle of N-1 cycles should also be specified. A good rule of
thumb for multi-frequency multicycle path specification in the case of
paths between slow to fast clock domains is to use the -end option. With
this option, the setup and hold checks are adjusted based upon the clock
cycles of the fast clock.

8.8.2 Fast to Slow Clock Domains

In this subsection, we consider examples where the data path goes from a
fast clock domain to a slow clock domain. The default setup and hold
checks are as shown in Figure 8-26 when the following clock definitions are
used.

create_clock -name CLKM \
-period 20 -waveform {0 10} [get_ports CLKM]

create_clock -name CLKP \
-period 5 -waveform {0 2.5} [get_ports CLKP]

CHAPTER 8 Timing Verification

290

There are four setup timing checks possible; see Setup1, Setup2, Setup3 and
Setup4 in the figure. However, the most restrictive one is the Setup4 check.
Here is the path report of this most restrictive path. Notice that the launch
clock edge is at 15ns and the capture clock edge is at 20ns.

Startpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: max

Point Incr Path

clock CLKP (rise edge) 15.00 15.00
clock source latency 0.00 15.00
CLKP (in) 0.00 15.00 r
UCKBUF4/C (CKB) 0.07 15.07 r
UFF3/CK (DFF) 0.00 15.07 r

Figure 8-26 Path from fast clock to slow clock domain.

Setup1

Setup2 Setup3

Setup4

Hold

Launch clock

Capture clock

0 10 205 15

CLKP

UFF1UFF3
D Q

CK

D Q

CK

Div 4 freq
CLKM

CLKP

CLKM

Timing across Clock Domains SECTION 8.8

291

UFF3/Q (DFF) <- 0.15 15.22 f
UNOR0/ZN (NR2) 0.05 15.27 r
UBUF4/Z (BUFF) 0.05 15.32 r
UFF1/D (DFF) 0.00 15.32 r
data arrival time 15.32

clock CLKM (rise edge) 20.00 20.00
clock source latency 0.00 20.00
CLKM (in) 0.00 20.00 r
UCKBUF0/C (CKB) 0.06 20.06 r
UCKBUF2/C (CKB) 0.07 20.12 r
UFF1/CK (DFF) 0.00 20.12 r
clock uncertainty -0.30 19.82
library setup time -0.04 19.78
data required time 19.78

data required time 19.78
data arrival time -15.32

slack (MET) 4.46

Similar to the setup checks, there are four hold checks possible. Figure 8-26
shows the most restrictive hold check which ensures that the capture edge
at 0ns does not capture the data being launched at 0ns. Here is the timing
report for this hold check.

Startpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: min

Point Incr Path

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.07 0.07 r
UFF3/CK (DFF) 0.00 0.07 r
UFF3/Q (DFF) <- 0.16 0.22 r
UNOR0/ZN (NR2) 0.02 0.25 f

CHAPTER 8 Timing Verification

292

UBUF4/Z (BUFF) 0.06 0.30 f
UFF1/D (DFF) 0.00 0.30 f
data arrival time 0.30

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF2/C (CKB) 0.07 0.12 r
UFF1/CK (DFF) 0.00 0.12 r
clock uncertainty 0.05 0.17
library hold time 0.01 0.19
data required time 0.19

data required time 0.19
data arrival time -0.30

slack (MET) 0.12

In general, a designer may specify the data path from the fast clock to the
slow clock to be a multicycle path. If the setup check is relaxed to provide
two cycles of the faster clock for the data path, the following is included for
this multicycle specification:

set_multicycle_path 2 -setup \
-from [get_clocks CLKP] -to [get_clocks CLKM] -start

set_multicycle_path 1 -hold \
-from [get_clocks CLKP] -to [get_clocks CLKM] -start

The -start option refers to the launch clock and is
the default for a multicycle hold.

In this case, Figure 8-27 shows the clock edges used for the setup and hold
checks. The -start option specifies that the unit for the number of cycles (2
in this case) is that of the launch clock (CLKP in this case). The setup multi-
cycle of 2 moves the launch edge one edge prior to the default launch edge,
that is, at 10ns instead of the default 15ns. The hold multicycle ensures that

Timing across Clock Domains SECTION 8.8

293

the capture of the earlier data can reliably occur at 0ns due to the launch
edge also at 0ns.

Here is the setup path report. As expected, the launch clock edge is at 10ns
and the capture clock edge is at 20ns.

Startpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: max

Point Incr Path

clock CLKP (rise edge) 10.00 10.00
clock source latency 0.00 10.00
CLKP (in) 0.00 10.00 r
UCKBUF4/C (CKB) 0.07 10.07 r
UFF3/CK (DFF) 0.00 10.07 r
UFF3/Q (DFF) <- 0.15 10.22 f
UNOR0/ZN (NR2) 0.05 10.27 r
UBUF4/Z (BUFF) 0.05 10.32 r
UFF1/D (DFF) 0.00 10.32 r
data arrival time 10.32

Figure 8-27 Setup multicycle of 2.

Setup
Hold

0 5 10 15 20

Default
launch edge

Launch
edge

Launch clock
CLKP

Capture clock
CLKM

CHAPTER 8 Timing Verification

294

clock CLKM (rise edge) 20.00 20.00
clock source latency 0.00 20.00
CLKM (in) 0.00 20.00 r
UCKBUF0/C (CKB) 0.06 20.06 r
UCKBUF2/C (CKB) 0.07 20.12 r
UFF1/CK (DFF) 0.00 20.12 r
clock uncertainty -0.30 19.82
library setup time -0.04 19.78
data required time 19.78

data required time 19.78
data arrival time -10.32

slack (MET) 9.46

Here is the hold path timing report. The hold check is at 0ns where both the
capture and launch clocks have rising edges.

Startpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: min

Point Incr Path

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.07 0.07 r
UFF3/CK (DFF) 0.00 0.07 r
UFF3/Q (DFF) <- 0.16 0.22 r
UNOR0/ZN (NR2) 0.02 0.25 f
UBUF4/Z (BUFF) 0.06 0.30 f
UFF1/D (DFF) 0.00 0.30 f
data arrival time 0.30

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF2/C (CKB) 0.07 0.12 r

Examples SECTION 8.9

295

UFF1/CK (DFF) 0.00 0.12 r
clock uncertainty 0.05 0.17
library hold time 0.01 0.19
data required time 0.19

data required time 0.19
data arrival time -0.30

slack (MET) 0.12

Unlike the case of paths from slow to fast clock domains, a good rule of
thumb for multi-frequency multicycle path specification in the case of
paths from fast to slow clock domains is to use the -start option. The setup
and hold checks are then adjusted based upon the fast clock.

8.9 Examples

In this section, we describe different scenarios of launch and capture clocks
and show how the setup and hold checks are performed. Figure 8-28
shows the configuration for the examples.

Figure 8-28 Launch and capture clocks with different relationships.

CLKP

UFF3UFF0
D Q

CK

D Q

CK
CLKM

CHAPTER 8 Timing Verification

296

Half-cycle Path - Case 1

In this example, the two clocks have the same period but are of opposite
phase. Here are the clock specifications - the waveforms are shown in Fig-
ure 8-29.

create_clock -name CLKM \
-period 20 -waveform {0 10} [get_ports CLKM]

create_clock -name CLKP \
-period 20 -waveform {10 20} [get_ports CLKP]

The setup check is from a launch edge, at 0ns, to the next capture edge, at
10ns. A half-cycle margin is available for the hold check which validates
whether the data launched at 20ns is not captured by the capture edge at
10ns. Here is the setup path report.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: max

Point Incr Path

clock CLKM (rise edge) 0.00 0.00

Figure 8-29 Clock waveforms for half-cycle path - case 1.

Setup Hold

Launch clock

Capture clock

0 10 20

CLKM

CLKP

Examples SECTION 8.9

297

clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF1/C (CKB) 0.06 0.11 r
UFF0/CK (DFF) 0.00 0.11 r
UFF0/Q (DFF) <- 0.14 0.26 f
UNAND0/ZN (ND2) 0.03 0.29 r
UFF3/D (DFF) 0.00 0.29 r
data arrival time 0.29

clock CLKP (rise edge) 10.00 10.00
clock source latency 0.00 10.00
CLKP (in) 0.00 10.00 r
UCKBUF4/C (CKB) 0.07 10.07 r
UFF3/CK (DFF) 0.00 10.07 r
clock uncertainty -0.30 9.77
library setup time -0.04 9.72
data required time 9.72

data required time 9.72
data arrival time -0.29

slack (MET) 9.44

Here is the hold path report.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: min

Point Incr Path

clock CLKM (rise edge) 20.00 20.00
clock source latency 0.00 20.00
CLKM (in) 0.00 20.00 r
UCKBUF0/C (CKB) 0.06 20.06 r
UCKBUF1/C (CKB) 0.06 20.11 r
UFF0/CK (DFF) 0.00 20.11 r
UFF0/Q (DFF) <- 0.14 20.26 r
UNAND0/ZN (ND2) 0.03 20.29 f

CHAPTER 8 Timing Verification

298

UFF3/D (DFF) 0.00 20.29 f
data arrival time 20.29

clock CLKP (rise edge) 10.00 10.00
clock source latency 0.00 10.00
CLKP (in) 0.00 10.00 r
UCKBUF4/C (CKB) 0.07 10.07 r
UFF3/CK (DFF) 0.00 10.07 r
clock uncertainty 0.05 10.12
library hold time 0.02 10.13
data required time 10.13

data required time 10.13
data arrival time -20.29

slack (MET) 10.16

Half-cycle Path - Case 2

This example is similar to case 1 and the launch and capture clocks are of
opposite phase. The launch clock is shifted in time. Here are the clock spec-
ifications; the waveforms are shown in Figure 8-30.

create_clock -name CLKM \
-period 10 -waveform {5 10} [get_ports CLKM]

Figure 8-30 Clock waveforms for half-cycle path - case 2.

Hold Setup

Launch clock

Capture clock

0 5 10 15

CLKM

CLKP

Examples SECTION 8.9

299

create_clock -name CLKP \
-period 10 -waveform {0 5} [get_ports CLKP]

The setup check is from the launch clock edge at 5ns to the next capture
clock edge at 10ns. The hold check is from the launch edge at 5ns to the
capture edge at 0ns. Here is the setup path report.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: max

Point Incr Path

clock CLKM (rise edge) 5.00 5.00
clock source latency 0.00 5.00
CLKM (in) 0.00 5.00 r
UCKBUF0/C (CKB) 0.06 5.06 r
UCKBUF1/C (CKB) 0.06 5.11 r
UFF0/CK (DFF) 0.00 5.11 r
UFF0/Q (DFF) <- 0.14 5.26 f
UNAND0/ZN (ND2) 0.03 5.29 r
UFF3/D (DFF) 0.00 5.29 r
data arrival time 5.29

clock CLKP (rise edge) 10.00 10.00
clock source latency 0.00 10.00
CLKP (in) 0.00 10.00 r
UCKBUF4/C (CKB) 0.07 10.07 r
UFF3/CK (DFF) 0.00 10.07 r
clock uncertainty -0.30 9.77
library setup time -0.04 9.72
data required time 9.72

data required time 9.72
data arrival time -5.29

slack (MET) 4.44

CHAPTER 8 Timing Verification

300

Here is the hold path timing report.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: min

Point Incr Path

clock CLKM (rise edge) 5.00 5.00
clock source latency 0.00 5.00
CLKM (in) 0.00 5.00 r
UCKBUF0/C (CKB) 0.06 5.06 r
UCKBUF1/C (CKB) 0.06 5.11 r
UFF0/CK (DFF) 0.00 5.11 r
UFF0/Q (DFF) <- 0.14 5.26 r
UNAND0/ZN (ND2) 0.03 5.29 f
UFF3/D (DFF) 0.00 5.29 f
data arrival time 5.29

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.07 0.07 r
UFF3/CK (DFF) 0.00 0.07 r
clock uncertainty 0.05 0.12
library hold time 0.02 0.13
data required time 0.13

data required time 0.13
data arrival time -5.29

slack (MET) 5.16

Examples SECTION 8.9

301

Fast to Slow Clock Domain

In this example, the capture clock is a divide-by-2 of the launch clock. Here
are the clock specifications.

create_clock -name CLKM \
-period 10 -waveform {0 5} [get_ports CLKM]

create_clock -name CLKP \
-period 20 -waveform {0 10} [get_ports CLKP]

The waveforms are shown in Figure 8-31. The setup check is from the
launch edge at 10ns to the capture edge at 20ns. The hold check is from the
launch edge at 0ns to the capture edge at 0ns. Here is the setup path report.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: max

Point Incr Path

clock CLKM (rise edge) 10.00 10.00
clock source latency 0.00 10.00

Figure 8-31 Fast to slow clock domain example clocks.

Launch clock

Capture clock

Hold Setup

0 10 20

CLKM

CLKP

CHAPTER 8 Timing Verification

302

CLKM (in) 0.00 10.00 r
UCKBUF0/C (CKB) 0.06 10.06 r
UCKBUF1/C (CKB) 0.06 10.11 r
UFF0/CK (DFF) 0.00 10.11 r
UFF0/Q (DFF) <- 0.14 10.26 f
UNAND0/ZN (ND2) 0.03 10.29 r
UFF3/D (DFF) 0.00 10.29 r
data arrival time 10.29

clock CLKP (rise edge) 20.00 20.00
clock source latency 0.00 20.00
CLKP (in) 0.00 20.00 r
UCKBUF4/C (CKB) 0.07 20.07 r
UFF3/CK (DFF) 0.00 20.07 r
clock uncertainty -0.30 19.77
library setup time -0.04 19.72
data required time 19.72

data required time 19.72
data arrival time -10.29

slack (MET) 9.44

Here is the hold path timing report.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: min

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF1/C (CKB) 0.06 0.11 r
UFF0/CK (DFF) 0.00 0.11 r
UFF0/Q (DFF) <- 0.14 0.26 r
UNAND0/ZN (ND2) 0.03 0.29 f
UFF3/D (DFF) 0.00 0.29 f

Examples SECTION 8.9

303

data arrival time 0.29

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.07 0.07 r
UFF3/CK (DFF) 0.00 0.07 r
clock uncertainty 0.05 0.12
library hold time 0.02 0.13
data required time 0.13

data required time 0.13
data arrival time -0.29

slack (MET) 0.16

Slow to Fast Clock Domain

In this example, the capture clock is at 2x the speed of the launch clock. Fig-
ure 8-32 shows the clock edge corresponding to the setup and hold checks.
Setup check is done from the launch edge, at 0ns, to the next capture edge,
at 5ns. The hold check is done with the capture edge one cycle prior to the
setup capture edge, that is, both launch and capture edges are at 0ns.

Figure 8-32 Slow to fast clock domain example clocks.

Launch clock

Capture clock

SetupHold

0 5 10

CLKM

CLKP

CHAPTER 8 Timing Verification

304

Here is the setup path report.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: max

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF1/C (CKB) 0.06 0.11 r
UFF0/CK (DFF) 0.00 0.11 r
UFF0/Q (DFF) <- 0.14 0.26 f
UNAND0/ZN (ND2) 0.03 0.29 r
UFF3/D (DFF) 0.00 0.29 r
data arrival time 0.29

clock CLKP (rise edge) 5.00 5.00
clock source latency 0.00 5.00
CLKP (in) 0.00 5.00 r
UCKBUF4/C (CKB) 0.07 5.07 r
UFF3/CK (DFF) 0.00 5.07 r
clock uncertainty -0.30 4.77
library setup time -0.04 4.72
data required time 4.72

data required time 4.72
data arrival time -0.29

slack (MET) 4.44

Here is the hold timing report.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: min

Multiple Clocks SECTION 8.10

305

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF1/C (CKB) 0.06 0.11 r
UFF0/CK (DFF) 0.00 0.11 r
UFF0/Q (DFF) <- 0.14 0.26 r
UNAND0/ZN (ND2) 0.03 0.29 f
UFF3/D (DFF) 0.00 0.29 f
data arrival time 0.29

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.07 0.07 r
UFF3/CK (DFF) 0.00 0.07 r
clock uncertainty 0.05 0.12
library hold time 0.02 0.13
data required time 0.13

data required time 0.13
data arrival time -0.29

slack (MET) 0.16

8.10 Multiple Clocks

8.10.1 Integer Multiples

Often there are multiple clocks defined in a design with frequencies that
are simple (or integer) multiples of each other. In such cases, STA is per-
formed by computing a common base period among all related clocks (two
clocks are related if they have a data path between their domains). The
common base period is established so that all clocks are synchronized.

CHAPTER 8 Timing Verification

306

Here is an example that shows four related clocks:

create_clock -name CLKM \
-period 20 -waveform {0 10} [get_ports CLKM]

create_clock -name CLKQ -period 10 -waveform {0 5}
create_clock -name CLKP \
-period 5 -waveform {0 2.5} [get_ports CLKP]

A common base period of 20ns, as shown in Figure 8-33, is used when ana-
lyzing paths between the CLKP and CLKM clock domains.

Expanding clock 'CLKP' to base period of 20.00 (old period was
5.00, added 6 edges).
Expanding clock 'CLKQ' to base period of 20.00 (old period was
10.00, added 2 edges).

Figure 8-33 Integer multiple clocks.

Common base period between CLKP, CLKQ and CLKM

CLKM

CLKQ

CLKP

0 5 10 15 20

Multiple Clocks SECTION 8.10

307

Here is a setup timing report for a path that goes from the faster clock to
the slower clock.

Startpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: max

Point Incr Path

clock CLKP (rise edge) 15.00 15.00
clock source latency 0.00 15.00
CLKP (in) 0.00 15.00 r
UCKBUF4/C (CKB) 0.07 15.07 r
UFF3/CK (DFF) 0.00 15.07 r
UFF3/Q (DFF) <- 0.15 15.22 f
UNOR0/ZN (NR2) 0.05 15.27 r
UBUF4/Z (BUFF) 0.05 15.32 r
UFF1/D (DFF) 0.00 15.32 r
data arrival time 15.32

clock CLKM (rise edge) 20.00 20.00
clock source latency 0.00 20.00
CLKM (in) 0.00 20.00 r
UCKBUF0/C (CKB) 0.06 20.06 r
UCKBUF2/C (CKB) 0.07 20.12 r
UFF1/CK (DFF) 0.00 20.12 r
clock uncertainty -0.30 19.82
library setup time -0.04 19.78
data required time 19.78

data required time 19.78
data arrival time -15.32

slack (MET) 4.46

Here is the corresponding hold path report.

Startpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)

CHAPTER 8 Timing Verification

308

Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: min

Point Incr Path

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.07 0.07 r
UFF3/CK (DFF) 0.00 0.07 r
UFF3/Q (DFF) <- 0.16 0.22 r
UNOR0/ZN (NR2) 0.02 0.25 f
UBUF4/Z (BUFF) 0.06 0.30 f
UFF1/D (DFF) 0.00 0.30 f
data arrival time 0.30

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF2/C (CKB) 0.07 0.12 r
UFF1/CK (DFF) 0.00 0.12 r
clock uncertainty 0.05 0.17
library hold time 0.01 0.19
data required time 0.19

data required time 0.19
data arrival time -0.30

slack (MET) 0.12

8.10.2 Non-Integer Multiples

Consider the case when there is a data path between two clock domains
whose frequencies are not multiples of each other. For example, the launch
clock is divide-by-8 of a common clock and the capture clock is divide-by-5
of the common clock as shown in Figure 8-34. This section describes how
the setup and hold checks are performed in such a situation.

Multiple Clocks SECTION 8.10

309

Here are the clock definitions (waveforms are shown in Figure 8-35).

create_clock -name CLKM \
-period 8 -waveform {0 4} [get_ports CLKM]

create_clock -name CLKQ -period 10 -waveform {0 5}
create_clock -name CLKP \
-period 5 -waveform {0 2.5} [get_ports CLKP]

The timing analysis process computes a common period for the related
clocks, and the clocks are then expanded to this base period. Note that the
common period is found only for related clocks (that is, clocks that have
timing paths between them). The common period for data paths between
CLKQ and CLKP is expanded to a base period of 10ns only. The common
period for data paths between CLKM and CLKQ is 40ns, and the common
period for data paths between CLKM and CLKP is also 40ns.

Let us consider a data path from the CLKM clock domain to the CLKP clock
domain. The common base period for timing analysis is 40ns.

Expanding clock 'CLKM' to base period of 40.00 (old period was
8.00, added 8 edges).
Expanding clock 'CLKP' to base period of 40.00 (old period was
5.00, added 14 edges).

Figure 8-34 Non-integer multiple clocks.

CLKA

UFF3UFF0
D Q

CK

D Q

CKdivide-by 8

divide-by 5

CLKM

CLKP

CHAPTER 8 Timing Verification

310

The setup check occurs over the minimum time between the launch edge
and the capture edge of the clock. In our example path from CLKM to
CLKP, this would be a launch at 24ns of clock CLKM and a capture at 25ns
of clock CLKP.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: max

Point Incr Path

clock CLKM (rise edge) 24.00 24.00
clock source latency 0.00 24.00
CLKM (in) 0.00 24.00 r

Figure 8-35 Setup and hold checks for non-integer multiple clocks.

0 10 15 20 25 30 35 405

CLKP

CLKQ

CLKM

Common period between CLKP, CLKQ and CLKM

24168 33 40

Setup SetupHold

Multiple Clocks SECTION 8.10

311

UCKBUF0/C (CKB) 0.06 24.06 r
UCKBUF1/C (CKB) 0.06 24.11 r
UFF0/CK (DFF) 0.00 24.11 r
UFF0/Q (DFF) <- 0.14 24.26 f
UNAND0/ZN (ND2) 0.03 24.29 r
UFF3/D (DFF) 0.00 24.29 r
data arrival time 24.29

clock CLKP (rise edge) 25.00 25.00
clock source latency 0.00 25.00
CLKP (in) 0.00 25.00 r
UCKBUF4/C (CKB) 0.07 25.07 r
UFF3/CK (DFF) 0.00 25.07 r
clock uncertainty -0.30 24.77
library setup time -0.04 24.72
data required time 24.72

data required time 24.72
data arrival time -24.29

slack (MET) 0.44

Here is the hold timing path. The most restrictive hold path is from a
launch at 0ns of CLKM to the capture edge of 0ns of CLKP.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: min

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF1/C (CKB) 0.06 0.11 r
UFF0/CK (DFF) 0.00 0.11 r
UFF0/Q (DFF) <- 0.14 0.26 r
UNAND0/ZN (ND2) 0.03 0.29 f

CHAPTER 8 Timing Verification

312

UFF3/D (DFF) 0.00 0.29 f
data arrival time 0.29

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.07 0.07 r
UFF3/CK (DFF) 0.00 0.07 r
clock uncertainty 0.05 0.12
library hold time 0.02 0.13
data required time 0.13

data required time 0.13
data arrival time -0.29

slack (MET) 0.16

Now we examine the setup path from the CLKP clock domain to the CLKM
clock domain. In this case, the most restrictive setup path is from a launch
edge at 15ns of clock CLKP to the capture edge at 16ns of clock CLKM.

Startpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: max

Point Incr Path

clock CLKP (rise edge) 15.00 15.00
clock source latency 0.00 15.00
CLKP (in) 0.00 15.00 r
UCKBUF4/C (CKB) 0.07 15.07 r
UFF3/CK (DFF) 0.00 15.07 r
UFF3/Q (DFF) <- 0.15 15.22 f
UNOR0/ZN (NR2) 0.05 15.27 r
UBUF4/Z (BUFF) 0.05 15.32 r
UFF1/D (DFF) 0.00 15.32 r
data arrival time 15.32

clock CLKM (rise edge) 16.00 16.00

Multiple Clocks SECTION 8.10

313

clock source latency 0.00 16.00
CLKM (in) 0.00 16.00 r
UCKBUF0/C (CKB) 0.06 16.06 r
UCKBUF2/C (CKB) 0.07 16.12 r
UFF1/CK (DFF) 0.00 16.12 r
clock uncertainty -0.30 15.82
library setup time -0.04 15.78
data required time 15.78

data required time 15.78
data arrival time -15.32

slack (MET) 0.46

Here is the hold path report, again the most restrictive one is the one at 0ns.

Startpoint: UFF3 (rising edge-triggered flip-flop clocked by CLKP)
Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: min

Point Incr Path

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.07 0.07 r
UFF3/CK (DFF) 0.00 0.07 r
UFF3/Q (DFF) <- 0.16 0.22 r
UNOR0/ZN (NR2) 0.02 0.25 f
UBUF4/Z (BUFF) 0.06 0.30 f
UFF1/D (DFF) 0.00 0.30 f
data arrival time 0.30

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF2/C (CKB) 0.07 0.12 r
UFF1/CK (DFF) 0.00 0.12 r
clock uncertainty 0.05 0.17

CHAPTER 8 Timing Verification

314

library hold time 0.01 0.19
data required time 0.19

data required time 0.19
data arrival time -0.30

slack (MET) 0.12

8.10.3 Phase Shifted

Here is an example where two clocks are ninety degrees phase-shifted with
respect to each other.

create_clock -period 2.0 -waveform {0 1.0} [get_ports CKM]
create_clock -period 2.0 -waveform {0.5 1.5} \
[get_ports CKM90]

Figure 8-36 shows an example with these clocks. The setup path timing re-
port is as follows.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CKM90)

Path Group: CKM90
Path Type: max

Point Incr Path

clock CKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF1/C (CKB) 0.06 0.11 r
UFF0/CK (DF) 0.00 0.11 r
UFF0/Q (DF) <- 0.14 0.26 f
UNAND0/ZN (ND2) 0.03 0.29 r
UFF3/D (DF) 0.00 0.29 r
data arrival time 0.29

clock CKM90(rise edge) 0.50 0.50
clock source latency 0.00 0.50

Multiple Clocks SECTION 8.10

315

CKM90(in) 0.00 0.50 r
UCKBUF4/C (CKB) 0.07 0.57 r
UFF3/CK (DF) 0.00 0.57 r
clock uncertainty -0.30 0.27
library setup time -0.04 0.22
data required time 0.22

data required time 0.22
data arrival time -0.29

slack (VIOLATED) -0.06

The first rising edge of CKM90 at 0.5ns is the capture edge. The hold check
is for one cycle before the setup capture edge. For the launch edge at 2ns,

Figure 8-36 Phase-shifted clocks.

0

0.5

1.0

1.5

2.0

2.5

3.0 4.0

3.5

CKM

CKM90

UFF3UFF0
D Q

CK

D Q

CK

90 deg shift

CKM

CKM90

Setup Hold

CHAPTER 8 Timing Verification

316

the setup capture edge is at 2.5ns. Thus the hold check is at the previous
capture edge which is at 0.5ns. The hold path timing report is as follows.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CKM)
Endpoint: UFF3 (rising edge-triggered flip-flop clocked by CKM90)

Path Group: CKM90
Path Type: min

Point Incr Path

clock CKM (rise edge) 2.00 2.00
clock source latency 0.00 2.00
CKM (in) 0.00 2.00 r
UCKBUF0/C (CKB) 0.06 2.06 r
UCKBUF1/C (CKB) 0.06 2.11 r
UFF0/CK (DF) 0.00 2.11 r
UFF0/Q (DF) <- 0.14 2.26 r
UNAND0/ZN (ND2) 0.03 2.29 f
UFF3/D (DF) 0.00 2.29 f
data arrival time 2.29

clock CKM90(rise edge) 0.50 0.50
clock source latency 0.00 0.50
CLM90(in) 0.00 0.50 r
UCKBUF4/C (CKB) 0.07 0.57 r
UFF3/CK (DF) 0.00 0.57 r
clock uncertainty 0.05 0.62
library hold time 0.02 0.63
data required time 0.63

data required time 0.63
data arrival time -2.29

slack (MET) 1.66

Other timing checks such as data to data checks and clock gating checks
are described in Chapter 10.

q

C H A P T E R

9

Interface Analysis

his chapter describes the timing analysis procedures for various types
of input and output paths, and several commonly used interfaces.
Timing analysis of special interfaces such as for SRAMs and the tim-

ing analysis of source synchronous interfaces such as those used for DDR
SDRAMs are also described.

9.1 IO Interfaces

This section presents examples that illustrate how the constraints on input
and output interfaces of the DUA are defined. Later sections provide ex-
amples of timing constraints for the SRAM and DDR SDRAM interfaces.

T

 J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs: A Practical Approach, 317
DOI: 10.1007/978-0-387-93820-2_9, © Springer Science + Business Media, LLC 2009

CHAPTER 9 Interface Analysis

318

9.1.1 Input Interface

There are broadly two alternate ways of specifying the timing of the in-
puts:

i. The waveforms at an input of the DUA are provided as AC spec-
ifications1.

ii. The path delay of the external logic to an input is specified.

Waveform Specification at Inputs

Consider the input AC specification shown in Figure 9-1. The specification
is that the input CIN is stable 4.3ns before the rising edge of clock CLKP,
and that the value remains stable until 2ns after the rising edge of the clock.

Consider the 4.3ns specification first. Given the clock cycle of 8ns (as
shown in Figure 9-1), this requirement maps into the delay from the virtual
flip-flop (the flip-flop that is driving this input) to the input CIN. The delay
from the virtual flip-flop clock to CIN must be at most 3.7ns (= 8.0 - 4.3), the
maximum delay being at 3.7ns. This ensures that the data at input CIN ar-
rives 4.3ns prior to the rising edge. Hence, this part of the AC specification
can equivalently be specified as a max input delay of 3.7ns.

The AC specification also states that the input CIN is stable for 2ns after the
rising edge of the clock. This specification can also be mapped into the de-
lay from the virtual flip-flop, that is, the delay from the virtual flip-flop to
input CIN must be at least 2.0ns. Hence the minimum input delay is speci-
fied as 2.0ns.

1. Specification of a digital device is provided in two parts: DC - the constant values (stat-
ic), and AC - the changing waveforms (dynamic).

IO Interfaces SECTION 9.1

319

Here are the input constraints.

create_clock -name CLKP -period 8 [get_ports CLKP]
set_input_delay -min 2.0 -clock CLKP [get_ports CIN]
set_input_delay -max 3.7 -clock CLKP [get_ports CIN]

Figure 9-1 AC specification for input port.

4.3
2.0

8.0

CLKP

CIN

CLKP

CIN

CLKP

Virtual DUA

D Q

CK

D Q

CK

flip-flop

CHAPTER 9 Interface Analysis

320

Here are the path reports for the design under these input conditions. First
is the setup report.

Startpoint: CIN (input port clocked by CLKP)
Endpoint: UFF4 (rising edge-triggered flip-flop clocked by CLKP)
Path Group: CLKP
Path Type: max

Point Incr Path

clock CLKP (rise edge) 0.00 0.00
clock network delay (propagated) 0.00 0.00
input external delay 3.70 3.70 f
CIN (in) 0.00 3.70 f
UBUF5/Z (BUFF) 0.05 3.75 f
UXOR1/Z (XOR2) 0.10 3.85 r
UFF4/D (DF) 0.00 3.85 r
data arrival time 3.85

clock CLKP (rise edge) 8.00 8.00
clock source latency 0.00 8.00
CLKP (in) 0.00 8.00 r
UCKBUF4/C (CKB) 0.07 8.07 r
UCKBUF5/C (CKB) 0.06 8.13 r
UFF4/CP (DF) 0.00 8.13 r
library setup time -0.05 8.08
data required time 8.08

data required time 8.08
data arrival time -3.85

slack (MET) 4.23

The max input delay specified (3.7ns) is added to the data path. The setup
check ensures that delay inside the DUA is less than 4.3ns and the proper
data can be latched. Next is the hold timing report.

Startpoint: CIN (input port clocked by CLKP)
Endpoint: UFF4 (rising edge-triggered flip-flop clocked by CLKP)

IO Interfaces SECTION 9.1

321

Path Group: CLKP
Path Type: min

Point Incr Path

clock CLKP (rise edge) 0.00 0.00
clock network delay (propagated) 0.00 0.00
input external delay 2.00 2.00 r
CIN (in) <- 0.00 2.00 r
UBUF5/Z (BUFF) 0.05 2.05 r
UXOR1/Z (XOR2) 0.07 2.12 r
UFF4/D (DF) 0.00 2.12 r
data arrival time 2.12

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.07 0.07 r
UCKBUF5/C (CKB) 0.06 0.13 r
UFF4/CK (DF) 0.00 0.13 r
clock uncertainty 0.05 0.18
library hold time -0.00 0.17
data required time 0.17

data required time 0.17
data arrival time -2.12

slack (MET) 1.95

The min input delay is added to the data path in the hold check. The check
ensures that the earliest data change at 2ns after the clock edge does not
overwrite the previous data at the flip-flop.

Path Delay Specification to Inputs

When the path delays of the external logic connected to an input are
known, specifying the input constraints is a straightforward task. Any de-
lays along the external logic path to the input are added and the path delay
is specified using the set_input_delay command.

CHAPTER 9 Interface Analysis

322

Figure 9-2 shows an example of external logic path to input. The Tck2q and
Tc1 delays are added to obtain the external delay. Knowing Tck2q and Tc1,
the input delay is directly obtained as Tck2q + Tc1.

Figure 9-2 Input path delay specifications.

Max 6.2

Min 3.0

10.0

RCLK

INIT

RCLK

INIT

RCLK

Tc1_max = 5.6
Tc1_min = 2.7

Virtual flip-flop

DUA

D Q

CK

D Q

CK

Tc1 Tc2

Tck2q_max = 0.6
Tck2q_min = 0.3

IO Interfaces SECTION 9.1

323

The external max and min path delays translate to the following input con-
straints.

create_clock -name RCLK -period 10 [get_ports RCLK]
set_input_delay -max 6.2 -clock RCLK [get_ports INIT]
set_input_delay -min 3.0 -clock RCLK [get_ports INIT]

The path reports for these are similar to the ones in Section 8.1 and Section
8.2.

Note that when computing the arrival time at the data pin of the flip-flop
inside the design, the max and min input delay values get added to the
data path delay depending on whether a max path check (setup) or a min
path check (hold) is being performed.

9.1.2 Output Interface

Similar to the input case, there are broadly two alternate ways for specify-
ing the output timing requirements:

i. The required waveforms at the output of the DUA are provided
as AC specifications.

ii. The path delay of external logic is specified.

Output Waveform Specification

Consider the output AC specification shown in Figure 9-3. The output
QOUT should be stable at the output 2ns prior to the rising edge of clock
CLKP. Also, the output should not change until 1.5ns after the rising edge
of the clock. These constraints are normally obtained from the setup and
hold requirements of the external block that interfaces with QOUT.

Here are the constraints that expresses this requirement on the output.

create_clock -name CLKP -period 6 \
-waveform {0 3} [get_ports CLKP}

CHAPTER 9 Interface Analysis

324

Setup delay of virtual flip-flop:
set_output_delay -clock CLKP -max 2.0 [get_ports QOUT]
Hold time for virtual flip-flop:
set_output_delay -clock CLKP -min -1.5 [get_ports QOUT]

The maximum output path delay is specified as 2.0ns. This will ensure that
data QOUT changes ahead of the 2ns window before the clock edge. The
minimum output path delay of -1.5ns specifies the requirement from the
perspective of the virtual flip-flop, that is, to ensure the 1.5ns hold require-

Figure 9-3 Output AC specification.

2.0 1.5

6.0

QOUT

Virtual
flip-flop

DUA

CLKP

QOUT

CLKP

D Q

CK

D Q

CK

IO Interfaces SECTION 9.1

325

ment at the output QOUT. A hold requirement of 1.5ns maps to a
set_output_delay min of -1.5ns.

Here is the setup timing path report.

Startpoint: UFF6 (rising edge-triggered flip-flop clocked by CLKP)
Endpoint: QOUT (output port clocked by CLKP)
Path Group: CLKP
Path Type: max

Point Incr Path

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.07 0.07 r
UCKBUF6/C (CKB) 0.07 0.14 r
UCKBUF7/C (CKB) 0.05 0.19 r
UFF6/CK (DFCN) 0.00 0.19 r
UFF6/Q (DFCN) 0.16 0.35 r
UAND1/Z (AN2) 1.31 1.66 r
QOUT (out) 0.00 1.66 r
data arrival time 1.66

clock CLKP (rise edge) 6.00 6.00
clock network delay (propagated) 0.00 6.00
clock uncertainty -0.30 5.70
output external delay -2.00 3.70
data required time 3.70

data required time 3.70
data arrival time -1.66

slack (MET) 2.04

The max output delay is subtracted from the next clock edge to determine
the required arrival time at the output of the DUA.

CHAPTER 9 Interface Analysis

326

The hold timing check path report is next.

Startpoint: UFF4 (rising edge-triggered flip-flop clocked by CLKP)
Endpoint: QOUT (output port clocked by CLKP)
Path Group: CLKP
Path Type: min

Point Incr Path

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.07 0.07 r
UCKBUF5/C (CKB) 0.06 0.13 r
UFF4/CK (DF) 0.00 0.13 r
UFF4/Q (DF) 0.14 0.27 f
UAND1/Z (AN2) 0.75 1.02 f
QOUT (out) 0.00 1.02 f
data arrival time 1.02

clock CLKP (rise edge) 0.00 0.00
clock network delay (propagated) 0.00 0.00
clock uncertainty 0.05 0.05
output external delay 1.50 1.55
data required time 1.55

data required time 1.55
data arrival time -1.02

slack (VIOLATED) -0.53

The min output delay (of -1.5ns) is subtracted from the capture clock edge
to determine the earliest arrival time at the output of the DUA that meets
the hold requirement. It is common to have a negative min output delay re-
quirement.

IO Interfaces SECTION 9.1

327

External Path Delays for Output

In this case, the path delay of the external logic is explicitly specified. See
the example in Figure 9-4.

Let us examine the setup check first. A max output delay (set_output_delay -
max) setting is obtained from the Tc2_max and Tsetup. To check the setup
requirement for output paths between flip-flops inside DUA (such as
UFF0) and the virtual flip-flop, the max output delay is specified as
Tc2_max + Tsetup.

Next let us examine the hold check. A min output delay (set_output_delay -
min) setting is obtained from Tc2_min and Thold. Since the hold of a capture
flip-flop is added to the capture clock path, the min output delay is speci-
fied as (Tc2_min - Thold).

The constraints on the output translate to the following:

create_clock -name SCLK -period 5 [get_ports SCLK]
Setup of the external logic (Tc2_max = 2.5,
Tsetup = 0.6):
set_output_delay -max 3.1 -clock SCLK [get_ports RDY]
Hold of the external logic (Tc2_min=1.6, Thold=0.15):
set_output_delay -min 1.45 -clock SCLK [get_ports RDY]

Figure 9-4 Output path delay specifications.

Tc2_max = 2.5
Tc2_min = 1.6

Virtual
flip-flop

DUA

RDY

SCLK

D Q

CK

D Q

CK

Tc1 Tc2
Tsetup = 0.6
Thold = 0.15

UFF0

CHAPTER 9 Interface Analysis

328

The path reports for these are similar to the ones in Section 8.1 and Section
8.2.

9.1.3 Output Change within Window

The set_output_delay specification can be used to specify maximum and
minimum arrival times of an output signal with respect to a clock. This sec-
tion considers the special case of specifying constraints that verify the sce-
nario when the output can change only within a timing window relative to
the clock edge. This requirement occurs quite often while verifying the tim-
ing of source synchronous interfaces.

In source synchronous interfaces, the clock also appears along with the
data as an output. In such cases, there is normally a requirement for a tim-
ing relationship between the clock and the data. For example, the output
data may be required to change only within a specific window around the
rising edge of the clock.

An example requirement for a source synchronous interface is shown in
Figure 9-5.

The requirement is that each bit of DATAQ can only change in the specified
window 2ns prior to the clock rising edge and up to 1ns after the clock ris-
ing edge. This is quite different from the output delay specifications dis-
cussed in previous sections where the data pins are required to be stable in
a specified timing window around the clock rising edge.

We create a generated clock on CLK_STROBE whose master clock is
CLKM. This is to help specify timing constraints corresponding to the re-
quirements of this interface.

create_clock -name CLKM -period 6 [get_ports CLKM}
create_generated_clock -name CLK_STROBE -source CLKM \
-divide_by 1 [get_ports CLK_STROBE]

IO Interfaces SECTION 9.1

329

The window requirement is specified using a combination of setup and
hold checks with multicycle path specifications. The timing requirement is
mapped to a setup check that has to occur on a single rising edge (same
edge for launch and capture). Thus, we specify a multicycle of 0 for setup.

set_multicycle_path 0 -setup -to [get_ports DATAQ]

In addition, the hold check has to occur on the same edge, thus we need to
specify a multicycle of -1 (minus one) for hold check.

Figure 9-5 Data change allowed only within a window around the
clock.

CLK_STROBE

DATAQ

2.0 1.0

Data may
change only within

this window

UFF0

DATAQ

CLK_STROBE

CLKM

D Q

CK

DUA

6.0

CHAPTER 9 Interface Analysis

330

set_multicycle_path -1 -hold -to [get_ports DATAQ]

Now specify the timing constraints on the output with respect to the clock
CLK_STROBE.

set_output_delay -max -1.0 -clock CLK_STROBE \
[get_ports DATAQ]

set_output_delay -min +2.0 -clock CLK_STROBE \
[get_ports DATAQ]

Notice that the min value of the output delay specification is larger than the
max specification. This anomaly exists because, in this scenario, the output
delay specification does not correspond to an actual logic block. Unlike the
case of a typical output interface where the output delay specification cor-
responds to a logic block at the output, the set_output_delay specification in
a source synchronous interface is just a mechanism to verify whether the
outputs are constrained to switch within a specified window around the
clock. Thus, we have the anomaly of the min output delay specification be-
ing larger than the max output delay specification.

Here is the setup timing check path report for the constraints specified.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: DATAQ (output port clocked by CLK_STROBE)
Path Group: CLK_STROBE
Path Type: max

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UINV0/ZN (INV) 0.01 0.01 f
UINV1/ZN (INV) 0.03 0.04 r
UCKBUF0/C (CKB) 0.06 0.10 r
UFF0/CK (DF) 0.00 0.10 r
UFF0/Q (DF) 0.13 0.23 r
UBUF1/Z (BUFF) 0.38 0.61 r

IO Interfaces SECTION 9.1

331

DATAQ (out) 0.00 0.61 r
data arrival time 0.61

clock CLK_STROBE (rise edge) 0.00 0.00
clock CLKM (source latency) 0.00 0.00
CLKM (in) 0.00 0.00 r
UINV0/ZN (INV) 0.01 0.01 f
UINV1/ZN (INV) 0.03 0.04 r
UCKBUF1/C (CKB) 0.05 0.09 r
CLK_STROBE (out) 0.00 0.09 r
clock uncertainty -0.30 -0.21
output external delay 1.00 0.79
data required time 0.79

data required time 0.79
data arrival time -0.61

slack (MET) 0.18

Notice that the launch and the capture edges are the same clock edge,
which is at time 0. The report shows that DATAQ changes at 0.61ns while
the CLK_STROBE changes at 0.09ns. Since DATAQ can change within 1ns
of the CLK_STROBE, there is a slack of 0.18ns after accounting for the 0.3ns
of clock uncertainty.

Here is the hold path report that checks for the bound on the other side of
the clock.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: DATAQ (output port clocked by CLK_STROBE)
Path Group: CLK_STROBE
Path Type: min

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UINV0/ZN (INV) 0.01 0.01 f
UINV1/ZN (INV) 0.03 0.04 r

CHAPTER 9 Interface Analysis

332

UCKBUF0/C (CKB) 0.06 0.10 r
UFF0/CK (DF) 0.00 0.10 r
UFF0/Q (DF) 0.13 0.23 f
UBUF1/Z (BUFF) 0.25 0.48 f
DATAQ (out) 0.00 0.48 f
data arrival time 0.48

clock CLK_STROBE (rise edge) 0.00 0.00
clock CLKM (source latency) 0.00 0.00
CLKM (in) 0.00 0.00 r
UINV0/ZN (INV) 0.01 0.01 f
UINV1/ZN (INV) 0.03 0.04 r
UCKBUF1/C (CKB) 0.05 0.09 r
CLK_STROBE (out) 0.00 0.09 r
clock uncertainty 0.05 0.14
output external delay -2.00 -1.86
data required time -1.86

data required time -1.86
data arrival time -0.48

slack (MET) 2.35

With the min path analysis, DATAQ arrives at 0.48ns while the
CLK_STROBE arrives at 0.09ns. Since the requirement is that data can
change up to a 2ns limit before CLK_STROBE, we get a slack of 2.35ns after
accounting for the clock uncertainty of 50ps.

Another example of a source synchronous interface is depicted in Figure 9-
6. In this case, the output clock is a divide-by-2 of the main clock and is part
of the synchronous interface with the data. The POUT is constrained to
switch no earlier than 2ns before and no later than 1ns after the QCLKOUT.

Here are the constraints.

create_clock -name CLKM -period 6 [get_ports CLKM}
create_generated_clock -name QCLKOUT -source CLKM \
-divide_by 2 [get_ports QCLKOUT]

set_multicycle_path 0 -setup -to [get_ports POUT]

IO Interfaces SECTION 9.1

333

Figure 9-6 Data change allowed only around divide-by-2 output clock.

QCLKOUT

POUT

2 1

Data can
change only within

this window

Setup check
moved to
this edge

D Q

CK

D Q

CK

CLKM

Q

POUT
UFF0

UFF1

AIN

CLKM

QCLKOUT

CHAPTER 9 Interface Analysis

334

set_multicycle_path -1 -hold -to [get_ports POUT]

set_output_delay -max -1.0 -clock QCLKOUT [get_ports POUT]
set_output_delay -min +2.0 -clock QCLKOUT [get_ports POUT]

Here is the setup timing report.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: POUT (output port clocked by QCLKOUT)
Path Group: QCLKOUT
Path Type: max

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UINV0/ZN (INV) 0.01 0.01 f
UINV1/ZN (INV) 0.03 0.04 r
UCKBUF0/C (CKB) 0.06 0.10 r
UFF0/CK (DF) 0.00 0.10 r
UFF0/Q (DF) 0.13 0.23 r
UBUF1/Z (BUFF) 0.38 0.61 r
POUT (out) 0.00 0.61 r
data arrival time 0.61

clock QCLKOUT (rise edge) 0.00 0.00
clock CLKM (source latency) 0.00 0.00
CLKM (in) 0.00 0.00 r
UINV0/ZN (INV) 0.01 0.01 f
UINV1/ZN (INV) 0.03 0.04 r
UCKBUF1/C (CKB) 0.06 0.10 r
UFF1/Q (DF) 0.13 0.23 r
UBUF2/Z (BUFF) 0.04 0.27 r
QCLKOUT (out) 0.00 0.27 r
clock uncertainty -0.30 -0.03
output external delay 1.00 0.97
data required time 0.97

data required time 0.97
data arrival time -0.61

IO Interfaces SECTION 9.1

335

slack (MET) 0.36

Notice that the multicycle specification has moved the setup check one cy-
cle back so that the check is performed on the same clock edge. Output
POUT changes at 0.61ns while the clock QCLKOUT changes at 0.27ns. Giv-
en the requirement of changing within 1ns, and considering the clock un-
certainty of 0.30ns, we get a slack of 0.36ns.

Here is the hold path report that checks for the other constraint on the
switching window.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: POUT (output port clocked by QCLKOUT)
Path Group: QCLKOUT
Path Type: min

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UINV0/ZN (INV) 0.01 0.01 f
UINV1/ZN (INV) 0.03 0.04 r
UCKBUF0/C (CKB) 0.06 0.10 r
UFF0/CK (DF) 0.00 0.10 r
UFF0/Q (DF) 0.13 0.23 f
UBUF1/Z (BUFF) 0.25 0.48 f
POUT (out) 0.00 0.48 f
data arrival time 0.48

clock QCLKOUT (rise edge) 0.00 0.00
clock CLKM (source latency) 0.00 0.00
CLKM (in) 0.00 0.00 r
UINV0/ZN (INV) 0.01 0.01 f
UINV1/ZN (INV) 0.03 0.04 r
UCKBUF1/C (CKB) 0.06 0.10 r
UFF1/Q (DF) 0.13 0.23 r
UBUF2/Z (BUFF) 0.04 0.27 r
QCLKOUT (out) 0.00 0.27 r

CHAPTER 9 Interface Analysis

336

clock uncertainty 0.05 0.32
output external delay -2.00 -1.68
data required time -1.68

data required time -1.68
data arrival time -0.48

slack (MET) 2.17

The path report shows that the data changes within the allowable window
of 2ns before the QCLKOUT clock edge and there is a slack of 2.17ns.

9.2 SRAM Interface

All data transfers in an SRAM interface occur only on the active edge of the
clock. All signals are latched by the SRAM or launched by the SRAM on
the active clock edge only. The signals comprising the SRAM interface in-
clude the command, address and control output bus (CAC), the bidirec-
tional data bus (DQ) and the clock. In the write cycle, the DUA writes data
to the SRAM, the data and address go from the DUA to the SRAM, and are
latched in the SRAM on the active clock edge. In the read cycle, the address
signals still go from the DUA to the SRAM while the data signals output
from the SRAM go to the DUA. The address and control are thus unidirec-
tional and go from the DUA to the SRAM as shown in Figure 9-7. A DLL
(delay-locked loop1) is typically placed in the clock path. The DLL allows
the clock to be delayed, if necessary, to account for delay variations of the
various signals across the interface due to PVT tolerances and other exter-
nal variations. By accounting for such variations, there is a good timing
margin for the data transfer for both the read cycle and the write cycle to
and from the SRAM.

Figure 9-8 shows the AC characteristics of a typical SRAM interface. Note
that the Data in and Data out in Figure 9-8 refer to the direction seen by the

1. See [BES07] in Bibliography.

SRAM Interface SECTION 9.2

337

SRAM; the Data out from the SRAM is the input to the DUA and the Data in
to the SRAM is the output of the DUA. These requirements translate to the
following IO interface constraints for the DUA interfacing the SRAM.

First define primary clock at the output of UPLL0:
create_clock -name PLL_CLK -period 5 [get_pins UPLL0/CLKOUT]
Next define a generated clock at clock output pin of DUA:
create_generated_clock -name SRAM_CLK \
-source [get_pins UPLL0/CLKOUT] -divide_by 1 \
[get_ports SRAM_CLK]

Constrain the address and control:
set_output_delay -max 1.5 -clock SRAM_CLK \
[get_ports ADDR[0]]

set_output_delay -min -0.5 -clock SRAM_CLK \
[get_ports ADDR[0]]

. . .

Figure 9-7 SRAM interface.

SRAM

ADDR

CTRL

DQ

CLK

DUA D Q

CK

D Q

CK

D Q

CK

DLL

PLL

SRAM_CLK

DQ

ADDR

CTRL

CMD CMD

UPLL0

CHAPTER 9 Interface Analysis

338

Constrain the data going out of DUA:
set_output_delay -max 1.7 -clock SRAM_CLK [get_ports DQ[0]]
set_output_delay -min -0.8 -clock SRAM_CLK [get_ports DQ[0]]
Constrain the data coming into the DUA:
set_input_delay -max 3.2 -clock SRAM_CLK [get_ports DQ[0]]
set_input_delay -min 1.7 -clock SRAM_CLK [get_ports DQ[0]]
. . .

Figure 9-8 SRAM AC characteristics.

2.5 5 7.5

1.5
Setup

0.5
Hold

1.7
Setup

0.8
Hold

ADDR,
CNTL

Data in

Data out

Min 1.7

Max 3.2

CLK

(DQ)

(DQ)

SRAM Interface SECTION 9.2

339

Here is a representative setup path report for the address pin.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: ADDR (output port clocked by SRAM_CLK)
Path Group: SRAM_CLK
Path Type: max

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UINV0/ZN (INV) 0.01 0.01 f
UINV1/ZN (INV) 0.04 0.05 r
UCKBUF0/C (CKB) 0.06 0.11 r
UFF0/CP (DF) 0.00 0.11 r
UFF0/Q (DF) 0.13 0.24 f
UBUF1/Z (BUFF) 0.05 0.29 f
ADDR (out) 0.00 0.29 f
data arrival time 0.29

clock SRAM_CLK (rise edge) 10.00 10.00
clock CLKM (source latency) 0.00 10.00
CLKM (in) 0.00 10.00 r
UINV0/ZN (INV) 0.01 10.01 f
UINV1/ZN (INV) 0.04 10.05 r
UCKBUF2/C (CKB) 0.05 10.10 r
SRAM_CLK (out) 0.00 10.10 r
clock uncertainty -0.30 9.80
output external delay -1.50 8.30
data required time 8.30

data required time 8.30
data arrival time -0.29

slack (MET) 8.01

The setup check validates whether the address signal arrives at the memo-
ry 1.5ns (setup time of address pin of memory) prior to the SRAM_CLK
edge.

CHAPTER 9 Interface Analysis

340

Here is the hold timing path report for the same pin.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: ADDR (output port clocked by SRAM_CLK)
Path Group: SRAM_CLK
Path Type: min

Point Incr Path

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UINV0/ZN (INV) 0.01 0.01 f
UINV1/ZN (INV) 0.04 0.05 r
UCKBUF0/C (CKB) 0.06 0.11 r
UFF0/CP (DF) 0.00 0.11 r
UFF0/Q (DF) 0.13 0.24 r
UBUF1/Z (BUFF) 0.04 0.28 r
ADDR (out) 0.00 0.28 r
data arrival time 0.28

clock SRAM_CLK (rise edge) 0.00 0.00
clock CLKM (source latency) 0.00 0.00
CLKM (in) 0.00 0.00 r
UINV0/ZN (INV) 0.01 0.01 f
UINV1/ZN (INV) 0.04 0.05 r
UCKBUF2/C (CKB) 0.05 0.10 r
SRAM_CLK (out) 0.00 0.10 r
clock uncertainty 0.05 0.15
output external delay 0.50 0.65
data required time 0.65

data required time 0.65
data arrival time -0.28

slack (VIOLATED) -0.37

The hold checks validate whether the address remains stable for 0.5ns after
the clock edge.

DDR SDRAM Interface SECTION 9.3

341

9.3 DDR SDRAM Interface

The DDR SDRAM interface can be considered as an extension of the SRAM
interface described in the previous section. Just like the SRAM interface,
there are two main buses. Figure 9-9 illustrates the bus connectivity and
the bus directions between the DUA and the SDRAM. The first bus, which
consists of command, address, and control pins (often called CAC) uses the
standard scheme of sending information out on one clock edge of a memo-
ry clock (or once per clock cycle). The two bidirectional buses consist of the
DQ, the data bus, and DQS, the data strobe. The main differentiation of the
DDR interface is the bidirectional data strobe DQS. A DQS strobe is pro-
vided for a group of data signals. This allows the data signals (one per byte
or one per half-byte) to have tightly matched timing with the strobe; such a
tight match may not be feasible with the clock signal if the clock is common
for the entire data bus. The bidirectional strobe signal DQS is used for both
the read and the write operations. The strobe is used to capture the data on
both its edges (both falling and rising edges or Double Data Rate). The DQ
bus is source synchronous to the data strobe DQS (instead of a memory
clock) during the read mode of SDRAM, that is, the DQ and DQS are
aligned with each other when they are sent out from the SDRAM. In the
other direction, that is when the DUA is sending the data, the DQS is phase
shifted by 90 degrees. Note that both the data DQ and the strobe DQS edg-
es are derived from the memory clock inside the DUA.

Figure 9-9 DDR SDRAM interface.

SDRAM memory
controller

SDRAM
CAC bus

DDRCLK
Data bus (DQ)

Data strobe (DQS)

DUA

CAC
CK

DQ

DQS

CHAPTER 9 Interface Analysis

342

As described above, there is one data strobe DQS for a group of DQ signals
(four or eight bits). This is done to make the skew balancing requirements
between all bits of DQ and DQS easier. For example, with one DQS for a
byte, a group of nine signals (eight DQs and one DQS) needs to be bal-
anced, which is much easier than balancing a 72-bit data bus with the
clock.

The above description is not a complete explanation of a DDR SDRAM in-
terface, though sufficient to explain the timing requirements of such an in-
terface.

Figure 9-10 shows the AC characteristics of the CAC bus (at the DUA) for a
typical DDR SDRAM interface. These setup and hold requirements map
into the following interface constraints for the CAC bus.

DDRCLK is typically a generated clock of the PLL
clock internal to DUA:
create_generated_clock -name DDRCLK \
-source [get_pins UPLL0/CLKOUT]\
-divide_by 1 [get_ports DDRCLK]

Figure 9-10 AC characteristics of CAC signals for a typical DDR
SDRAM interface.

5

0.75
Setup

0.75
Hold

CAC

CK

DDR SDRAM Interface SECTION 9.3

343

Set output constraints for each bit of CAC:
set_output_delay -max 0.75 -clock DDRCLK [get_ports CAC]
set_output_delay -min -0.75 -clock DDRCLK [get_ports CAC]

The address bus may drive a much greater load than the clock for some
scenarios especially when interfacing with unbuffered memory modules.
In such cases, the address signals have a larger delay to the memory than
the clock signals and this delay difference may result in different AC speci-
fications than the ones depicted in Figure 9-10.

The alignment of DQS and DQ is different for read and write cycles. This is
explored further in the following subsections.

9.3.1 Read Cycle

In a read cycle, the data output from the memory is edge-aligned to DQS.
Figure 9-11 shows the waveforms; DQ and DQS in the figure represent the
signals at the memory pins. Data (DQ) is sent out by the memory on each
edge of DQS and DQ transitions are edge-aligned to the falling and rising
edges of DQS.

Since the DQS strobe signal and the DQ data signals are nominally aligned
with each other, a DLL (or any alternate method to achieve quarter-cycle
delay) is typically used by the memory controller inside the DUA to delay
the DQS and thus align the delayed DQS edge with the center of the data
valid window.

Even though the DQ and DQS are nominally aligned at the memory, the
DQ and DQS strobe signals may no longer be aligned at the memory con-
troller inside the DUA. This can be due to differences in delays between IO
buffers and due to factors such as differences in PCB interconnect traces.

Figure 9-12 shows the basic read schematic. The positive edge-triggered
flip-flop captures the data DQ on the rising edge of DQS_DLL, while the
negative edge-triggered flip-flop captures the data DQ on the falling edge
of DQS_DLL. While a DLL is not depicted on the DQ path, some designs
may contain a DLL on the data path also. This allows delaying of the sig-

CHAPTER 9 Interface Analysis

344

nals (to account for variations due to PVT or interconnect trace length or
other differences) so that the data can be sampled exactly in the middle of
the data valid window.

To constrain the read interface on the controller, a clock is defined on DQS,
and input delays are specified on the data with respect to the clock.

create_clock -period 5 -name DQS [get_ports DQS]

This assumes that the memory read interface operates at 200 MHz (equiva-
lent to 400 Mbps as data is transferred on both clock edges), and corre-
sponds to the DQ signals being sampled every 2.5ns. Since the data is being
captured on both edges, input constraints need to be specified for each
edge explicitly.

Figure 9-11 DQS and DQ signals at the memory pins during DDR
read cycle.

DQS

DQ

Edge-aligned

Data is sampled by
controller in middle

DQS_DLL
(Delayed DQS)

Read sampling

DDR SDRAM Interface SECTION 9.3

345

For rising clock edge:
set_input_delay 0.4 -max -clock DQS [get_ports DQ]
set_input_delay -0.4 -min -clock DQS [get_ports DQ]
This is with respect to clock rising edge (default).

Similarly for falling edge:
set_input_delay 0.35 -max -clock DQS -clock_fall \
[get_ports DQ]

set_input_delay -0.35 -min -clock DQS -clock_fall \
[get_ports DQ]

The launch and capture are on the same edge:
set_multicycle_path 0 -setup -to UFF0/D
set_multicycle_path 0 -setup -to UFF5/D

The input delays represent the difference between the DQ and the DQS
edges at the pins of the DUA. Even though these are normally launched to-
gether from the memory, there is a tolerance in the timing based upon the
memory specification. Thus, the controller design within the DUA should
consider that both signals can have skew with respect to each other. Here
are the setup path reports to the two flip-flops. Assume that the setup re-
quirement of the capturing flip-flop is 0.05ns and the hold requirement is

Figure 9-12 Read capture logic in memory controller.

DQ

DQS

D Q

CK

D Q

CK

DLL
DQS_DLL

UFF0

UFF5

CHAPTER 9 Interface Analysis

346

0.03ns. The DLL delay is assumed to be set to 1.25ns, a quarter of the cycle
period.

Startpoint: DQ (input port clocked by DQS)
Endpoint: UFF0 (rising edge-triggered flip-flop clocked by DQS)
Path Group: DQS
Path Type: max

Point Incr Path

clock DQS (rise edge) 0.00 0.00
clock network delay (propagated) 0.00 0.00
input external delay 0.40 0.40 f
DQ (in) 0.00 0.40 f
UFF0/D (DF) 0.00 0.40 f
data arrival time 0.40

clock DQS (rise edge) 0.00 0.00
clock source latency 0.00 0.00
DQS (in) 0.00 0.00 r
UDLL0/Z (DLL) 1.25 1.25 r
UFF0/CP (DF) 0.00 1.25 r
library setup time -0.05 1.20
data required time 1.20

data required time 1.20
data arrival time -0.40

slack (MET) 0.80

Startpoint: DQ (input port clocked by DQS)
Endpoint: UFF5 (falling edge-triggered flip-flop clocked by DQS)
Path Group: DQS
Path Type: max

Point Incr Path

clock DQS (fall edge) 2.50 2.50
clock network delay (propagated) 0.00 2.50
input external delay 0.35 2.85 r
DQ (in) 0.00 2.85 r

DDR SDRAM Interface SECTION 9.3

347

UFF5/D (DFN) 0.00 2.85 r
data arrival time 2.85

clock DQS (fall edge) 2.50 2.50
clock source latency 0.00 2.50
DQS (in) 0.00 2.50 f
UDLL0/Z (DLL) 1.25 3.76 f
UFF5/CPN (DFN) 0.00 3.76 f
library setup time -0.05 3.71
data required time 3.71

data required time 3.71
data arrival time -2.85

slack (MET) 0.86

Here are the hold timing reports.

Startpoint: DQ (input port clocked by DQS)
Endpoint: UFF0 (rising edge-triggered flip-flop clocked by DQS)
Path Group: DQS
Path Type: min

Point Incr Path

clock DQS (rise edge) 5.00 5.00
clock network delay (propagated) 0.00 5.00
input external delay -0.40 4.60 r
DQ (in) 0.00 4.60 r
UFF0/D (DF) 0.00 4.60 r
data arrival time 4.60

clock DQS (fall edge) 2.50 2.50
clock source latency 0.00 2.50
DQS (in) 0.00 2.50 f
UDLL0/Z (DLL) 1.25 3.75 f
UFF0/CP (DF) 0.00 3.75 f
library hold time 0.03 3.78
data required time 3.78

data required time 3.78

CHAPTER 9 Interface Analysis

348

data arrival time -4.60

slack (MET) 0.82

Startpoint: DQ (input port clocked by DQS)
Endpoint: UFF5 (falling edge-triggered flip-flop clocked by DQS)
Path Group: DQS
Path Type: min

Point Incr Path

clock DQS (fall edge) 2.50 2.50
clock network delay (propagated) 0.00 2.50
input external delay -0.35 2.15 f
DQ (in) 0.00 2.15 f
UFF5/D (DFN) 0.00 2.15 f
data arrival time 2.15

clock DQS (rise edge) 0.00 0.00
clock source latency 0.00 0.00
DQS (in) 0.00 0.00 r
UDLL0/Z (DLL) 1.25 1.25 r
UFF5/CPN (DFN) 0.00 1.25 r
library hold time 0.03 1.28
data required time 1.28

data required time 1.28
data arrival time -2.15

slack (MET) 0.87

9.3.2 Write Cycle

In a write cycle, the DQS edges are quarter-cycle offset from the DQ signals
coming out of the memory controller within the DUA so that the DQS
strobe can be used to capture the data at the memory.

Figure 9-13 shows the required waveforms at the memory pins. The DQS
signal must be aligned to be at the center of the DQ window at the memory

DDR SDRAM Interface SECTION 9.3

349

pins. Note that aligning DQ and DQS to have the same property at the
memory controller (inside DUA) is not enough for these signals to have the
required alignment at the SDRAM pins due to mismatch in the IO buffer
delays or variations in PCB interconnect traces. Thus, the DUA typically
provides additional DLL controls in the write cycle to achieve the required
quarter cycle offset between the DQS and the DQ signals.

Constraining the outputs for this mode depends on how the clocks are gen-
erated in the controller. We consider two cases.

Case 1: Internal 2x Clock

If an internal clock that is double the frequency of the DDR clock is avail-
able, the output logic can be similar to the one shown in Figure 9-14. The
DLL provides a mechanism to skew the DQS clock if necessary so that the
setup and hold requirements at the memory pins are met. In some cases,
the DLL may not be used - instead a negative edge flip-flop is used to get
the 90 degree offset.

Figure 9-13 DQ and DQS signals at memory pins during DDR write
cycle.

DQS

DQ

Setup Hold
rise rise

Setup Hold
fall fall

CHAPTER 9 Interface Analysis

350

For the scenario shown in Figure 9-14, the outputs can be constrained as:

166MHz (333Mbps) DDR; 2x clock is at 333MHz:
create_clock -period 3 [get_ports CLK2X]

Define a 1x generated clock at the output of flip-flop:
create_generated_clock -name pre_DQS -source CLK2X \
-divide_by 2 [get_pins UFF1/Q]

Create the delayed version as DQS assuming 1.5ns DLL delay:
create_generated_clock -name DQS -source UFF1/Q \
-edges {1 2 3} -edge_shift {1.5 1.5 1.5} [get_ports DQS]

The timing at the DQ output pins has to be constrained with respect to the
generated clock DQS.

Assume that the setup requirements between the DQ and DQS pins at the
DDR SDRAM are 0.25ns and 0.4ns for the rising edge and falling edge of
DQ respectively. Similarly, a hold requirement of 0.15ns and 0.2ns is as-
sumed for the rising and falling edges of DQ pins. The DLL delay at the
DQS output has been set to a quarter-cycle, which is 1.5ns. The waveforms
are shown in Figure 9-15.

Figure 9-14 DQS is a divide-by-2 of internal clock.

DATA

CLK2X

DQS

DQD Q

CK

D Q

CK
Q

DLL

UFF0

UFF1

DDR SDRAM Interface SECTION 9.3

351

set_output_delay -clock DQS -max 0.25 -rise [get_ports DQ]
Default above is rising clock.
set_output_delay -clock DQS -max 0.4 -fall [get_ports DQ]
If setup requirements are different for falling edge of DQS,
that can be specified by using the -clock_fall option.

Figure 9-15 DQS and DQ signals obtained from internal 2x clock.

CLK2X

DQ

UFF1/Q

DQS

DQ@

DQS@Memory

Memory

0 3 6 9 12

Setup Hold

DLL delay(1.5ns)

DQ trace delay

DQS trace delay

(pre_DQS)

CHAPTER 9 Interface Analysis

352

set_output_delay -clock DQS -min -0.15 -rise DQ
set_output_delay -clock DQS -min -0.2 -fall DQ

Here is the setup report through the output DQ. The setup check is from
the rise edge of CLK2X at 0ns which launches DQ to the rise edge of DQS at
1.5ns.

Startpoint: UFF0(rising edge-triggered flip-flop clocked by CLK2X)
Endpoint: DQ (output port clocked by DQS)
Path Group: DQS
Path Type: max

Point Incr Path

clock CLK2X (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLK2X (in) 0.00 0.00 r
UFF0/CP (DFD1) 0.00 0.00 r
UFF0/Q (DFD1) 0.12 0.12 f
DQ (out) 0.00 0.12 f
data arrival time 0.12

clock DQS (rise edge) 1.50 1.50
clock CLK2X (source latency) 0.00 1.50
CLK2X (in) 0.00 1.50 r
UFF1/Q (DFD1) (gclock source) 0.12 1.62 r
UDLL0/Z (DLL) 0.00 1.62 r
DQS (out) 0.00 1.62 r
output external delay -0.40 1.22
data required time 1.22

data required time 1.22
data arrival time -0.12

slack (MET) 1.10

Note that the quarter-cycle delay in the above report appears in the first
line with the DQS clock edge rather than on the line showing the DLL in-
stance UDLL0. This is because the DLL delay has been modeled as part of

DDR SDRAM Interface SECTION 9.3

353

the generated clock definition for DQS instead of in the timing arc for the
DLL.

Here is the hold report through output DQ. The hold check is done from
the rising edge of clock CLK2X which launches DQ at 3ns to the previous
rising edge of DQS at 1.5ns.

Startpoint: UFF0(rising edge-triggered flip-flop clocked by CLK2X)
Endpoint: DQ (output port clocked by DQS)
Path Group: DQS
Path Type: min

Point Incr Path

clock CLK2X (rise edge) 3.00 3.00
clock source latency 0.00 3.00
CLK2X (in) 0.00 3.00 r
UFF0/CP (DFD1) 0.00 3.00 r
UFF0/Q (DFD1) 0.12 3.12 f
DQ (out) 0.00 3.12 f
data arrival time 3.12

clock DQS (rise edge) 1.50 1.50
clock CLK2X (source latency) 0.00 1.50
CLK2X (in) 0.00 1.50 r
UFF1/Q (DFD1) (gclock source) 0.12 1.62 r
UDLL0/Z (DLL) 0.00 1.62 r
DQS (out) 0.00 1.62 r
output external delay 0.20 1.82
data required time 1.82

data required time 1.82
data arrival time -3.12

slack (MET) 1.30

CHAPTER 9 Interface Analysis

354

Case 2: Internal 1x Clock

When only an internal 1x clock is available, the output circuitry may typi-
cally be similar to that shown in Figure 9-16.

There are two flip-flops used to generate the DQ data. The first flip-flop
NEGEDGE_REG is triggered by the negative edge of the clock CLK1X, and
the second flip-flop POSEDGE_REG is triggered by the positive edge of the
clock CLK1X. Each flip-flop latches the appropriate edge data and this data
is then multiplexed out using the CLK1X as the multiplexer select. When
CLK1X is high, the output of flip-flop NEGEDGE_REG is sent to DQ. When
CLK1X is low, the output of flip-flop POSEDGE_REG is sent to DQ. Hence,
data arrives at the output DQ on both edges of clock CLK1X. Notice that
each flip-flop has half a cycle to propagate data to the input of the multi-
plexer so that the input data is ready at the multiplexer before it is selected
by the CLK1X edge. The relevant waveforms are shown in Figure 9-17.

Create the 1x clock:
create_clock -name CLK1X -period 6 [get_ports CLK1X]

Figure 9-16 Output logic in DUA using internal 1x clock.

LOW_DIN

HIGH_DIN

NEGEDGE_REG

POSEDGE_REG

CLK1X

DQ

DQS

UMUX1

D Q

CKN

D Q

CK

DLL

UDLL0

DDR SDRAM Interface SECTION 9.3

355

Define a generated clock at DQS. It is a divide-by-1 of
CLK1X. Assume a quarter-cycle delay of 1.5ns on UDLL0:
create_generated_clock -name DQS -source CLK1X \
-edges {1 2 3} -edge_shift {1.5 1.5 1.5} [get_ports DQS]

Define a setup check of 0.25 and 0.3 between DQ and DQS
pins on rising and falling edge of clock:
set_output_delay -max 0.25 -clock DQS [get_ports DQ]
set_output_delay -max 0.3 -clock DQS -clock_fall \
[get_ports DQ]

set_output_delay -min -0.2 -clock DQS [get_ports DQ]
set_output_delay -min -0.27 -clock DQS -clock_fall \
[get_ports DQ]

The setup and hold checks verify the timing from the multiplexer to the
output. One of the setup checks is from the rising edge of CLK1X at the
multiplexer input (which launches the NEGEDGE_REG data) to the rising
edge of DQS. The other setup check is from the falling edge of CLK1X at
the multiplexer input (which launches the POSEDGE_REG data) to the fall-
ing edge of DQS. Similarly, the hold checks are from the same CLK1X edg-
es (as for setup checks) to the previous falling or rising edges of DQS.

Here is the setup timing check report through the port DQ. The check is be-
tween the rising edge of CLK1X, which selects the NEGEDGE_REG output,
and the rising edge of the DQS.

Startpoint: CLK1X (clock source 'CLK1X')
Endpoint: DQ (output port clocked by DQS)
Path Group: DQS
Path Type: max

Point Incr Path

clock CLK1X (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLK1X (in) 0.00 0.00 r
UMUX1/S (MUX2D1) <- 0.00 0.00 r
UMUX1/Z (MUX2D1) 0.07 0.07 r

CHAPTER 9 Interface Analysis

356

DQ (out) 0.00 0.07 r
data arrival time 0.07

clock DQS (rise edge) 1.50 1.50
clock CLK1X (source latency) 0.00 1.50
CLK1X (in) 0.00 1.50 r
UBUF0/Z (BUFFD1) 0.03 1.53 r
UDLL0/Z (DLL) 0.00 1.53 r
DQS (out) 0.00 1.53 r
output external delay -0.25 1.28
data required time 1.28

data required time 1.28
data arrival time -0.07

Figure 9-17 DQS and DQ signals obtained using 1x internal clock.

CLK1X

DQS

DLL delay

POSEDGE_REG/Q

NEGEDGE_REG/Q

DQ

0 6 12 18 24

DDR SDRAM Interface SECTION 9.3

357

slack (MET) 1.21

Here is another setup timing check report through the port DQ. This setup
check is between the falling edge of CLK1X which selects the
POSEDGE_REG output and the falling edge of the DQS.

Startpoint: CLK1X (clock source 'CLK1X')
Endpoint: DQ (output port clocked by DQS)
Path Group: DQS
Path Type: max

Point Incr Path

clock CLK1X (fall edge) 3.00 3.00
clock source latency 0.00 3.00
CLK1X (in) 0.00 3.00 f
UMUX1/S (MUX2D1) <- 0.00 3.00 f
UMUX1/Z (MUX2D1) 0.05 3.05 f
DQ (out) 0.00 3.05 f
data arrival time 3.05

clock DQS (fall edge) 4.50 4.50
clock CLK1X (source latency) 0.00 4.50
CLK1X (in) 0.00 4.50 f
UBUF0/Z (BUFFD1) 0.04 4.54 f
UDLL0/Z (DLL) 0.00 4.54 f
DQS (out) 0.00 4.54 f
output external delay -0.30 4.24
data required time 4.24

data required time 4.24
data arrival time -3.05

slack (MET) 1.19

CHAPTER 9 Interface Analysis

358

Here is the hold timing check report through the port DQ. The check is be-
tween the rising edge of CLK1X and the previous falling edge of DQS.

Startpoint: CLK1X (clock source 'CLK1X')
Endpoint: DQ (output port clocked by DQS)
Path Group: DQS
Path Type: min

Point Incr Path

clock CLK1X (rise edge) 6.00 6.00
clock source latency 0.00 6.00
CLK1X (in) 0.00 6.00 r
UMUX1/S (MUX2D1) <- 0.00 6.00 r
UMUX1/Z (MUX2D1) 0.05 6.05 f
DQ (out) 0.00 6.05 f
data arrival time 6.05

clock DQS (fall edge) 4.50 4.50
clock CLK1X (source latency) 0.00 4.50
CLK1X (in) 0.00 4.50 f
UBUF0/Z (BUFFD1) 0.04 4.54 f
UDLL0/Z (DLL) 0.00 4.54 f
DQS (out) 0.00 4.54 f
output external delay 0.27 4.81
data required time 4.81

data required time 4.81
data arrival time -6.05

slack (MET) 1.24

Here is another hold timing check report through the port DQ. This check
is between the falling edge of CLK1X and the previous rising edge of DQS.

Startpoint: CLK1X (clock source 'CLK1X')
Endpoint: DQ (output port clocked by DQS)
Path Group: DQS
Path Type: min

DDR SDRAM Interface SECTION 9.3

359

Point Incr Path

clock CLK1X (fall edge) 3.00 3.00
clock source latency 0.00 3.00
CLK1X (in) 0.00 3.00 f
UMUX1/S (MUX2D1) <- 0.00 3.00 f
UMUX1/Z (MUX2D1) 0.05 3.05 f
DQ (out) 0.00 3.05 f
data arrival time 3.05

clock DQS (rise edge) 1.50 1.50
clock CLK1X (source latency) 0.00 1.50
CLK1X (in) 0.00 1.50 r
UBUF0/Z (BUFFD1) 0.03 1.53 r
UDLL0/Z (DLL) 0.00 1.53 r
DQS (out) 0.00 1.53 r
output external delay 0.20 1.73
data required time 1.73

data required time 1.73
data arrival time -3.05

slack (MET) 1.32

While the above interface timing analysis has ignored the effect of any
loads on the outputs, additional load can be specified (using set_load) for
more accuracy. However, STA can be supplemented with circuit simula-
tion for achieving a robust DRAM timing as described below.

The DQ and the DQS signals for the DDR interface typically use ODT1 in
read and write modes to reduce any reflections due to impedance mis-
match at the DRAM and at the DUA. The timing models used for STA are
not able to provide adequate accuracy in presence of ODT termination. The
designer may use an alternate mechanism such as detailed circuit level
simulation to validate the signal integrity and the timing of the DRAM in-
terface.

1. On-Die Termination.

CHAPTER 9 Interface Analysis

360

9.4 Interface to a Video DAC

Consider Figure 9-18 which shows a typical DAC1 interface where a high-
speed clock is transferring data to the slow-speed clock interface of the
DAC.

1. Digital to Analog Converter.

Figure 9-18 Video DAC interface.

DAC_DATA

XPLL_CLK DAC_CLK
divide-by-2

XPLL_CLK

DAC_CLK

DAC_DATA

UDFF0
UDAC2

D Q

CK

Note inversion

0 10 20
Setup Hold

Interface to a Video DAC SECTION 9.4

361

Clock DAC_CLK is a divide-by-2 of the clock XPLL_CLK. The DAC setup
and hold checks are with respect to the falling edge of DAC_CLK.

In this case, the setup time is considered as a single cycle (XPLL_CLK) path,
even though the interface from a faster clock domain to a slower clock do-
main can be specified as a multicycle path if necessary. As shown in Figure
9-18, the rising edge of XPLL_CLK launches the data and the falling edge of
DAC_CLK captures the data. Here is the setup report.

Startpoint: UDFF0
(rising edge-triggered flip-flop clocked by XPLL_CLK)

Endpoint: UDAC2
(falling edge-triggered flip-flop clocked by DAC_CLK)

Path Group: DAC_CLK
Path Type: max

Point Incr Path

clock XPLL_CLK (rise edge) 0.00 0.00
clock source latency 0.00 0.00
XPLL_CLK (in) 0.00 0.00 r
UDFF0/CK (DF) 0.00 0.00 r
UDFF0/Q (DF) 0.12 0.12 f
UBUF0/Z (BUFF) 0.06 0.18 f
UDFF2/D (DFN) 0.00 0.18 f
data arrival time 0.18

clock DAC_CLK (fall edge) 10.00 10.00
clock XPLL_CLK (source latency) 0.00 10.00
XPLL_CLK (in) 0.00 10.00 r
UDFF1/Q (DF) (gclock source) 0.13 10.13 f
UDAC2/CKN (DAC) 0.00 10.13 f
library setup time -0.04 10.08
data required time 10.08

data required time 10.08
data arrival time -0.18

slack (MET) 9.90

CHAPTER 9 Interface Analysis

362

Note that the interface is from a faster clock to a slower clock, thus it can be
made into a two-cycle path if necessary.

Here is the hold timing report.

Startpoint: UDFF0
(rising edge-triggered flip-flop clocked by XPLL_CLK)

Endpoint: UDAC2
(falling edge-triggered flip-flop clocked by DAC_CLK)

Path Group: DAC_CLK
Path Type: min

Point Incr Path

clock XPLL_CLK (rise edge) 10.00 10.00
clock source latency 0.00 10.00
XPLL_CLK (in) 0.00 10.00 r
UDFF0/CK (DF) 0.00 10.00 r
UDFF0/Q (DF) 0.12 10.12 r
UBUF0/Z (BUFF) 0.05 10.17 r
UDFF2/D (DFN) 0.00 10.17 r
data arrival time 10.17

clock DAC_CLK (fall edge) 10.00 10.00
clock XPLL_CLK (source latency) 0.00 10.00
XPLL_CLK (in) 0.00 10.00 r
UDFF1/Q (DF) (gclock source) 0.13 10.13 f
UDAC2/CKN (DAC) 0.00 10.13 f
library hold time 0.03 10.16
data required time 10.16

data required time 10.16
data arrival time -10.17

slack (MET) 0.01

Interface to a Video DAC SECTION 9.4

363

The hold check is done one cycle prior to the setup capture edge. In this
case, the most critical hold check is the one where the setup and launch
edges are the same, and this is shown in the hold timing report.

q

C H A P T E R

10

Robust Verification

his chapter describes special STA analyses such as time borrowing,
clock gating and non-sequential timing checks. In addition, advanced
STA concepts such as on-chip variations, statistical timing and trade-

off between power and timing are also presented.

10.1 On-Chip Variations

In general, the process and environmental parameters may not be uniform
across different portions of the die. Due to process variations, identical
MOS transistors in different portions of the die may not have similar char-
acteristics. These differences are due to process variations within the die.
Note that the process parameter variations across multiple manufactured
lots can cover the entire span of process models from slow to fast (Section

T

 J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs: A Practical Approach, 365
DOI: 10.1007/978-0-387-93820-2_10, © Springer Science + Business Media, LLC 2009

CHAPTER 10 Robust Verification

366

2.10). In this section, we discuss the analysis of the process variations possi-
ble on one die (called local process variations) which are much smaller than
the variations across multiple manufacturing lots (called global process
variations).

Besides the variations in the process parameters, different portions of the
design may also see different power supply voltage and temperature. It is
therefore possible that two regions of the same chip are not at identical
PVT conditions. These differences can arise due to many factors, including:

i. IR drop variation along the die area affecting the local power
supply.

ii. Voltage threshold variation of the PMOS or the NMOS device.

iii. Channel length variation of the PMOS or the NMOS device.

iv. Temperature variations due to local hot spots.

v. Interconnect metal etch or thickness variations impacting the in-
terconnect resistance or capacitance.

The PVT variations described above are referred to as On-Chip Variations
(OCV) and these variations can affect the wire delays and cell delays in dif-
ferent portions of the chip. As discussed above, modeling of OCV is not in-
tended to model the entire span of the PVT variations possible from wafer
to wafer but to model the PVT variations that are possible locally within a
single die. The OCV effect is typically more pronounced on clock paths as
they travel longer distances in a chip. One way to account for the local PVT
variations is to incorporate the OCV analysis during STA. The static timing
analysis described in previous chapters obtains the timing at a specific tim-
ing corner and does not model the variations along the die. Since the clock
and data paths can be affected differently by the OCV, the timing verifica-
tion can model the OCV effect by making the PVT conditions for the
launch and capture paths to be slightly different. The STA can include the
OCV effect by derating the delays of specific paths, that is, by making those
paths faster or slower and then validating the behavior of the design with
these variations. The cell delays or wire delays or both can be derated to
model the effect of OCV.

On-Chip Variations SECTION 10.1

367

We now examine how the OCV derating is done for a setup check. Consid-
er the logic shown in Figure 10-1 where the PVT conditions can vary along
the chip. The worst condition for setup check occurs when the launch clock
path and the data path have the OCV conditions which result in the largest
delays, while the capture clock path has the OCV conditions which result
in the smallest delays. Note that the smallest and largest here are due to lo-
cal PVT variations on a die.

For this example, here is the setup timing check condition; this does not in-
clude any OCV setting for derating delays.

LaunchClockPath + MaxDataPath <= ClockPeriod +
CaptureClockPath - Tsetup_UFF1

This implies that the minimum clock period = LaunchClockPath +
MaxDataPath - CaptureClockPath + Tsetup_UFF1

Figure 10-1 Derating setup timing check for OCV.

UFF1UFF0

Capture clock path

Launch clock path

Max data pathMaximum/Latest delay

Minimum/Earliest delay
Common clock

path

1.2ns

0.8ns

5.2ns

0.86ns

Tsetup=0.35ns

Common point

D Q

CK

D Q

CK

CLKM

CHAPTER 10 Robust Verification

368

From the figure,
LaunchClockPath = 1.2 + 0.8 = 2.0
MaxDataPath = 5.2
CaptureClockPath = 1.2 + 0.86 = 2.06
Tsetup_UFF1 = 0.35

This results in a minimum clock period of:
2.0 + 5.2 – 2.06 + 0.35 = 5.49ns

The above path delays correspond to the delay values without any OCV
derating. Cell and net delays can be derated using the set_timing_derate
specification. For example, the commands:

set_timing_derate -early 0.8
set_timing_derate -late 1.1

derate the minimum/shortest/early paths by -20% and derate the maxi-
mum/longest/latest paths by +10%. Long path delays (for example, data
paths and launch clock path for setup checks or capture clock paths for
hold checks) are multiplied by the derate value specified using the -late op-
tion, and short path delays (for example, capture clock paths for setup
checks or data paths and launch clock paths for hold checks) are multiplied
by the derate values specified using the -early option. If no derating factors
are specified, a value of 1.0 is assumed.

The derating factors apply uniformly to all net delays and cell delays. If an
application scenario warrants different derating factors for cells and nets,
the -cell_delay and the -net_delay options can be used in the set_timing_derate
specification.

Derate only the cell delays - early paths by -10%, and
no derate on the late paths:
set_timing_derate -cell_delay -early 0.9
set_timing_derate -cell_delay -late 1.0

On-Chip Variations SECTION 10.1

369

Derate only the net delays - no derate on the early paths
and derate the late paths by +20%:
set_timing_derate -net_delay -early 1.0
set_timing_derate -net_delay -late 1.2

Cell check delays, such as setup and hold of a cell, can be derated by using
the -cell_check option. With this option, any output delay specified using
set_output_delay is also derated as this specification is part of the setup re-
quirement of that output. However, no such implicit derating is applied for
the input delays specified using the set_input_delay specification.

Derate the cell timing check values:
set_timing_derate -early 0.8 -cell_check
set_timing_derate -late 1.1 -cell_check

Derate the early clock paths:
set_timing_derate -early 0.95 -clock
Derate the late data paths:
set_timing_derate -late 1.05 -data

The -clock option (shown above) applies derating only to clock paths. Simi-
larly, the -data option applies derating only to data paths.

We now apply the following derating to the example of Figure 10-1.

set_timing_derate -early 0.9
set_timing_derate -late 1.2
set_timing_derate -late 1.1 -cell_check

With these derating values, we get the following for setup
check:
LaunchClockPath = 2.0 * 1.2 = 2.4
MaxDataPath = 5.2 * 1.2 = 6.24
CaptureClockPath = 2.06 * 0.9 = 1.854
Tsetup_UFF1 = 0.35 * 1.1 = 0.385

CHAPTER 10 Robust Verification

370

This results in a minimum clock period of:
2.4 + 6.24 – 1.854 + 0.385 = 7.171ns

In the setup check above, there is a discrepancy since the common clock path
(Figure 10-1) of the clock tree, with a delay of 1.2ns, is being derated differ-
ently for the launch clock and for the capture clock. This part of the clock
tree is common to both the launch clock and the capture clock and should
not be derated differently. Applying different derating for the launch and
capture clock is overly pessimistic as in reality this part of the clock tree
will really be at only one PVT condition, either as a maximum path or as a
minimum path (or anything in between) but never both at the same time.
The pessimism caused by different derating factors applied on the com-
mon part of the clock tree is called Common Path Pessimism (CPP) which
should be removed during the analysis. CPPR, which stands for Common
Path Pessimism Removal, is often listed as a separate item in a path report. It
is also labeled as Clock Reconvergence Pessimism Removal (CRPR).

CPPR is the removal of artificially induced pessimism between the launch
clock path and the capture clock path in timing analysis. If the same clock
drives both the capture and the launch flip-flops, then the clock tree will
likely share a common portion before branching. CPP itself is the delay dif-
ference along this common portion of the clock tree due to different derat-
ings for launch and capture clock paths. The difference between the
minimum and the maximum arrival times of the clock signal at the com-
mon point is the CPP. The common point is defined as the output pin of the
last cell in the common portion of the clock tree.

CPP = LatestArrivalTime@CommonPoint –
EarliestArrivalTime@CommonPoint

The Latest and Earliest times in the above analysis are in reference to the
OCV derating at a specific timing corner - for example worst-case slow or
best-case fast. For the example of Figure 10-1,

LatestArrivalTime@CommonPoint = 1.2 * 1.2 = 1.44
EarliestArrivalTime@CommonPoint = 1.2 * 0.9 = 1.08

On-Chip Variations SECTION 10.1

371

This implies a CPP of: 1.44 - 1.08 = 0.36ns

With the CPP correction, this results in a
minimum clock period of: 7.171 - 0.36 = 6.811ns

Applying the OCV derating has increased the minimum clock period from
5.49ns to 6.811ns for this example design. This illustrates that the OCV
variations modeled by these derating factors can reduce the maximum fre-
quency of operation of the design.

Analysis with OCV at Worst PVT Condition

If the setup timing check is being performed at the worst-case PVT condi-
tion, no derating is necessary on the late paths as they are already the worst
possible. However, derating can be applied to the early paths by making
those paths faster by using a specific derating, for example, speeding up
the early paths by 10%. A derate specification at the worst-case slow corner
may be something like:

set_timing_derate -early 0.9
set_timing_derate -late 1.0
Don’t derate the late paths as they are already the slowest,
but derate the early paths to make these faster by 10%.

The above derate settings are for max path (or setup) checks at the worst-
case slow corner; thus the late path OCV derate setting is kept at 1.0 so as
not to slow it beyond the worst-case slow corner.

An example of setup timing check at the worst-case slow corner is de-
scribed next. The derate specification is specified for the capture clock path
below:

Derate the early clock paths:
set_timing_derate -early 0.8 -clock

Here is the setup timing check path report performed at the worst-case
slow corner. The derating used by the late paths are reported as Max Data

CHAPTER 10 Robust Verification

372

Paths Derating Factor and as Max Clock Paths Derating Factor. The derating
used for the early paths is reported as Min Clock Paths Derating Factor.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: max
Max Data Paths Derating Factor : 1.000
Min Clock Paths Derating Factor : 0.800
Max Clock Paths Derating Factor : 1.000

Point Incr Path

clock CLKM (rise edge) 0.000 0.000
clock source latency 0.000 0.000
CLKM (in) 0.000 0.000 r
UCKBUF0/C (CKB) 0.056 0.056 r
UCKBUF1/C (CKB) 0.058 0.114 r
UFF0/CK (DF) 0.000 0.114 r
UFF0/Q (DF) <- 0.143 0.258 f
UNOR0/ZN (NR2) 0.043 0.301 r
UBUF4/Z (BUFF) 0.052 0.352 r
UFF1/D (DF) 0.000 0.352 r
data arrival time 0.352

clock CLKM (rise edge) 10.000 10.000
clock source latency 0.000 10.000
CLKM (in) 0.000 10.000 r
UCKBUF0/C (CKB) 0.045 10.045 r
UCKBUF2/C (CKB) 0.054 10.098 r
UFF1/CK (DF) 0.000 10.098 r
clock reconvergence pessimism 0.011 10.110
clock uncertainty -0.300 9.810
library setup time -0.044 9.765
data required time 9.765

data required time 9.765
data arrival time -0.352

slack (MET) 9.413

On-Chip Variations SECTION 10.1

373

Notice that the capture clock path is derated by 20%. See cell UCKBUF0 in
the timing report. In the launch path, it has a delay of 56ps, while it has a
derated delay of 45ps in the capture path. The cell UCKBUF0 is on the com-
mon clock path, that is, on both the capture clock path and the launch clock
path. Since the common clock path cannot have a different derating, the
difference in timing for this common path, 56ps - 45ps = 11ps, is corrected
separately. This appears as the line clock reconvergence pessimism in the re-
port. In summary, if one were to compare the reports of this path, with and
without derating, one would notice that only the cell and net delays for the
capture clock path have been derated.

OCV for Hold Checks

We now examine how the derating is done for a hold timing check. Con-
sider the logic shown in Figure 10-2. If the PVT conditions are different
along the chip, the worst condition for hold check occurs when the launch
clock path and the data path have OCV conditions which result in the
smallest delays, that is, when we have the earliest launch clock, and the
capture clock path has the OCV conditions which result in the largest de-
lays, that is, has the latest capture clock.

The hold timing check is specified in the following expression for this ex-
ample.

LaunchClockPath + MinDataPath - CaptureClockPath -
Thold_UFF1 >= 0

Applying the delay values in the Figure 10-2 to the expression, we get
(without applying any derating):

LaunchClockPath = 0.25 + 0.6 = 0.85
MinDataPath = 1.7
CaptureClockPath = 0.25 + 0.75 = 1.00
Thold_UFF1 = 1.25

CHAPTER 10 Robust Verification

374

This implies that the condition is:

0.85 + 1.7 – 1.00 - 1.25 = 0.3n >=0

which is true, and thus no hold violation exists.

Applying the following derate specification:

set_timing_derate -early 0.9
set_timing_derate -late 1.2
set_timing_derate -early 0.95 -cell_check

we get:

LaunchClockPath = 0.85 * 0.9 = 0.765
MinDataPath = 1.7 * 0.9 = 1.53

Figure 10-2 Derating hold timing check for OCV.

UFF1UFF0

Launch clock path

Capture clock path

Min data path

Common
clock tree

Minimum/shortest/earliest

Maximum/latest

0.25ns

0.6ns

0.75ns

1.7ns

Thold=1.25ns

D Q

CK

D Q

CK

On-Chip Variations SECTION 10.1

375

CaptureClockPath = 1.00 * 1.2 = 1.2
Thold_UFF1 = 1.25 * 0.95 = 1.1875

Common clock path pessimism: 0.25 * (1.2 - 0.9) = 0.075

Common clock path pessimism created by applying derating on the com-
mon clock tree for both launch and capture clock paths is also removed for
hold timing checks. The hold check condition then becomes:

0.765 + 1.53 – 1.2 - 1.1875 + 0.075 = -0.0175ns

which is less than 0, thus showing that there is a hold violation with the
OCV derating factors applied to the early and late paths.

In general, the hold timing check is performed at the best-case fast PVT
corner. In such a scenario, no derating is necessary on the early paths, as
those paths are already the earliest possible. However, derating can be ap-
plied on the late paths by making these slower by a specific derating factor,
for example, slowing the late paths by 20%. A derate specification at this
corner would be something like:

set_timing_derate -early 1.0
set_timing_derate -late 1.2
Don’t derate the early paths as they are already the
fastest, but derate the late paths slower by 20%.

In the example of Figure 10-2,

LatestArrivalTime@CommonPoint = 0.25 * 1.2 = 0.30
EarliestArrivalTime@CommonPoint = 0.25 * 1.0 = 0.25

This implies a common path pessimism of:

0.30 - 0.25 = 0.05ns

CHAPTER 10 Robust Verification

376

Here is a hold timing check path report for an example design that uses
this derating.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLKM)
Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: min
Min Data Paths Derating Factor : 1.000
Min Clock Paths Derating Factor : 1.000
Max Clock Paths Derating Factor : 1.200

Point Incr Path

clock CLKM (rise edge) 0.000 0.000
clock source latency 0.000 0.000
CLKM (in) 0.000 0.000 r
UCKBUF0/C (CKB) 0.056 0.056 r
UCKBUF1/C (CKB) 0.058 0.114 r
UFF0/CK (DF) 0.000 0.114 r
UFF0/Q (DF) <- 0.144 0.258 r
UNOR0/ZN (NR2) 0.021 0.279 f
UBUF4/Z (BUFF) 0.055 0.334 f
UFF1/D (DF) 0.000 0.334 f
data arrival time 0.334

clock CLKM (rise edge) 0.000 0.000
clock source latency 0.000 0.000
CLKM (in) 0.000 0.000 r
UCKBUF0/C (CKB) 0.067 0.067 r
UCKBUF2/C (CKB) 0.080 0.148 r
UFF1/CK (DF) 0.000 0.148 r
clock reconvergence pessimism -0.011 0.136
clock uncertainty 0.050 0.186
library hold time 0.015 0.201
data required time 0.201

data required time 0.201
data arrival time -0.334

slack (MET) 0.133

Time Borrowing SECTION 10.2

377

Notice that the late paths are derated by +20% while the early paths are not
derated. See cell UCKBUF0. Its delay on the launch path is 56ps while the
delay on the capture path is 67ps - derated by +20%. UCKBUF0 is the cell
on the common clock tree and thus the pessimism introduced due to differ-
ent derating on this common clock tree is, 67ps - 56ps = 11ps, which is ac-
counted for separately on the line clock reconvergence pessimism.

10.2 Time Borrowing

The time borrowing technique, which is also called cycle stealing, occurs
at a latch. In a latch, one edge of the clock makes the latch transparent, that
is, it opens the latch so that output of the latch is the same as the data input;
this clock edge is called the opening edge. The second edge of the clock
closes the latch, that is, any change on the data input is no longer available
at the output of the latch; this clock edge is called the closing edge.

Typically, the data should be ready at a latch input before the active edge
of the clock. However, since a latch is transparent when the clock is active,
the data can arrive later than the active clock edge, that is, it can borrow
time from the next cycle. If such time is borrowed, the time available for
the following stage (latch to another sequential cell) is reduced.

Figure 10-3 shows an example of time borrowing using an active rising
edge. If data DIN is ready at time A prior to the latch opening on the rising
edge of CLK at 10ns, the data flows to the output of the latch as it opens. If
data arrives at time B as shown for DIN (delayed), it borrows time Tb. How-
ever, this reduces the time available from the latch to the next flip-flop
UFF2 - instead of a complete clock cycle, only time Ta is available.

The first rule in timing to a latch is that if the data arrives before the open-
ing edge of the latch, the behavior is modeled exactly like a flip-flop. The
opening edge captures the data and the same clock edge launches the data
as the start point for the next path.

CHAPTER 10 Robust Verification

378

The second rule applies when the data signal arrives while the latch is
transparent (between the opening and the closing edge). The output of the
latch, rather than the clock pin, is used as the launch point for the next
stage. The amount of time borrowed by the path ending at the latch deter-
mines the launch time for the next stage.

A data signal that arrives after the closing edge at the latch is a timing vio-
lation. Figure 10-4 shows the timing regions for data arrival for positive
slack, zero slack, and negative slack (that is, when a violation occurs).

Figure 10-3 Time borrowing.

Ts Tb Ta

CLK

CLK

DIN

DIN

DIN (delayed)

A B

ULAT1

D Q

G

5 10

D Q

CK

UFF2

0 2015

Opening
edge

Closing
edge

Time Borrowing SECTION 10.2

379

Figure 10-5(a) shows the use of a latch with a half-cycle path to the next
stage flip-flop. Figure 10-5(b) depicts the waveforms for the scenario of
time borrowing. The clock period is 10ns. The data is launched by UFF0 at
time 0, but the data path takes 7ns. The latch ULAT1 opens up at 5ns. Thus
2ns is borrowed from the path ULAT1 to UFF1. The time available for the
ULAT1 to UFF1 path is only 3ns (5ns - 2ns).

We next describe three sets of timing reports for the latch example in Fig-
ure 10-5(a) to illustrate the different amounts of time borrowed from the
next stage.

Example with No Time Borrowed

Here is the setup path report when the data path delay from the flip-flop
UFF0 to the latch ULAT1 is less than 5ns.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLK)
Endpoint: ULAT1 (positive level-sensitive latch clocked by CLK')
Path Group: CLK

Figure 10-4 Latch timing violation windows.

Positive slack Zero slack Negative slack

Data arrives before
opening edge

Data arrives during
transparency

Data arrives after
closing edge

Opening edge Closing edge

DIN

CLK

CHAPTER 10 Robust Verification

380

Path Type: max

Point Incr Path

clock CLK (rise edge) 0.00 0.00
clock source latency 0.00 0.00

Figure 10-5 Time borrowing example.

Opening edge of ULAT1 ULAT1 closes here

0 5 10

Borrowed

ULAT1UFF0

CLK

CLKN

CLK
CLKN

ULAT1/D

D Q

G

D Q

CK

D Q

CK

7

UFF1

(a) Logic.

(b) Clock and data waveforms for 7ns data path.

Time Borrowing SECTION 10.2

381

clk (in) 0.00 0.00 r
UFF0/CK (DF) 0.00 0.00 r
UFF0/Q (DF) 0.12 0.12 r
UBUF0/Z (BUFF) 2.01 2.13 r
UBUF1/Z (BUFF) 2.46 4.59 r
UBUF2/Z (BUFF) 0.07 4.65 r
ULAT1/D (LH) 0.00 4.65 r
data arrival time 4.65

clock CLK' (rise edge) 5.00 5.00
clock source latency 0.00 5.00
clk (in) 0.00 5.00 f
UINV0/ZN (INV) 0.02 5.02 r
ULAT1/G (LH) 0.00 5.02 r
time borrowed from endpoint 0.00 5.02
data required time 5.02

data required time 5.02
data arrival time -4.65

slack (MET) 0.36

Time Borrowing Information

CLK' nominal pulse width 5.00
clock latency difference -0.00
library setup time -0.01

max time borrow 4.99
actual time borrow 0.00

In this case, there is no need to borrow as data reaches the latch ULAT1 in
time before the latch opens.

CHAPTER 10 Robust Verification

382

Example with Time Borrowed

The path report below shows the case where the data path delay from the
flip-flop UFF0 to the latch ULAT1 is greater than 5ns.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLK)
Endpoint: ULAT1 (positive level-sensitive latch clocked by CLK')
Path Group: CLK
Path Type: max

Point Incr Path

clock CLK (rise edge) 0.00 0.00
clock source latency 0.00 0.00
clk (in) 0.00 0.00 r
UFF0/CK (DF) 0.00 0.00 r
UFF0/Q (DF) 0.12 0.12 r
UBUF0/Z (BUFF) 3.50 3.62 r
UBUF1/Z (BUFF) 3.14 6.76 r
UBUF2/Z (BUFF) 0.07 6.83 r
ULAT1/D (LH) 0.00 6.83 r
data arrival time 6.83

clock CLK' (rise edge) 5.00 5.00
clock source latency 0.00 5.00
clk (in) 0.00 5.00 f
UINV0/ZN (INV) 0.02 5.02 r
ULAT1/G (LH) 0.00 5.02 r
time borrowed from endpoint 1.81 6.83
data required time 6.83

data required time 6.83
data arrival time -6.83

slack (MET) 0.00

Time Borrowing Information

CLK' nominal pulse width 5.00
clock latency difference -0.00
library setup time -0.01

Time Borrowing SECTION 10.2

383

max time borrow 4.99
actual time borrow 1.81

In this case, since the data becomes available while the latch is transparent,
the required delay of 1.81ns is borrowed from the subsequent path and the
timing is still met. Here is the path report of the subsequent path showing
that 1.81ns was already borrowed by the previous path.

Startpoint: ULAT1 (positive level-sensitive latch clocked by CLK')
Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLK)
Path Group: CLK
Path Type: max

Point Incr Path

clock CLK' (rise edge) 5.00 5.00
clock source latency 0.00 5.00
clk (in) 0.00 5.00 f
UINV0/ZN (INV) 0.02 5.02 r
ULAT1/G (LH) 0.00 5.02 r
time given to startpoint 1.81 6.83
ULAT1/QN (LH) 0.13 6.95 f
UFF1/D (DF) 0.00 6.95 f
data arrival time 6.95

clock CLK (rise edge) 10.00 10.00
clock source latency 0.00 10.00
clk (in) 0.00 10.00 r
UFF1/CK (DF) 0.00 10.00 r
library setup time -0.04 9.96
data required time 9.96

data required time 9.96
data arrival time -6.95

slack (MET) 3.01

CHAPTER 10 Robust Verification

384

Example with Timing Violation

In this case, the data path delay is much larger and data becomes available
only after the latch closes. This is clearly a timing violation.

Startpoint: UFF0 (rising edge-triggered flip-flop clocked by CLK)
Endpoint: ULAT1 (positive level-sensitive latch clocked by CLK')
Path Group: CLK
Path Type: max

Point Incr Path

clock CLK (rise edge) 0.00 0.00
clock source latency 0.00 0.00
clk (in) 0.00 0.00 r
UFF0/CK (DF) 0.00 0.00 r
UFF0/Q (DF) 0.12 0.12 r
UBUF0/Z (BUFF) 6.65 6.77 r
UBUF1/Z (BUFF) 4.33 11.10 r
UBUF2/Z (BUFF) 0.07 11.17 r
ULAT1/D (LH) 0.00 11.17 r
data arrival time 11.17

clock CLK' (rise edge) 5.00 5.00
clock source latency 0.00 5.00
clk (in) 0.00 5.00 f
UINV0/ZN (INV) 0.02 5.02 r
ULAT1/G (LH) 0.00 5.02 r
time borrowed from endpoint 4.99 10.00
data required time 10.00

data required time 10.00
data arrival time -11.17

slack (VIOLATED) -1.16

Time Borrowing Information

CLK' nominal pulse width 5.00
clock latency difference -0.00
library setup time -0.01

Data to Data Checks SECTION 10.3

385

max time borrow 4.99
actual time borrow 4.99

10.3 Data to Data Checks

Setup and hold checks can also be applied between any two arbitrary data
pins, neither of which is a clock. One pin is the constrained pin, which acts
like a data pin of a flip-flop, and the second pin is the related pin, which
acts like a clock pin of a flip-flop. One important distinction with respect to
the setup check of a flip-flop is that the data to data setup check is per-
formed on the same edge as the launch edge (unlike a normal setup check
of a flip-flop, where the capture clock edge is normally one cycle away
from the launch clock edge). Thus, the data to data setup checks are also re-
ferred to as zero-cycle checks or same-cycle checks.

A data to data check is specified using the set_data_check constraint. Here
are example SDC specifications.

set_data_check -from SDA -to SCTRL -setup 2.1
set_data_check -from SDA -to SCTRL -hold 1.5

See Figure 10-6. SDA is the related pin and SCTRL is the constrained pin.
The setup data check implies that SCTRL should arrive at least 2.1ns prior
to the edge of the related pin SDA. Otherwise it is a data to data setup
check violation. The hold data check specifies that SCTRL should arrive at
least 1.5ns after SDA. If the constrained signal arrives earlier than this spec-
ification, then it is a data to data hold check violation.

This check is useful in a custom-designed block where it may be necessary
to provide specific arrival times of one signal with respect to another. One
such common situation is that of a data signal gated by an enable signal
and it is required to ensure that the enable signal is stable when the data
signal arrives.

CHAPTER 10 Robust Verification

386

Consider the and cell shown in Figure 10-7. We assume the requirement is
to ensure that PNA arrives 1.8ns before the rising edge of PREAD and that
it should not change for 1.0ns after the rising edge of PREAD. In this exam-
ple, PNA is the constrained pin and PREAD is the related pin. The required
waveforms are shown in Figure 10-7.

Figure 10-6 Data to data checks.

SCTRL

SDA

Constrained pin

(Data)

Related pin
(Clock)

SDA

SCTRL
(Setup check)

SCTRL
(Hold check)

2.1

1.5

Violation

Violation

Data to Data Checks SECTION 10.3

387

Such a requirement can be specified using a data to data setup and hold
check.

set_data_check -from UAND0/A1 -to UAND0/A2 -setup 1.8
set_data_check -from UAND0/A1 -to UAND0/A2 -hold 1.0

Figure 10-7 Setup and hold timing checks between PNA and PREAD.

PNA

PREAD
DTO

ADN

BDN

CLKPLL

CLKPLL

D Q

CK

D Q

CK

A1

A2

UAND0

UDFF1

UDFF0

Tc1

Tc2

1.8
1.0

PNA

PREAD
(UAND0/A1)

(UAND0/A2)

CHAPTER 10 Robust Verification

388

Here is the setup report.

Startpoint: UDFF1
(rising edge-triggered flip-flop clocked by CLKPLL)

Endpoint: UAND0
(rising edge-triggered data to data check clocked by CLKPLL)

Path Group: CLKPLL
Path Type: max

Point Incr Path

clock CLKPLL (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKPLL (in) 0.00 0.00 r
UDFF1/CK (DF) 0.00 0.00 r
UDFF1/Q (DF) 0.12 0.12 f
UBUF0/Z (BUFF) 0.06 0.18 f
UAND0/A2 (AN2) 0.00 0.18 f
data arrival time 0.18

clock CLKPLL (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKPLL (in) 0.00 0.00 r
UDFF0/CK (DF) 0.00 0.00 r
UDFF0/Q (DF) 0.12 0.12 r
UBUF1/Z (BUFF) 0.05 0.17 r
UBUF2/Z (BUFF) 0.05 0.21 r
UBUF3/Z (BUFF) 0.05 0.26 r
UAND0/A1 (AN2) 0.00 0.26 r
data check setup time -1.80 -1.54
data required time -1.54

data required time -1.54
data arrival time -0.18

slack (VIOLATED) -1.72

The setup time is specified as data check setup time in the report. The failing
report indicates that the PREAD needs to be delayed by at least 1.72ns to
ensure that PENA arrives 1.8ns before PREAD - which is our requirement.

Data to Data Checks SECTION 10.3

389

One important aspect of a data to data setup check is that the clock edges
that launch both the constrained pin and the related pin are from the same
clock cycle (also referred to as same-cycle checks). Thus notice in the report
that the starting time for the capture edge (UDFF0/CK) is at 0ns, not one cy-
cle later as one would typically see in a setup report.

The zero-cycle setup check causes the hold timing check to be different
from other hold check reports - the hold check is no longer on the same
clock edge. Here is the clock specification for CLKPLL which is utilized for
the hold path report below.

create_clock -name CLKPLL -period 10 -waveform {0 5} \
[get_ports CLKPLL]

Startpoint: UDFF1
(rising edge-triggered flip-flop clocked by CLKPLL)

Endpoint: UAND0
(falling edge-triggered data to data check clocked by CLKPLL)

Path Group: CLKPLL
Path Type: min

Point Incr Path

clock CLKPLL (rise edge) 10.00 10.00
clock source latency 0.00 10.00
CLKPLL (in) 0.00 10.00 r
UDFF1/CK (DF) 0.00 10.00 r
UDFF1/Q (DF) <- 0.12 10.12 r
UBUF0/Z (BUFF) 0.05 10.17 r
UAND0/A2 (AN2) 0.00 10.17 r
data arrival time 10.17

clock CLKPLL (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKPLL (in) 0.00 0.00 r
UDFF0/CK (DF) 0.00 0.00 r
UDFF0/Q (DF) 0.12 0.12 f
UBUF1/Z (BUFF) 0.06 0.18 f

CHAPTER 10 Robust Verification

390

UBUF2/Z (BUFF) 0.05 0.23 f
UBUF3/Z (BUFF) 0.06 0.29 f
UAND0/A1 (AN2) 0.00 0.29 f
data check hold time 1.00 1.29
data required time 1.29

data required time 1.29
data arrival time -10.17

slack (MET) 8.88

Notice that the clock edge used to launch the related pin for the hold check
is one cycle prior to the launch edge for the constrained pin. This is because
by definition a hold check is normally performed one cycle prior to the set-
up capture edge. Since the clock edges for the constrained pin and the re-
lated pin are the same for a data to data setup check, the hold check is done
one cycle prior to the launch edge.

In some scenarios, a designer may require the data to data hold check to be
performed on the same clock cycle. The same cycle hold requirement im-
plies that the clock edge used for the related pin be moved back to where
the clock edge for the constrained pin is. This can be achieved by specify-
ing a multicycle of -1.

set_multicycle_path -1 -hold -to UAND0/A2

Here is the hold timing report for the example above with this multicycle
specification.

Startpoint: UDFF1
(rising edge-triggered flip-flop clocked by CLKPLL)

Endpoint: UAND0
(falling edge-triggered data to data check clocked by CLKPLL)

Path Group: CLKPLL
Path Type: min

Point Incr Path

Data to Data Checks SECTION 10.3

391

clock CLKPLL (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKPLL (in) 0.00 0.00 r
UDFF1/CK (DF) 0.00 0.00 r
UDFF1/Q (DF) <- 0.12 0.12 r
UBUF0/Z (BUFF) 0.05 0.17 r
UAND0/A2 (AN2) 0.00 0.17 r
data arrival time 0.17

clock CLKPLL (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKPLL (in) 0.00 0.00 r
UDFF0/CK (DF) 0.00 0.00 r
UDFF0/Q (DF) 0.12 0.12 f
UBUF1/Z (BUFF) 0.06 0.18 f
UBUF2/Z (BUFF) 0.05 0.23 f
UBUF3/Z (BUFF) 0.06 0.29 f
UAND0/A1 (AN2) 0.00 0.29 f
data check hold time 1.00 1.29
data required time 1.29

data required time 1.29
data arrival time -0.17

slack (VIOLATED) -1.12

The hold check is now performed using the same clock edge for the con-
strained pin and the related pin. An alternate way of having the data to
data hold check performed in the same cycle is to specify this as a data to
data setup check between the pins in the reverse direction.

set_data_check -from UAND0/A2 -to UAND0/A1 -setup 1.0

The data to data check is also useful in defining a no-change data check.
This is done by specifying a setup check on the rising edge and a hold
check on the falling edge, such that a no-change window gets effectively
defined. This is shown in Figure 10-8.

CHAPTER 10 Robust Verification

392

Here are the specifications for this scenario.

set_data_check -rise_from D2 -to D1 -setup 1.2
set_data_check -fall_from D2 -to D1 -hold 0.8

10.4 Non-Sequential Checks

A library file for a cell or a macro may specify a timing arc to be a non-
sequential check, such as a timing arc between two data pins. A non-
sequential check is a check between two pins, neither of which is a clock.
One pin is the constrained pin that acts like data, while the second pin is
the related pin and this acts like a clock. The check specifies how long the
data on the constrained pin must be stable before and after the change on
the related pin.

Note that this check is specified as part of the cell library specification and
no explicit data to data check constraint is required. Here is how such a
timing arc may appear in a cell library.

pin (WEN) {
timing () {
timing_type: non_seq_setup_rising;

Figure 10-8 A no-change data check achieved using setup and hold
data checks.

Setup Hold

D2

D1

(Related pin)

(Constrained
pin)

1.2 0.8

Non-Sequential Checks SECTION 10.4

393

intrinsic_rise: 1.1;
intrinsic_fall:1.15;
related_pin: “D0”;

}
timing () {
timing_type: non_seq_hold_rising;
intrinsic_rise: 0.6;
intrinsic_fall:0.65;
related_pin: “D0”;

}
}

The setup_rising refers to the rising edge of the related pin. The intrinsic rise
and fall values refer to the rise and fall setup times for the constrained pin.
Similar timing arcs can be defined for hold_rising, setup_falling and
hold_falling.

A non-sequential check is similar to a data to data check described in Sec-
tion 10.3, though there are two main differences. In a non-sequential check,
the setup and hold values are obtained from the standard cell library,
where the setup and hold timing models can be described using a NLDM
table model or other advanced timing models. In a data to data check, only
a single value can be specified for the data to data setup or hold check. The
second difference is that a non-sequential check can only be applied to pins
of a cell, whereas a data to data check can be applied to any two arbitrary
pins in a design.

A non-sequential setup check specifies how early the constrained signal
must arrive relative to the related pin. This is shown in Figure 10-9. The cell
library contains the setup arc D0->WEN which is specified as a non-
sequential arc. If the WEN signal occurs within the setup window, the non-
sequential setup check fails.

A non-sequential hold check specifies how late the constrained signal
must arrive relative to the related pin. See Figure 10-9. If WEN changes
within the hold window, then the hold check fails.

CHAPTER 10 Robust Verification

394

10.5 Clock Gating Checks

A clock gating check occurs when a gating signal can control the path of a
clock signal at a logic cell. An example is shown in Figure 10-10. The pin of
the logic cell connected to the clock is called the clock pin and the pin
where the gating signal is connected to is the gating pin. The logic cell
where the clock gating occurs is also referred to as the gating cell.

One condition for a clock gating check is that the clock that goes through
the cell must be used as a clock downstream. The downstream clock usage
can be either as a flip-flop clock or it can fanout to an output port or as a
generated clock that refers to the output of the gating cell as its master. If
the clock is not used as a clock after the gating cell, then no clock gating
check is inferred.

Another condition for the clock gating check applies to the gating signal.
The signal at the gating pin of the check should not be a clock or if it is a
clock, it should not be used as a clock downstream (an example of a clock
as a gating signal is included later in this section).

Figure 10-9 A non-sequential setup and hold check.

Lib setup (D0->WEN)

D0

WEN

Lib hold (D0->WEN)

(Related pin)

(Constrained pin)

Clock Gating Checks SECTION 10.5

395

In a general scenario, the clock signal and the gating signal do not need to
be connected to a single logic cell such as and, or or, but may be inputs to an
arbitrary logic block. In such cases, for a clock gating check to be inferred,
the clock pin of the check and the gating pin of the check must fan out to a
common output pin.

There are two types of clock gating checks inferred:

• Active-high clock gating check: Occurs when the gating cell has an
and or a nand function.

• Active-low clock gating check: Occurs when the gating cell has an or
or a nor function.

The active-high and active-low refer to the logic state of the gating signal
which activates the clock signal at the output of the gating cell. If the gating
cell is a complex function where the gating relationship is not obvious,
such as a multiplexer or an xor cell, STA output will typically provide a
warning that no clock gating check is being inferred. However this can be
changed by specifying a clock gating relationship for the gating cell explic-
itly by using the command set_clock_gating_check. In such cases, if the

Figure 10-10 A clock gating check.

Clock pin

Gating pin

Gating cell

D Q

CK D Q

CK

D Q

CK

Clock signal

Gating signal

Used as a
clock for flip-flop

CHAPTER 10 Robust Verification

396

set_clock_gating_check specification disagrees with the functionality of the
gating cell, the STA will normally provide a warning. We present examples
of such commands later in this section.

As specified earlier, a clock can be a gating signal only if it is not used as a
clock downstream. Consider the example in Figure 10-11. CLKB is not used
as a clock downstream due to the definition of the generated clock of CLKA
- the path of CLKB is blocked by the generated clock definition. Hence a
clock gating check for clock CLKA is inferred for the and cell.

Active-High Clock Gating

We now examine the timing relationship of an active-high clock gating
check. This occurs at an and or a nand cell; an example using and is shown
in Figure 10-12. Pin B of the gating cell is the clock signal, and pin A of the
gating cell is the gating signal.

Let us assume that both clocks CLKA and CLKB have the same waveforms.

create_clock -name CLKA -period 10 -waveform {0 5} \
[get_ports CLKA]

create_clock -name CLKB -period 10 -waveform {0 5} \
[get_ports CLKB]

Figure 10-11 Gating check inferred - clock at the gating pin not used
as a clock downstream.

CLKA

CLKB

Clock pin

Gating pin

Generated clock of CLKA

D Q

CK

D Q

CK

D Q

CK

Clock Gating Checks SECTION 10.5

397

Because it is an and cell, a high on gating signal UAND0/A opens up the
gating cell and allows the clock to propagate through. The clock gating
check is intended to validate that the gating pin transition does not create
an active edge for the fanout clock. For positive edge-triggered logic, this
implies that the rising edge of the gating signal occurs during the inactive
period of the clock (when it is low). Similarly, for negative edge-triggered
logic, the falling edge of the gating signal should occur only when the clock
is low. Note that if the clock drives both positive and negative edge-trig-
gered flip-flops, any transition of the gating signal (rising or falling edge)
must occur only when the clock is low. Figure 10-13 shows an example of a
gating signal transition during the active edge which needs to be delayed
to pass the clock gating check.

The active-high clock gating setup check requires that the gating signal
changes before the clock goes high. Here is the setup path report.

Startpoint: UDFF0
(rising edge-triggered flip-flop clocked by CLKA)

Endpoint: UAND0
(rising clock gating-check end-point clocked by CLKB)

Path Group: **clock_gating_default**
Path Type: max

Point Incr Path

Figure 10-12 Active high clock gating using an AND cell.

CLKA

CLKB

A
B

UAND0
D Q

CK

D Q

CK

Clock signal

Gating signal

Gating cell

UDFF0

CHAPTER 10 Robust Verification

398

clock CLKA (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKA (in) 0.00 0.00 r
UDFF0/CK (DF) 0.00 0.00 r
UDFF0/Q (DF) 0.13 0.13 f
UAND0/A1 (AN2) 0.00 0.13 f
data arrival time 0.13

clock CLKB (rise edge) 10.00 10.00
clock source latency 0.00 10.00
CLKB (in) 0.00 10.00 r
UAND0/A2 (AN2) 0.00 10.00 r
clock gating setup time 0.00 10.00
data required time 10.00

data required time 10.00
data arrival time -0.13

slack (MET) 9.87

Figure 10-13 Gating signal needs to be delayed.

Clock signal
(UAND0/B)

Gating signal
(UAND0/A)

0 5 10

CLKA

CLKB

Clock Gating Checks SECTION 10.5

399

Notice that the Endpoint indicates that it is a clock gating check. In addition,
the path is in the clock_gating_default group of paths as specified in Path
Group. The check validates that the gating signal changes before the next
rising edge of clock CLKB at 10ns.

The active-high clock gating hold check requires that the gating signal
changes only after the falling edge of the clock. Here is the hold path re-
port.

Startpoint: UDFF0
(rising edge-triggered flip-flop clocked by CLKA)

Endpoint: UAND0
(rising clock gating-check end-point clocked by CLKB)

Path Group: **clock_gating_default**
Path Type: min

Point Incr Path

clock CLKA (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKA (in) 0.00 0.00 r
UDFF0/CK (DF) 0.00 0.00 r
UDFF0/Q (DF) 0.13 0.13 r
UAND0/A1 (AN2) 0.00 0.13 r
data arrival time 0.13

clock CLKB (fall edge) 5.00 5.00
clock source latency 0.00 5.00
CLKB (in) 0.00 5.00 f
UAND0/A2 (AN2) 0.00 5.00 f
clock gating hold time 0.00 5.00
data required time 5.00

data required time 5.00
data arrival time -0.13

slack (VIOLATED) -4.87

CHAPTER 10 Robust Verification

400

The hold gating check fails because the gating signal is changing too fast,
before the falling edge of CLKB at 5ns. If a 5ns delay was added between
UDFF0/Q and UAND0/A1 pins, both setup and hold gating checks would
pass validating that the gating signal changes only in the specified win-
dow.

One can see that the hold time requirement is quite large. This is caused by
the fact that the sense of the gating signal and the flip-flops being gated are
the same. This can be resolved by using a different type of launch flip-flop,
say, a negative edge-triggered flip-flop to generate the gating signal. Such
an example is shown next.

In Figure 10-14, the flip-flop UFF0 is controlled by the negative edge of
clock CLKA. Safe clock gating implies that the output of flip-flop UFF0
must change during the inactive part of the gating clock, which is between
5ns and 10ns.

The signal waveforms corresponding to the schematic in Figure 10-14 are
depicted in Figure 10-15. Here is the clock gating setup report.

Startpoint: UFF0
(falling edge-triggered flip-flop clocked by CLKA)

Endpoint: UAND0
(rising clock gating-check end-point clocked by CLKB)

Figure 10-14 Gating signal clocked on falling edge.

CLKA

CLKB

D Q

CK

D Q

CK

UAND0

A1
A2

Clock pin

Gating pin

UFF0

UFF1

Clock Gating Checks SECTION 10.5

401

Path Group: **clock_gating_default**
Path Type: max

Point Incr Path

clock CLKA (fall edge) 5.00 5.00
clock source latency 0.00 5.00
CLKA (in) 0.00 5.00 f
UFF0/CKN (DFN) 0.00 5.00 f
UFF0/Q (DFN) 0.15 5.15 r
UAND0/A1 (AN2) 0.00 5.15 r
data arrival time 5.15

clock CLKB (rise edge) 10.00 10.00
clock source latency 0.00 10.00
CLKB (in) 0.00 10.00 r
UAND0/A2 (AN2) 0.00 10.00 r
clock gating setup time 0.00 10.00
data required time 10.00

data required time 10.00

Figure 10-15 Gating signal generated from negative edge flip-flop
meets the gating checks.

CLKA

CLKB

Gating signal
(UAND0/A1)

Clock signal
(UAND0/A2)

5 100

CHAPTER 10 Robust Verification

402

data arrival time -5.15

slack (MET) 4.85

Here is the clock gating hold report. Notice that the hold time check is
much easier to meet with the new design.

Startpoint: UFF0
(falling edge-triggered flip-flop clocked by CLKA)

Endpoint: UAND0
(rising clock gating-check end-point clocked by CLKB)

Path Group: **clock_gating_default**
Path Type: min

Point Incr Path

clock CLKA (fall edge) 5.00 5.00
clock source latency 0.00 5.00
CLKA (in) 0.00 5.00 f
UFF0/CKN (DFN) 0.00 5.00 f
UFF0/Q (DFN) 0.13 5.13 f
UAND0/A1 (AN2) 0.00 5.13 f
data arrival time 5.13

clock CLKB (fall edge) 5.00 5.00
clock source latency 0.00 5.00
CLKB (in) 0.00 5.00 f
UAND0/A2 (AN2) 0.00 5.00 f
clock gating hold time 0.00 5.00
data required time 5.00

data required time 5.00
data arrival time -5.13

slack (MET) 0.13

Since the clock edge (negative edge) that launches the gating signal is op-
posite of the clock being gated (active-high), the setup and hold require-

Clock Gating Checks SECTION 10.5

403

ments are easy to meet. This is the most common structure used for gated
clocks.

Active-Low Clock Gating

Figure 10-16 shows an example of an active-low clock gating check.

create_clock -name MCLK -period 8 -waveform {0 4} \
[get_ports MCLK]

create_clock -name SCLK -period 8 -waveform {0 4} \
[get_ports SCLK]

Active-low clock gating check validates that the rising edge of the gating
signal arrives at the active portion of the clock (when it is high) for positive
edge-triggered logic. As described before, the key is that the gating signal
should not cause an active edge for the output gated clock. When the gat-
ing signal is high, the clock cannot go through. Thus the gating signal
should switch only when the clock is high as illustrated in Figure 10-17.

Here is the active-low clock gating setup timing report. This check ensures
that the gating signal arrives before the clock edge becomes inactive, in this
case, at 4ns.

Figure 10-16 Active-low clock gating check.

MCLK

SCLK

Gating signal

Clock signal

D Q

CK

D Q

CK

UOR1
A1
A2

UDFF0

CHAPTER 10 Robust Verification

404

Startpoint: UDFF0
(rising edge-triggered flip-flop clocked by MCLK)

Endpoint: UOR1
(falling clock gating-check end-point clocked by SCLK)

Path Group: **clock_gating_default**
Path Type: max

Point Incr Path

clock MCLK (rise edge) 0.00 0.00
clock source latency 0.00 0.00
MCLK (in) 0.00 0.00 r
UDFF0/CK (DF) 0.00 0.00 r
UDFF0/Q (DF) 0.13 0.13 f
UOR1/A1 (OR2) 0.00 0.13 f
data arrival time 0.13

clock SCLK (fall edge) 4.00 4.00
clock source latency 0.00 4.00
SCLK (in) 0.00 4.00 f
UOR1/A2 (OR2) 0.00 4.00 f
clock gating setup time 0.00 4.00

Figure 10-17 Gating signal changes when clock is high.

MCLK

(UOR1/A1)

(UOR1/A2)
SCLK

Gating signal

Clock signal

0 4 8

Clock Gating Checks SECTION 10.5

405

data required time 4.00

data required time 4.00
data arrival time -0.13

slack (MET) 3.87

Here is the clock gating hold timing report. This check ensures that the gat-
ing signal changes only after the rising edge of the clock signal, which in
this case is at 0ns.

Startpoint: UDFF0
(rising edge-triggered flip-flop clocked by MCLK)

Endpoint: UOR1
(falling clock gating-check end-point clocked by SCLK)

Path Group: **clock_gating_default**
Path Type: min

Point Incr Path

clock MCLK (rise edge) 0.00 0.00
clock source latency 0.00 0.00
MCLK (in) 0.00 0.00 r
UDFF0/CK (DF) 0.00 0.00 r
UDFF0/Q (DF) 0.13 0.13 r
UOR1/A1 (OR2) 0.00 0.13 r
data arrival time 0.13

clock SCLK (rise edge) 0.00 0.00
clock source latency 0.00 0.00
SCLK (in) 0.00 0.00 r
UOR1/A2 (OR2) 0.00 0.00 r
clock gating hold time 0.00 0.00
data required time 0.00

data required time 0.00
data arrival time -0.13

slack (MET) 0.13

CHAPTER 10 Robust Verification

406

Clock Gating with a Multiplexer

Figure 10-18 shows an example of clock gating using a multiplexer cell. A
clock gating check at the multiplexer inputs ensures that the multiplexer
select signal arrives at the right time to cleanly switch between MCLK and
TCLK. For this example, we are interested in switching to and from MCLK
and assume that TCLK is low when the select signal switches. This implies
that the select signal of the multiplexer should switch only when MCLK is
low. This is similar to the active-high clock gating check.

Figure 10-19 shows the timing relationships. The select signal for the multi-
plexer must arrive at the time MCLK is low. Also, assume TCLK will be low
when select changes.

Since the gating cell is a multiplexer, the clock gating check is not inferred
automatically, as evidenced in this message reported during STA.

Warning: No clock-gating check is inferred for clock MCLK at
pins UMUX0/S and UMUX0/I0 of cell UMUX0.
Warning: No clock-gating check is inferred for clock TCLK at
pins UMUX0/S and UMUX0/I1 of cell UMUX0.

Figure 10-18 Clock gating using a multiplexer.

MCLK

TCLK

SYSCLK

Note inversion!

UMUX0

I0

I1 S

UFF0

D Q

CK

D Q

CK

UFF1

Clock Gating Checks SECTION 10.5

407

However a clock gating check can be explicitly forced by providing a
set_clock_gating_check specification.

set_clock_gating_check -high [get_cells UMUX0]
The -high option indicates an active-high check.
set_disable_clock_gating_check UMUX0/I1

The disable check turns off the clock gating check on the specific pin, as we
are not concerned with this pin. The clock gating check on the multiplexer
has been specified to be an active-high clock gating check. Here is the setup
timing path report.

Startpoint: UFF0
(falling edge-triggered flip-flop clocked by SYSCLK)

Endpoint: UMUX0
(rising clock gating-check end-point clocked by MCLK)

Path Group: **clock_gating_default**
Path Type: max

Figure 10-19 Gating signal arrives when clock is low.

MCLK
Clock signal

UMUX0/S
Gating signal

SYSCLK

0 5 10

CHAPTER 10 Robust Verification

408

Point Incr Path

clock SYSCLK (fall edge) 5.00 5.00
clock source latency 0.00 5.00
SYSCLK (in) 0.00 5.00 f
UFF0/CKN (DFN) 0.00 5.00 f
UFF0/Q (DFN) 0.15 5.15 r
UMUX0/S (MUX2) 0.00 5.15 r
data arrival time 5.15

clock MCLK (rise edge) 10.00 10.00
clock source latency 0.00 10.00
MCLK (in) 0.00 10.00 r
UMUX0/I0 (MUX2) 0.00 10.00 r
clock gating setup time 0.00 10.00
data required time 10.00

data required time 10.00
data arrival time -5.15

slack (MET) 4.85

The clock gating hold timing report is next.

Startpoint: UFF0
(falling edge-triggered flip-flop clocked by SYSCLK)

Endpoint: UMUX0
(rising clock gating-check end-point clocked by MCLK)

Path Group: **clock_gating_default**
Path Type: min

Point Incr Path

clock SYSCLK (fall edge) 5.00 5.00
clock source latency 0.00 5.00
SYSCLK (in) 0.00 5.00 f
UFF0/CKN (DFN) 0.00 5.00 f
UFF0/Q (DFN) 0.13 5.13 f
UMUX0/S (MUX2) 0.00 5.13 f
data arrival time 5.13

clock MCLK (fall edge) 5.00 5.00

Clock Gating Checks SECTION 10.5

409

clock source latency 0.00 5.00
MCLK (in) 0.00 5.00 f
UMUX0/I0 (MUX2) 0.00 5.00 f
clock gating hold time 0.00 5.00
data required time 5.00

data required time 5.00
data arrival time -5.13

slack (MET) 0.13

Clock Gating with Clock Inversion

Figure 10-20 shows another clock gating example where the clock to the
flip-flop is inverted and the output of the flip-flop is the gating signal.
Since the gating cell is an and cell, the gating signal must switch only when
the clock signal at the and cell is low. This defines the setup and hold clock
gating checks.

Here is the clock gating setup timing report.

Startpoint: UDFF0
(rising edge-triggered flip-flop clocked by MCLK')

Endpoint: UAND0
(rising clock gating-check end-point clocked by MCLK')

Path Group: **clock_gating_default**
Path Type: max

Point Incr Path

clock MCLK' (rise edge) 5.00 5.00
clock source latency 0.00 5.00
MCLK (in) 0.00 5.00 f
UINV0/ZN (INV) 0.02 5.02 r
UDFF0/CK (DF) 0.00 5.02 r
UDFF0/Q (DF) 0.13 5.15 f
UAND0/A1 (AN2) 0.00 5.15 f
data arrival time 5.15

clock MCLK' (rise edge) 15.00 15.00

CHAPTER 10 Robust Verification

410

clock source latency 0.00 15.00
MCLK (in) 0.00 15.00 f
UINV1/ZN (INV) 0.02 15.02 r
UAND0/A2 (AN2) 0.00 15.02 r
clock gating setup time 0.00 15.02
data required time 15.02

data required time 15.02

Figure 10-20 Clock gating example with clock inversion.

MCLK

CK1

CK2

MCLK

CK1

CK2

UAND0
A0
A1

UAND0/A0
Gating signal

0 5 10 15

D Q

CK

Clock Gating Checks SECTION 10.5

411

data arrival time -5.15

slack (MET) 9.87

Notice that the setup check validates if the data changes before the edge on
MCLK at time 15ns. Here is the clock gating hold timing report.

Startpoint: UDFF0
(rising edge-triggered flip-flop clocked by MCLK')

Endpoint: UAND0
(rising clock gating-check end-point clocked by MCLK')

Path Group: **clock_gating_default**
Path Type: min

Point Incr Path

clock MCLK' (rise edge) 5.00 5.00
clock source latency 0.00 5.00
MCLK (in) 0.00 5.00 f
UINV0/ZN (INV) 0.02 5.02 r
UDFF0/CK (DF) 0.00 5.02 r
UDFF0/Q (DF) 0.13 5.15 r
UAND0/A1 (AN2) 0.00 5.15 r
data arrival time 5.15

clock MCLK' (fall edge) 10.00 10.00
clock source latency 0.00 10.00
MCLK (in) 0.00 10.00 r
UINV1/ZN (INV) 0.01 10.01 f
UAND0/A2 (AN2) 0.00 10.01 f
clock gating hold time 0.00 10.01
data required time 10.01

data required time 10.01
data arrival time -5.15

slack (VIOLATED) -4.86

CHAPTER 10 Robust Verification

412

The hold check validates whether the data (gating signal) changes before
the falling edge of MCLK at time 10ns.

In the event that the gating cell is a complex cell and the setup and hold
checks are not obvious, the set_clock_gating_check command can be used to
specify a setup and hold check on the gating signal that gates a clock sig-
nal. The setup check validates that the gating signal is stable before the ac-
tive edge of the clock signal. A setup failure can cause a glitch to appear at
the gating cell output. The hold check validates that the gating signal is sta-
ble at the inactive edge of the clock signal. Here are some examples of the
set_clock_gating_check specification.

set_clock_gating_check -setup 2.4 -hold 0.8 \
[get_cells U0/UXOR1]

Specifies the setup and hold time for the clock
gating check at the specified cell.
set_clock_gating_check -high [get_cells UMUX5]
Check is performed on high level of clock. Alternately, the
-low option can be used for an active-low clock gating check.

10.6 Power Management

Managing the power is an important aspect of any design and how it is im-
plemented. During design implementation, a designer typically needs to
evaluate different approaches for trade-off between speed, power and area
of the design.

As described in Chapter 3, the power dissipated in the logic portion of the
design is comprised of leakage power and the active power. In addition,
the analog macros and the IO buffers (especially those with active termina-
tion) can dissipate power which is not activity dependent and is not leak-
age. In this section, we focus on the tradeoffs for power dissipated in the
logic portion of the design.

Power Management SECTION 10.6

413

In general, there are two considerations for managing the power contribu-
tions from the digital logic comprised of standard cells and memory mac-
ros:

• To minimize the total active power of the design. A designer would
ensure that the total power dissipation stays within the available
power limit. There may be different limits for different operating
modes of the design. In addition, there can also be different lim-
its from different power supplies used in the design.

• To minimize the power dissipation of the design in standby mode. This
is an important consideration for battery operated devices (for
example, cell phone) where the goal is to minimize the power
dissipation in standby mode. The power dissipation in standby
mode is leakage power plus any power dissipation for the logic
that is active in standby mode. As discussed above, there may be
other modes such as sleep mode, with different constraints on
power.

This section describes various approaches for power management. Each of
these approaches has its pros and cons which are described herein.

10.6.1 Clock Gating

As described in Chapter 3, clock activity at the flip-flops contributes to a
significant component of the total power. A flip-flop dissipates power due
to clock toggle even when the flip-flop output does not switch. Consider
the example in Figure 10-21(a) where the flip-flop receives new data only
when the enable signal EN is active otherwise it retains the previous state.
During the time EN signal is inactive, the clock toggling at the flip-flop do
not cause any output change though the clock activity still results in the
power dissipated inside the flip-flop. The purpose of clock gating is to min-
imize this contribution by eliminating the clock activity at the flip-flop dur-
ing clock cycles when the flip-flop input is not active. The logic
restructuring through clock gating introduces gating of the clock at the
flip-flop pin. An example of the transformation due to clock gating is illus-
trated in Figure 10-21.

CHAPTER 10 Robust Verification

414

The clock gating thus ensures that the clock pin of the flip-flop toggles only
when new data is available at its data input.

10.6.2 Power Gating

Power gating involves gating off the power supply so that the power to the
inactive blocks can be turned off. This procedure is illustrated in Figure 10-
22, where a footer (or a header) MOS device is added in series with the
power supply. The control signal SLEEP is configured so that the footer (or
header) MOS device is on during normal operation of the block. Since the
power gating MOS device (footer or header) is on during normal operation,
the block is powered and it operates in normal functional mode. During in-
active (or sleep) mode of the block, the gating MOS device (footer or head-
er) is turned off which eliminates any active power dissipation in the logic
block. The footer is a large NMOS device between the actual ground and

Figure 10-21 Adding clock gate to save flip-flop power.

DATA

SYSCLK

I0

I1 S

EN

D Q

CK

UFF1

D Q

CK

UFF1

SYSCLK

EN Clock
gating
logic

High activity

(a) Before adding clock gate.

(b) After adding clock gate.

Low activity

DATA

Power Management SECTION 10.6

415

the ground net of the block which is controlled through power gating. The
header is a large PMOS device between the actual power supply and the
power supply net of the block which is controlled through power gating.
During sleep mode, the only power dissipated in the block is the leakage
through the footer (or header) device.

The footers or headers are normally implemented using multiple power
gating cells which correspond to multiple MOS devices in parallel. The
footer and header devices introduce a series on resistance to the power sup-
ply. If the value of the on resistance is not small, the IR drop through the
gating MOS device can affect the timing of the cells in the logic block.
While the primary criteria regarding the size of the gating devices is to en-
sure that the on resistance value is small, there is a trade-off as the power
gating MOS devices determine the leakage in the inactive or sleep mode.

In summary, there should be adequate number of power gating cells in
parallel to ensure minimal IR drop from the series on resistance in active
mode. However, the leakage from the gating cells in the inactive or sleep
mode is also a criteria in choosing the number of power gating cells in par-
allel.

Figure 10-22 Cutting off power to an inactive logic block using a head-
er or a footer device.

Logic
block

Vdd

Vss

(a) Always on.

(b) Using header cell. (c) Using footer cell.

Logic
block

Vdd

Vss

SLEEP Logic
block

Vdd

Vss
SLEEP Footer MOS

Header MOS

CHAPTER 10 Robust Verification

416

10.6.3 Multi Vt Cells

As described in Chapter 3 (Section 3.8), the multi Vt cells are used to trade-
off speed with leakage. The high Vt cells have less leakage, though these
are slower than the standard Vt cells which are faster but have higher leak-
age. Similarly, the low Vt cells are faster than standard Vt cells but the leak-
age is also correspondingly higher.

In most designs, the goal is to minimize the total power while achieving
the desired operational speed. Even though leakage can be a significant
component of the total power, implementing a design with only high Vt
cells to reduce leakage can increase the total power even though the leak-
age contribution may be reduced. This is because the resulting design im-
plementation may require many more (or higher strength) high Vt cells to
achieve the required performance. The increase in equivalent gate count
can increase the active power much more than the reduction in leakage
power due to use of high Vt cells. However, there are scenarios where the
leakage is a dominant component of the total power; in such cases, a de-
sign with high Vt cells can result in reduction of the total power. The above
trade-off between cells with different Vt in terms of their speed and leak-
age needs to be utilized suitably since it is dependent on the design and its
switching activity profile. Two scenarios of a high performance block are
illustrated below where the implementation approach can be different de-
pending on whether the block is very active or has low switching activity.

High Performance Block with High Activity

This scenario is of a high performance block with high switching activity
and the power is dominated by the active power. For such blocks, focus-
sing only on reducing leakage power can cause the total power to increase
even though the leakage contribution may be minimized. In such cases, the
initial design implementation should use standard Vt (or low Vt) cells to
meet the desired performance. After the required timing is achieved, the
cells along the paths which have positive timing slack can be changed into
high Vt cells so that the leakage contribution is reduced while still meeting
the timing requirement. Thus, in the final implementation, the standard Vt
(or low Vt) cells are used only along the critical or hard to achieve timing

Power Management SECTION 10.6

417

paths, whereas cells along the non-critical timing paths can be high Vt
cells.

High Performance Block with Low Activity

This scenario is of a high performance block with very low switching activ-
ity so that the leakage power is a significant component of the total power.
Since the block has low activity, the active power is not a major component
for the total power of the design. For such blocks, the initial implementa-
tion attempts to use only high Vt cells in the combinational logic and flip-
flops. An exception is the clock tree which is always active and therefore is
built with standard Vt (or low Vt) cells. After the initial implementation
with only high Vt cells, there may be some timing paths where the re-
quired timing cannot be achieved. The cells along such paths are then re-
placed with standard Vt (or low Vt) cells to achieve the required timing
performance.

10.6.4 Well Bias

The well bias refers to adding a small voltage bias to the P-well or N-well
used for the NMOS and PMOS devices respectively. The bulk (or P-well)
connection for the NMOS device shown in Figure 2-1 is normally connect-
ed to the ground. Similarly, the bulk (or N-well) connection for the PMOS
device shown in Figure 2-1 is normally connected to the power (Vdd) rail.

The leakage power can be reduced significantly if the well connections
have a slight negative bias. This means that the P-well for the NMOS devic-
es is connected to a small negative voltage (such as -0.5V). Similarly, the N-
well connection for the PMOS devices is connected to a voltage above the
power rail (such as Vdd + 0.5V). By adding a well bias, the speed of the cell
is impacted; however the leakage is reduced substantially. The timing in
the cell libraries are generated by taking the well bias into account.

The drawback of using well bias is that it requires additional supply levels
(such as -0.5V and Vdd+0.5V) for the P-well and N-well connections.

CHAPTER 10 Robust Verification

418

10.7 Backannotation

10.7.1 SPEF

How does STA know what the parasitics of the design are? Quite often,
this information is extracted by using a parasitic extraction tool and this
data is read in the form of SPEF by the STA tool. Detailed information and
the format of the SPEF are described in Appendix C.

An STA engine inside a physical design layout tool also behaves similarly,
except that the extraction information is written to an internal database.

10.7.2 SDF

In some cases, the delays of the cells and interconnect are computed by an-
other tool and these are read in for STA via SDF. The advantage of using
SDF is that the cell delays and interconnect delays no longer need to be
computed - as these come from the SDF directly, and consequently STA
can focus on the timing checks. However, the disadvantage of this delay
annotation is that STA cannot perform crosstalk computation as the para-
sitic information is missing. SDF is the mechanism normally used to pass
delay information to simulators.

Detailed information and the format of SDF are described in Appendix B.

10.8 Sign-off Methodology

STA can be run for many different scenarios. The three main variables that
determine a scenario are:

• Parasitics corners (RC interconnect corners and operating condi-
tions used for parasitic extraction)

• Operating mode
• PVT corner

Sign-off Methodology SECTION 10.8

419

Parasitic Interconnect Corners

Parasitics can be extracted at many corners. These are mostly governed by
the variations in the metal width and metal etch in the manufacturing pro-
cess. Some of these are:

• Typical: This refers to the nominal values for interconnect resis-
tance and capacitance.

• Max C: This refers to the interconnect corner which results in
maximum capacitance. The interconnect resistance is smaller
than at typical corner. This corner results in largest delay for
paths with short nets and can be used for max path analysis.

• Min C: This refers to the interconnect corner which results in
minimum capacitance. The interconnect resistance is larger than
at typical corner. This corner results in smallest delay for paths
with short nets and can be used for min path analysis.

• Max RC: This refers to the interconnect corner which maximizes
the interconnect RC product. This typically corresponds to larger
etch which reduces the trace width. This results in largest resis-
tance but corresponds to smaller than typical capacitance. Over-
all, this corner has the largest delay for paths with long
interconnects and can be used for max path analysis.

• Min RC: This refers to the interconnect corner which minimizes
the interconnect RC product. This typically corresponds to
smaller etch which increases the trace width. This results in
smallest resistance but corresponds to larger than typical capaci-
tance. Overall, this corner has the smallest path delay for paths
with long interconnects and can be used for min path analysis.

Based upon the interconnect R and C for various corners described above,
an interconnect corner with larger C results in smaller R and a corner with
smaller C results in larger R. Thus, the R partially compensates for the C
across various interconnect corners. This implies that no single corner
maps to an extreme value (worst-case or best-case) for path delay for all
types of nets. The path delay using Cworst / Cbest corners is extreme only
for short nets while RCworst / RCbest corners is extreme only for long nets.
The typical interconnect corner is often the extreme in terms of path delay

CHAPTER 10 Robust Verification

420

for nets with average length. Thus, designers often choose to verify the
timing at various interconnect corners described above. However, even the
verification at each corner does not cover all possible scenarios since differ-
ent metal layers can actually be at different interconnect corners indepen-
dently - for example, Max C corner for METAL2, Max RC corner for
METAL1, and so on. Statistical timing analysis described in Section 10.9 of-
fers a mechanism for static timing analysis where different metal layers can
be at different interconnect corners.

Operating Modes

The operating mode dictates the operation of the design. Various operating
modes for a design can be:

• Functional mode 1 (for e.g. high-speed clocks)
• Functional mode 2 (for e.g. slow clocks)
• Functional mode 3 (for e.g. sleep mode)
• Functional mode 4 (for e.g. debug mode)
• Test mode 1 (for e.g. scan capture mode)
• Test mode 2 (for e.g. scan shift mode)
• Test mode 3 (for e.g. bist mode)
• Test mode 4 (for e.g. jtag mode).

PVT Corners

The PVT corners dictate at what conditions the STA analysis takes place.
The most common PVT corners are:

• WCS (slow process, low power supply, high temperature)
• BCF (fast process, high power supply, low temperature)
• Typical (typical process, nominal power supply, nominal tem-

perature)
• WCL (worst-case slow at cold - slow process, low power supply,

low temperature)
• Or any other point in the PVT domain.

Sign-off Methodology SECTION 10.8

421

STA analysis can be performed for any scenario. A scenario here refers to a
combination of the interconnect corner, operating mode, and PVT corner
described above.

Multi-Mode Multi-Corner Analysis

Multi-mode multi-corner (MMMC) analysis refers to performing STA
across multiple operating modes, PVT corners and parasitic interconnect
corners at the same time. For example, consider a DUA that has four oper-
ating modes (Normal, Sleep, Scan shift, Jtag), and is being analyzed at three
PVT corners (WCS, BCF, WCL) and three parasitic interconnect corners
(Typical, Min C, Min RC) as shown in Table 10-23.

There are a total of thirty six possible scenarios at which all timing checks,
such as setup, hold, slew, and clock gating checks can be performed. Run-
ning STA for all thirty six scenarios at the same time can be prohibitive in
terms of runtime depending upon the size of the design. It is possible that a
scenario may not be necessary as it may be included within another scenar-
io, or a scenario may not be required. For example, the designer may deter-
mine that scenarios 4, 6, 7 and 9 are not relevant and thus are not required.
Also, it may not be necessary to run all modes in one corner, such as Scan
shift or Jtag modes may not be needed in scenario 5. STA could be run on a
single scenario or on multiple scenarios concurrently if multi-mode multi-
corner capability is available.

PVT corner/ Parasitic
corner WCS BCF WCL

Typical 1: Normal/Sleep/
Scan shift/

Jtag

2: Normal/
Sleep/ Scan

shift

3: Normal/
Sleep

Min C 4: Not required 5: Normal/
Sleep

6: Not
required

Min RC 7: Not required 8: Normal/
Sleep

9: Not
required

Table 10-23 Multiple modes and corners used during timing sign-off.

CHAPTER 10 Robust Verification

422

The advantage of running multi-mode multi-corner STA is of savings in
runtime and complexity in setting up the analysis scripts. Additional sav-
ings in an MMMC scenario is that the design and parasitics need to be
loaded only once or twice as opposed to loading these individually multi-
ple times for each mode or corner. Such a job is also more amenable to run-
ning them on an LSF farm. Multi-mode multi-corner has a bigger
advantage in an optimization flow where the optimization is done across
all scenarios such that fixing timing violations in one scenario does not in-
troduce timing violations in another scenario.

For IO constraints, the -add_delay option can be used with multiple clock
sources to analyze different modes in one run, such as scan or bist modes,
or different operating modes in a PHY1 corresponding to different speeds.
Often each mode is analyzed in a separate run, but not always.

It is not unusual to find a design with a large number of clocks that re-
quires tens of independent runs to cover every mode in max and min cor-
ners, and including the effect of crosstalk and noise.

10.9 Statistical Static Timing Analysis

The static timing analysis techniques described thus far are deterministic
since the analysis is based upon fixed delays for all timing arcs in the de-
sign. The delay of each arc is computed based upon the operating condi-
tions along with the process and interconnect models. While there may be
multiple modes and multiple corners, the timing path delays for a given
scenario are obtained deterministically.

In practice, the WCS or BCF for the process and operating corner condi-
tions typically used during the STA correspond to the extreme 3s corners2.
The timing libraries are based upon the process corner models provided by
the foundry and characterized with the operating conditions which result

1. Physical layer interface IP block such as a 10G PHY.
2. The s here refers to standard deviation of an independent variable modeled statistically.

Statistical Static Timing Analysis SECTION 10.9

423

in the corresponding corner for the timing values of the cells. For example,
the best-case fast library is characterized using fast process models, highest
power supply and lowest temperature.

10.9.1 Process and Interconnect Variations

Global Process Variations

The global process variations, which are also called inter-die device varia-
tions, refer to the variations in the process parameters which impact all de-
vices on a die (or wafer). See Figure 10-24. This depicts that all devices on a
die are impacted similarly by these process variations - every device on a
die will be slow or fast or anywhere in between. Thus, the variations mod-
eled by the global process parameters are intended to capture the varia-
tions from die to die.

An illustration of the variations of a global parameter value (say g_par1) is
shown in Figure 10-25. For example, the parameter g_par1 may correspond
to IDSsat (device saturation current) for a standard1 NMOS device. Since
this is a global parameter, all NMOS devices in all cell instances of a die
will correspond to the same value of g_par1. This can alternately be stated

Figure 10-24 Inter-die process variations.

1. The standard device here means a device with fixed length and width.

Wafer Die/Chip

Variation

CHAPTER 10 Robust Verification

424

as follows. The variations in g_par1 for all cell instances are fully correlated
or the variations in g_par1 on a die track each other. Note that there would
be other global parameters (g_par2, . . .) which may, for example, model the
PMOS device saturation current and other relevant variables.

Different global parameters (g_par1, g_par2, . . .) are uncorrelated. The vari-
ations in different global parameters do not track each other which means
that the g_par1 and g_par2 parameters vary independently of each other; in
a die g_par1 may be at its maximum while g_par2 may be at its minimum.

In the deterministic (that is, non-statistical) analysis, the slow process mod-
els may correspond to the +3s corner condition for the inter-die variations.
Similarly, the fast process models may correspond to the -3s corner condi-
tion for the inter-die variations.

Local Process Variations

The local process variations, which are also called intra-die device varia-
tions, refer to the variations in the process parameters which can affect the
devices differently on a given die. See Figure 10-26. This implies that iden-
tical devices on a die placed side by side may have different behavior on
the same die. The variations modeled by the local process variations are in-
tended to capture the random process variations within the die.

Figure 10-25 Variations in a global parameter.

g_par1 value

Number of
samples

Statistical Static Timing Analysis SECTION 10.9

425

An illustration of the variations in a local process parameter is depicted in
Figure 10-27. The local parameter variations on a die do not track each oth-
er and their variations from one cell instance to another cell instance are
uncorrelated. This means that a local parameter may have different values
for different devices on the same die. For example, different NAND2 cell
instances on a die may see different local process parameter values. This
can cause different instances of the same NAND2 cell to have different de-
lay values even if other parameters such as input slew and output loading
are identical.

An illustration of the variations in the NAND2 cell delay caused by global
and local variations is depicted in Figure 10-28. The figure illustrates that
the global parameter variations cause larger delay variation than the local
parameter variations.

Figure 10-26 Intra-die device variation.

Figure 10-27 Variations in local process parameter.

Die

Variation

l_par1 value

Number of
samples

CHAPTER 10 Robust Verification

426

The local process variations are one of the variations intended to be cap-
tured in the analysis using OCV modeling, described in Section 10.1. Since
statistical timing models normally include the local process variations, the
OCV analysis using statistical timing models should not include the local
process variation in the OCV setting.

Interconnect Variations

As described in Section 10.8, there are various interconnect corners which
represent the parameter variations of each metal layer affecting the inter-
connect resistance and capacitance values. These parameter variations are
generally the thicknesses of the metal and the dielectric, and the metal etch
which affects the width and spacing of the metal traces in various metal
layers. In general, the parameters affecting a metal impact the parasitics of
all traces in that metal layer but have minimal or no effect on the parasitics
of the traces in other metal layers.

The interconnect corners described in Section 10.8 model the interconnect
variations so that all the metal layers map to the same interconnect corner.
The interconnect variations when modeled statistically allow each metal

Figure 10-28 Variation in cell delay due to global and local process
variations.

Number of
samples Global

variations

Local
variations

Delay

Statistical Static Timing Analysis SECTION 10.9

427

layer to vary independently. The statistical approach models all possible
combinations of variations in the interconnect space and thus models vari-
ations which may not be captured by analyzing only at the specified inter-
connect corners. For example, it is possible that the launch path of a clock
tree is in METAL2, whereas the capture path of the clock tree is in
METAL3. Timing analysis at the traditional interconnect corners considers
various corners which vary all metals together and thus cannot model the
scenario where the METAL2 is at a corner which results in max delay, and
the METAL3 is at a corner which results in min delay. Such a combination
corresponds to the worst-case scenario for the setup paths and can only be
captured by modeling the interconnect variations statistically.

10.9.2 Statistical Analysis

What is SSTA?

The modeling of variations described above is feasible if the cell timing
models and the interconnect parasitics are modeled statistically. Apart
from delay, the pin capacitance values at the inputs of the cells are also
modeled statistically. This implies that the timing models are described in
terms of mean and standard deviations with respect to process parameters
(global and local). The interconnect resistances and capacitances are de-
scribed in terms of mean and standard deviations with respect to intercon-
nect parameters. The delay calculation procedures (described in Chapter 5)
obtain the delays of each timing arc (cell as well as interconnect) which are
then represented by mean and standard deviations with respect to various
parameters. Thus, every delay is represented by a mean and N standard
deviations (where N is the number of independent process and intercon-
nect parameters modeled statistically).

Since the delays through individual timing arcs are expressed statistically,
the statistical static timing analysis (SSTA) procedure combines the delays
of the timing arcs to obtain the path delay which is also expressed statisti-
cally (with mean and standard deviations). The SSTA maps the standard
deviations with respect to the independent process and interconnect pa-
rameters to obtain the overall standard deviation of the path delay. For ex-
ample, consider the path delay comprised from two timing arcs as shown

CHAPTER 10 Robust Verification

428

in Figure 10-29. Since each delay component has its variations, the varia-
tions are combined differently depending upon whether these are correlat-
ed or uncorrelated. If the variations are from the same source (such as
caused by g_par1 which track each other), the s of the path delay is simply
equal to (s1 + s2). However, if the variations are uncorrelated (such as due
to l_par1), the s of the path delay is equal to sqrt(s1

2 + s2
2), which is smaller

than (s1 + s2). The phenomenon of smaller s for the path delay when mod-
eling local (uncorrelated) process variations is also referred to as statistical
cancellation of the individual delay variations.

For a real design, both correlated as well as uncorrelated variations are
modeled, and thus the contributions from both of these types of variations
need to be combined appropriately.

The clock path delays for launch and capture clock are also expressed sta-
tistically in the same manner. Based upon the data and clock path delays,
the slack is obtained as a statistical variable with its nominal value as well
as standard deviation.

Assuming normal distribution, effective minimum and maximum values
corresponding to (mean +/- 3s) can be obtained. The (mean -/+ 3s) corre-
sponds to 0.135% and 99.865% quantile values of the normal distribution
shown in Figure 10-30. The 0.135% quantile means that only 0.135% of the
resulting distribution is smaller than this value (mean - 3s); similarly
99.865% quantile means that 99.865% of the distribution is smaller than this
value or only 0.135% (100% - 99.865%) of the distribution is larger than this

Figure 10-29 Path delay comprised of variations in components.

Number of
samples

10 12

+ =

22

s1 s2 s

Statistical Static Timing Analysis SECTION 10.9

429

value (mean + 3s). The effective lower and upper bounds are referred to as
the quantiles in an SSTA report and the designer can select the quantile
value used in the analysis, such as 0.5% or 99.5% which corresponds to
(mean -/+ 2.576 s).

For noise and crosstalk analysis (Chapter 6), the path delays as well as tim-
ing windows used are modeled statistically with mean and standard devi-
ations with respect to various parameters.

Based upon the path slack distribution, the SSTA reports the mean, stan-
dard deviation and the quantile values of slack for each path whereby the
passing or failing can be determined based upon the required statistical
confidence.

Statistical Timing Libraries

In the SSTA approach, the standard cell libraries (and libraries for other
macros used in a design) provide timing models at various environmental
conditions. For example, the analysis at min Vdd and high temperature cor-
ner utilizes libraries which are characterized at this condition but the pro-
cess parameters are modeled statistically. The library includes timing

Figure 10-30 Normal distribution.

Number of
samples

mean-1s-2s-3s 1s 2s 3s

0.135%
2.1%

13.6%

34.1% 34.1%

13.6%

2.1%
0.135%

Not to scale

CHAPTER 10 Robust Verification

430

models for the nominal parameter values as well as with parameter varia-
tions. For N process parameters, a statistical timing library characterized at
a power supply of 0.9V and 125C may include the following:

• Timing models with nominal process parameters, plus the follow-
ing with respect to each of the process parameters.

• Timing models with respect to a parameter i at (nominal + 1s),
the other parameters being held at nominal value.

• Timing models with respect to a parameter i at (nominal - 1s), the
other parameters being held at nominal value.

For a simplified example scenario with two independent process parame-
ters, the timing models are characterized with the nominal parameter val-
ues and also with the variations in parameter values as illustrated in Figure
10-31.

Statistical Interconnect Variations

There are three independent parameters for each metal layer:

• Metal etch. This controls the metal width as well as spacing to the
neighboring conductor. A large etch in a metal layer reduces the
width (which increases resistance) and increases the spacing to

Figure 10-31 N-dimensional process space.

P1

P2

+

-

+-

Variation

Nominal

Variation

Statistical Static Timing Analysis SECTION 10.9

431

the neighboring traces (which reduces the coupling capacitance
to the neighboring traces). This parameter is expressed as a vari-
ation in the width of the conductor.

• Metal thickness. Thicker metal implies larger capacitance to the
layers below. This is expressed as a variation in the thickness of
the conductor.

• IMD (Inter Metal Dielectric) thickness. Larger IMD thickness re-
duces the coupling to the layers below. This parameter is ex-
pressed as a variation in the IMD thickness.

SSTA Results

The output results in the statistical analysis provide path slack in terms of
its mean and effective corner values. An example of the SSTA report for a
setup check (max path analysis) is shown below.

Path startpoint endpoint quantile sensitiv mean stddev

0 DBUS[7] PDAT[5] -0.43 50.00 0.86 0.43

Path attribute quantile sensitiv mean stddev
--
arrival 6.74 7.88 5.45 0.43
slack -0.43 50.00 0.86 0.43
required 6.31 0.00 6.31 0.00
startpoint_clock_latency 0.25 0.00 0.25 0.00
endpoint_clock_latency 0.33 0.00 0.33 0.00

Point arrival quantile sensitiv mean stddev incr

DBUS[7]/CP (SDFQD2) 0.25 0.00 0.25 0.00
DBUS[7]/Q (SDFQD2) 0.66 4.04 0.61 0.02 0.02
U1/ZN (INVD2) 0.80 4.09 0.72 0.03 0.01
. . .
U22/ZN (NR3D4) 2.20 5.82 1.89 0.11 0.03
U23/Z (AN2D3) 2.41 6.40 2.03 0.13 0.02
U24/ZN (CKBD3) 2.53 7.10 2.10 0.15 0.02

CHAPTER 10 Robust Verification

432

U25/Z (AO23D2) 2.89 8.65 2.31 0.20 0.05
U26/ZN (IND2D4) 2.98 8.84 2.36 0.21 0.01
U27/Z (MUX3D4) 3.26 8.89 2.58 0.23 0.02
. . .
U51/ZN (ND2D4) 6.74 7.88 5.45 0.43 0.02
PDAT[5]/D (SDFQD1) 6.74 7.88 5.45 0.43 0.00

The above report shows that while the mean of the timing path meets the
requirement, the 0.135% quantile value has a violation by 0.43ns - path
slack quantile is -0.43ns. The path slack has a mean value of +0.86ns with
0.43ns standard deviation. This implies that +/- 2s of the distribution
meets the requirement. Since 95.5% of the distribution falls within 2s vari-
ation, this implies that only 2.275% of the manufactured parts will have a
timing violation (the remaining 2.275% of the distribution has large posi-
tive path slack). A 2.275% quantile setting will thus show a slack of 0 or no
timing violation. The arrival time and the path slack distribution is depict-
ed in Figure 10-32.

Note that the above report is for the setup path and thus the quantile col-
umn provides the upper bound quantile (for example +3s value for path
delay) - the hold path would specify the equivalent lower bound quantile
(for example -3s value). The sensitiv column in the report refers to the sen-
sitivity which is the ratio of the standard deviation to the mean (expressed
as a percentage). In terms of slack, smaller sensitivity is desired which
means that a path passing at mean value continues to pass even with varia-
tions. The incr column specifies the incremental standard deviation for that
line in the report.

With the statistical models for the cells and interconnect, the statistical tim-
ing approach analyzes the design at corner environment conditions and
explores the space due to process and interconnect parameter variations.
For example, a statistical analysis at worst-case VT (Voltage and Tempera-
ture) would explore the entire global process and interconnect space. An-
other statistical analysis at the best-case VT (Voltage and Temperature)
would also explore the entire process and interconnect space. These analy-
ses can be contrasted with the traditional corner analysis at the worst-case
or the best-case PVT, each of which explores only a single point of process
and interconnect space.

Paths Failing Timing? SECTION 10.10

433

10.10 Paths Failing Timing?

In this section, we provide examples that highlight the critical aspects that
a designer needs to focus on during debugging of STA results. Several of
these examples contain only the relevant excerpts from the STA reports.

Figure 10-32 Path delay and slack distribution.

5.45 6.31
(+2s)

6.74
(+3s)

Time

Number of
samples Timing

violation

(a) Arrival time distribution.

Required
time

0.86
(-1s)

0

(-2s)

Slack

Number of
samples

(b) Slack distribution.

-0.43
(-3s)

0.43

CHAPTER 10 Robust Verification

434

No Path Found

What if one is trying to obtain a path report and the STA reports that no
path is found, or it provides a path report but the slack is infinite? In both
of these cases, the situation likely occurs because:

i. the timing path is broken, or

ii. the path does not exist, or

iii. there is a false path.

In each of these cases, careful debugging of the constraints is required to
identify what constraint causes the path to be blocked. One brute force op-
tion is to remove all false path settings and timing breaks and then see if
the path can be timed. (A timing break is the removal of a timing arc from
STA and is achieved by using the set_disable_timing specification as de-
scribed in Section 7.10.)

Clock Crossing Domain

Here is a header of a path report.

Startpoint: IP_IO_RSTHN[0](input port clocked by SYS_IN_CLK)
Endpoint: X_WR_PTR_GEN/Q_REG

(recovery check against rising-edge clock PX9_CLK)
Path Group: **async_default**
Path Type: max

Point Incr Path

clock SYS_IN_CLK (rise edge) 6.00 6.00
. . .
IO_IO_RSTHN[0] (in) 0.00 6.00 r
. . .
X_WR_PTR_GEN/Q_REG/CDN (DFCN) 0.00 6.31 r
. . .

clock PX9_CLK (rise edge) 12.00 12.00
. . .

Paths Failing Timing? SECTION 10.10

435

library recovery time 0.122 15.98
. . .

The first thing to notice is that this path starts from an input port and ends
at the clear pin of a flip-flop, and a recovery check (see library recovery time)
on the clear pin is being validated. The next thing to notice is that the path
goes across two different clock domains, SYS_IN_CLK, the clock that
launches the input, and PX9_CLK, the clock at the flip-flop whose recovery
timing is being checked. Even though it is not apparent from the timing re-
port, but from the design knowledge, one can examine if the two clocks are
fully asynchronous and whether any paths between these two clock do-
mains should be treated as false.

Lesson: Verify if the launch clock and capture clock and the paths between
the two are valid.

Inverted Generated Clocks

When creating generated clocks, the -invert option needs to be used care-
fully. If a generated clock is specified using the -invert option, STA assumes
that the generated clock at the specified point is of the type specified. How-
ever based upon the logic, it is possible that such a waveform cannot occur
in the design. STA would normally provide an error or a warning message
indicating that the generated clock is not realizable, however it will contin-
ue with the analysis and report the timing paths.

Consider Figure 10-33. Let us define a generated clock with -invert on the
output of the cell UCKBUF0.

create_clock -name CLKM -period 10 -waveform {0 5} \
[get_ports CLKM]

create_generated_clock -name CLKGEN -divide_by 1 -invert \
-source [get_ports CLKM] [get_pins UCKBUF0/C]

CHAPTER 10 Robust Verification

436

Here is the setup timing report based upon the above specifications.

Startpoint: UFF0
(rising edge-triggered flip-flop clocked by CLKGEN)

Endpoint: UFF1
(rising edge-triggered flip-flop clocked by CLKGEN)

Path Group: CLKGEN
Path Type: max

Point Incr Path

clock CLKGEN (rise edge) 5.00 5.00
clock network delay (ideal) 0.00 5.00
UFF0/CK (DF) 0.00 5.00 r
UFF0/Q (DF) <- 0.14 5.14 f
UNOR0/ZN (NR2) 0.04 5.18 r
UBUF4/Z (BUFF) 0.05 5.23 r
UFF1/D (DF) 0.00 5.23 r
data arrival time 5.23

clock CLKGEN (rise edge) 15.00 15.00
clock network delay (ideal) 0.00 15.00
UFF1/CK (DF) 15.00 r
library setup time -0.05 14.95
data required time 14.95

data required time 14.95
data arrival time -5.23

Figure 10-33 Example of a generated clock.

UFF1UFF0

Capture clock path

Data path

UCKBUF0

UCKBUF1

D Q

CK

D Q

CK

CLKM

Paths Failing Timing? SECTION 10.10

437

slack (MET) 9.72

Notice that the STA faithfully assumes that the waveform at the output of
cell UCKBUF0 is the inverted clock of clock CLKM. Thus, the rise edge is at
5ns and the capture setup clock edge is at 15ns. Other than the fact that the
rising edge of the clock is at 5ns instead of 0ns, it is not apparent from the
timing report that something is wrong. It should be noted that since the er-
ror is on the common portion of both the launch and the capture clock
paths, the setup and hold timing checks are indeed performed correctly.
The warnings and the errors produced by STA need to be carefully ana-
lyzed and understood.

The important point to note is that STA will create the generated clock as
specified whether it is realizable or not.

Now let us try to move the generated clock with the -invert option to the
output of the cell UCKBUF1 and see what happens.

create_clock -name CLKM -period 10 -waveform {0 5} \
[get_ports CLKM]

create_generated_clock -name CLKGEN -divide_by 1 -invert \
-source [get_ports CLKM] [get_pins UCKBUF1/C]

Here is the setup report.

Startpoint: UFF0
(rising edge-triggered flip-flop clocked by CLKGEN)

Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: max

Point Incr Path

clock CLKGEN (rise edge) 5.00 5.00
clock network delay (ideal) 0.00 5.00
UFF0/CK (DF) 0.00 5.00 r

CHAPTER 10 Robust Verification

438

UFF0/Q (DF) <- 0.14 5.14 f
UNOR0/ZN (NR2) 0.04 5.18 r
UBUF4/Z (BUFF) 0.05 5.23 r
UFF1/D (DF) 0.00 5.23 r
data arrival time 5.23

clock CLKM (rise edge) 10.00 10.00
clock source latency 0.00 10.00
CLKM (in) 0.00 10.00 r
UCKBUF0/C (CKB) 0.06 10.06 r
UCKBUF2/C (CKB) 0.07 10.12 r
UFF1/CK (DF) 0.00 10.12 r
clock uncertainty -0.30 9.82
library setup time -0.04 9.78
data required time 9.78

data required time 9.78
data arrival time -5.23

slack (MET) 4.55

The path looks like a half-cycle path, but this is incorrect since there is no
inversion on the clock path in the actual logic. Once again, STA assumes
that the clock at the UCKBUF1/C pin is the one as specified in the
create_generated_clock command. Hence the rising edge occurs at 5ns. The
capture clock edge is running off clock CLKM, whose next rising edge oc-
curs at 10ns. The hold path report below also contains a similar discrepan-
cy as the setup path.

Startpoint: UFF0
(rising edge-triggered flip-flop clocked by CLKGEN)

Endpoint: UFF1 (rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: min

Point Incr Path

clock CLKGEN (rise edge) 5.00 5.00
clock network delay (ideal) 0.00 5.00
UFF0/CK (DF) 0.00 5.00 r

Paths Failing Timing? SECTION 10.10

439

UFF0/Q (DF) <- 0.14 5.14 r
UNOR0/ZN (NR2) 0.02 5.16 f
UBUF4/Z (BUFF) 0.06 5.21 f
UFF1/D (DF) 0.00 5.21 f
data arrival time 5.21

clock CLKM (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKM (in) 0.00 0.00 r
UCKBUF0/C (CKB) 0.06 0.06 r
UCKBUF2/C (CKB) 0.07 0.12 r
UFF1/CK (DF) 0.00 0.12 r
clock uncertainty 0.05 0.17
library hold time 0.01 0.19
data required time 0.19

data required time 0.19
data arrival time -5.21

slack (MET) 5.03

Typically, the STA output will include an error or warning indicating that
the generated clock is not realizable. The best way to debug these kind of
improper paths is to actually draw the clock waveforms at the capture flip-
flop and at the launch flip-flop and try to understand if the edges being
shown are indeed valid.

Lesson: Check the edges of the capture and launch clocks to see if they are
indeed what they should be.

Missing Virtual Clock Latency

Consider the following path report.

Startpoint: RESET_L (input port clocked by VCLKM)
Endpoint: NPIWRAP/REG_25

(rising edge-triggered flip-flop clocked by CLKM)
Path Group: CLKM
Path Type: max

CHAPTER 10 Robust Verification

440

Point Incr Path

clock VCLKM (rise edge) 0.00 0.00
clock network delay 0.00 0.00
input external delay 2.55 2.55 f
RESET_L (in) <- 0.00 2.55 f
. . .
NPIWRAP/REG_25/D (DFF) 0.00 2.65 f
data arrival time 2.65

clock CLKM (rise edge) 10.00 10.00
. . .

It is a path that starts from an input pin. Notice that the starting arrival
time is listed as 0. This indicates that there was no latency specified on the
clock VCLKM - the clock used to define the input arrival time on the input
pin RESET_L; most probably this is a virtual clock, and that is why the ar-
rival time is missing.

Lesson: When using virtual clocks, make sure latencies on virtual clocks are
specified or are accounted for in the set_input_delay and set_output_delay
constraints.

Large I/O Delays

When input or output paths have timing violations, the first thing to check
is the latency on the clock used as reference to specify the input arrival time
or the output required time. This is also applicable for the previous exam-
ple.

The second thing to check is the input or output delays, that is, the input
arrival time on an input path or the output required time on an output
path. Quite often, one may find that these numbers are unrealistic for the
target frequency. The input arrival time is usually the first value in the data
path of the report, while the output required time is usually the last value
in the data path of the report.

Paths Failing Timing? SECTION 10.10

441

. . .
Point Incr Path

clock VIRTUAL_CLKM (rise edge) 0.00 0.00
clock network delay 0.00 0.00
input external delay 14.00 14.00 f
PORT_NIP (in) <- 0.00 14.00 f
UINV1/ZN (INV) 0.34 14.34 r
UAND0/Z (AN2) 0.61 14.95 r
UINV2/ZN (INV) 0.82 15.77 f
. . .

In this data path of an input failing path, notice the input arrival time of
14ns. In this particular case, there was an error in the input arrival time
specification in that it was too large.

Lesson: When reviewing input or output paths, check if the external delay
specified is reasonable.

Incorrect I/O Buffer Delay

When a path goes through an input or an output buffer, it is possible for an
incorrect specification to cause large delay values for the input or output
buffer delays. In the case shown below, notice the large output buffer delay
of 18ns; this is caused by a large load value specified on the output pin.

Startpoint: UFF4 (rising edge-triggered flip-flop clocked by CLKP)
Endpoint: ROUT (output port clocked by VIRTUAL_CLKP)
Path Group: VIRTUAL_CLKP
Path Type: max

Point Incr Path

clock CLKP (rise edge) 0.00 0.00
clock source latency 0.00 0.00
CLKP (in) 0.00 0.00 r
UCKBUF4/C (CKB) 0.06 0.06 r
UCKBUF5/C (CKB) 0.06 0.12 r

CHAPTER 10 Robust Verification

442

UFF4/CK (DFF) 0.00 0.12 r
UFF4/Q (DFF) 0.13 0.25 r
UBUF3/Z (BUFF) 0.09 0.33 r
IO_1/PAD:OUT (DDRII) 18.00 18.33
ROUT (out) 0.00 18.33 r
data arrival time 18.33
. . .

Lesson: Watch out for large delays on buffers caused by incorrect load spec-
ifications.

Incorrect Latency Numbers

When a timing path fails, one thing to check is if the latencies of the launch
clock and the capture clock are reasonable, that is, ensure that the skew be-
tween these clocks is within acceptable limits. Either an incorrect latency
specification or incorrect clock balancing during clock construction can
cause large skew in the launch and capture clock paths leading to timing
violations.

Lesson: Check if clock skew is within reasonable limits.

Half-cycle Path

As mentioned in an earlier example, one needs to check the clock domains
of the failing path. Along with this, one may need to check the edges at
which the launch and capture flip-flops are being clocked. In some cases,
one may find a half-cycle path - a rise to fall path or a fall to rise path - and
it may be unrealistic to meet timing with a half-cycle path, or maybe the
half-cycle path is not real.

Lesson: Ensure that data path has sufficient time to propagate.

Paths Failing Timing? SECTION 10.10

443

Large Delays and Transition Times

One key item is to check for unusually large values for the delays or transi-
tion times along the data path. Some of these can be due to:

• High-fanout nets: Nets which are not buffered properly.
• Long nets: Nets which need buffer insertion in between.
• Low strength cells: Cells which may not have been replaced be-

cause these are labeled as don’t touch in the design.
• Memory paths: Paths that typically fail due to large setup times on

memory inputs and large output delays on memory outputs.

Missing Multicycle Hold

For a multicycle N setup specification, it is common to see the correspond-
ing multicycle N-1 hold specification missing. Consequently, this can cause
a large number of unnecessary delay cells to get inserted when a tool is fix-
ing the hold violations.

Lesson: Always audit the hold violations before fixing to ensure that the
hold violations that are being fixed are real.

Path Not Optimized

STA violations may be present on a path that has not been optimized yet.
One can determine this situation by examining the data path. Are there
cells with large delays? Can one manually improve the timing on the data
path? Maybe the data path needs to be optimized more. It is possible that
the tool is working on other worse violating paths.

Path Still Not Meeting Timing

If the data path appears to have good strong cells and if the path is still fail-
ing timing, one needs to examine the pins where the routing delay and
wireload is high. This can be the next source of improvement. Maybe the
cells can be moved closer and consequently the wireload and the wire rout-
ing delay can be decreased.

CHAPTER 10 Robust Verification

444

What if Timing Still Cannot be Met

One can utilize useful skew to help close the timing. Useful skew is where
one purposely imbalances the clock trees, especially the launch and cap-
ture clock paths of a failing path so that the timing passes on that path. It
typically means that the capture clock can be delayed so that the clock at
the capture flip-flop arrives later when the data is ready. This does assume
that there is enough slack on the succeeding data paths, that is, the data
path for the next stage of flip-flop to flip-flop paths.

The reverse can also be attempted, that is, the launch clock path can be
made shorter so that the data from the launch flip-flop is launched earlier
to help meet the setup timing. Once again this can only be done if the pre-
ceding stage of flip-flop to flip-flop paths have the extra slack to give away.

Useful skew techniques can be used to fix both setup and hold violations.
One disadvantage of this technique is that if the design has multiple modes
of operation, then useful skew can potentially cause a problem in another
mode.

10.11 Validating Timing Constraints

As chip size grows, there is more and more dependence on signing off tim-
ing with static timing analysis. The risk of relying only upon STA is that
the STA is dependent on how good the timing constraints are. Therefore,
validation of timing constraints becomes an important consideration.

Checking Path Exceptions

There are tools available that check the validity of false paths and multicy-
cle paths based on the structure (netlist) of the design. These tools deter-
mine whether a given false path or multicycle path specification is valid. In
addition, these tools may also be able to generate missing false path and
multicycle path specifications based upon the structure of the design.
However, some of the path exceptions generated by the tools may not be
valid. This is because these tools determine the proof of a false path or a

Validating Timing Constraints SECTION 10.11

445

multicycle path by the structure of the logic, typically using formal verifi-
cation techniques, whereas a designer has a more in-depth knowledge of
the functional behavior of the design. Thus the path exceptions generated
by the tools need to be reviewed by the designer before accepting these and
using them in STA. There may also be additional path exceptions that are
based upon the semantic behavior of the design that have to be defined by
the designer if the tool is unable to extract such exceptions.

The biggest risk in timing constraints are the path exceptions. Thus, false
paths and multicycle paths should be determined after a careful analysis.
In general, it is preferable to use a multicycle path as opposed to a false
path. This ensures that the path in question is at least constrained by some
amount. If a signal is sampled at a known or a predictable time, no matter
how far out, use a multicycle path so that static timing analysis has some
constraints to work with. False paths have the danger of causing timing op-
timization tools to completely ignore such paths, whereas in reality, they
may indeed be getting sampled after some large number of clock cycles.

Checking Clock Domain Crossing

Tools are available to ensure that all clock domain crossings in a design are
valid. These tools may also have the capability to automatically generate
the necessary false path specifications. Such tools may also be able to iden-
tify illegal clock domain crossing, that is, cases where data is crossing two
different clock domains without any clock synchronization logic. In such
cases, the tools may provide the capability to automatically insert suitable
clock synchronization logic where required. Note that not all asynchro-
nous clock domain crossings require clock synchronizers. The requirement
depends upon the nature of the data and whether it needs to be captured
on the next cycle or a few cycles later.

An alternate way of checking asynchronous clock crossings using STA is to
set a large clock uncertainty that is equal to the period of the sampling
clock. This ensures that there will at least be some violations based upon
which one can determine the appropriate path exceptions, or add the clock
synchronization logic to the design.

CHAPTER 10 Robust Verification

446

Validating IO and Clock Constraints

Validating IO and clock constraints are still a challenge. Quite often timing
simulations are performed to check the validity of all clocks in the design.
System timing simulations are performed to validate the IO timing to en-
sure that the chip can communicate with its peripherals without any tim-
ing issues.

q

447

A P P E N D I X

A

SDC

his appendix describes the SDC1 format version 1.7. This format is
primarily used to specify the timing constraints of a design. It does
not contain any commands for any specific tool such as link and com-

pile. It is a text file. It can be handwritten or created by a program and read
in by a program. Some SDC commands are applicable to implementation
or synthesis only. However all SDC commands are listed here.

SDC syntax is a TCL-based format, that is, all commands follow the TCL
syntax. An SDC file contains the SDC version number at the beginning of
the file. This is followed by the design constraints. Optional comments (a
comment starts with the # character and ends at the end of the line) can be
present in a SDC file interspersed with the design constraints. Long lines in

1. Synopsys Design Constraints. Reproduced here with permission from Synopsys, Inc.

T

APPENDIX A SDC

448

design constraints can be split up across multiple lines using the backslash
(\) character.

A.1 Basic Commands

These are the basic commands in SDC.

current_instance [instance_pathname]
Sets the current instance of design. This allows other
commands to set or get attributes from that instance.
If no argument is supplied, then the current instance
becomes the top-level.
Examples:
current_instance /core/U2/UPLL
current_instance .. # Go up one hierarchy.
current_instance # Set to top.

expr arg1 arg2 . . . argn

list arg1 arg2 . . . argn

set variable_name value

set_hierarchy_separator separator
Specifies the default hierarchy separator used within
the SDC file. This can be overridden by using the -hsc
option in the individual SDC commands where allowed.
Examples:
set_hierarchy_separator /
set_hierarchy_separator .

set_units [-capacitance cap_unit] [-resistance res_units]
[-time time_unit] [-voltage voltage_unit]
[-current current_unit] [-power power_unit]

Object Access Commands SECTION A.2

449

Specifies the units used in the SDC file.
Examples:
set_units -capacitance pf -time ps

A.2 Object Access Commands

These commands specify how to access objects in a design instance.

all_clocks
Returns a collection of all clocks.
Examples:
foreach_in_collection clkvar [all_clocks] {
. . .

}
set_clock_transition 0.150 [all_clocks]

all_inputs [-level_sensitive] [-edge_triggered]
[-clock clock_name]

Returns a collection of all input ports in the design.
Example:
set_input_delay -clock VCLK 0.6 -min [all_inputs]

all_outputs [-level_sensitive] [-edge_triggered]
[-clock clock_name]

Returns a collection of all output ports in the design.
Example:
set_load 0.5 [all_outputs]

all_registers [-no_hierarchy] [-clock clock_name]
[-rise_clock clock_name] [-fall_clock clock_name]
[-cells] [-data_pins] [-clock_pins] [-slave_clock_pins]
[-async_pins] [-output_pins] [-level_sensitive]
[-edge_triggered] [-master_slave]

Returns the set of registers with the properties

APPENDIX A SDC

450

as specified, if any.
Examples:
all_registers -clock DAC_CLK
Returns all registers clocked by clock DAC_CLK.

current_design [design_name]
Returns the name of the current design. If specified with
an argument, it sets the current design to the one
specified.
Examples:
current_design FADD # Sets the current context to FADD.
current_design # Returns the current context.

get_cells [-hierarchical] [-hsc separator] [-regexp]
[-nocase] [-of_objects objects] patterns

Returns a collection of cells in the design that match the
specified pattern. Wildcard can be used to match
multiple cells.
Examples:
get_cells RegEdge* # Returns all cells that

match pattern.
foreach_in_collection cvar [get_cells -hierarchical *] {
. . .

} # Returns all cells in design by searching
recursively down the hierarchy.

get_clocks [-regexp] [-nocase] patterns
Returns a collection of clocks in the design that match
the specified pattern. When used in context such as -from
or -to, it returns a collection of all flip-flops driven
by the specified clocks.
Examples:
set_propagated_clock [get_clocks SYS_CLK]
set_multicycle_path -to [get_clocks jtag*]

Object Access Commands SECTION A.2

451

get_lib_cells [-hsc separator] [-regexp] [-nocase]
patterns

Creates a collection of library cells that are currently
loaded and those that match the specified pattern.
Example:
get_lib_cells cmos13lv/AOI3*

get_lib_pins [-hsc separator] [-regexp] [-nocase]
patterns

Returns a collection of library cell pins that match the
specified pattern.

get_libs [-regexp] [-nocase] patterns
Returns a collection of libraries that are currently
loaded in the design.

get_nets [-hierarchical] [-hsc separator] [-regexp]
[-nocase] [-of_objects objects] patterns

Returns a collection of nets that match the specified
pattern.
Examples:
get_nets -hierarchical * # Returns list of all nets in
design by searching recursively down the hierarchy.

get_nets FIFO_patt*

get_pins [-hierarchical] [-hsc separator] [-regexp]
[-nocase] [-of_objects objects] patterns

Returns a collection of pin names that match the
specified pattern.
Examples:
get_pins *
get_pins U1/U2/U3/UAND/Z

get_ports [-regexp] [-nocase] patterns
Returns a collection of port names (inputs and outputs)
of design that match the specified pattern.

APPENDIX A SDC

452

Example:
foreach_in_collection port_name [get_ports clk*] {
For all ports that start with “clk”.
. . .

}

Can an object such as a port be referenced without “getting” the object?
When there is only one object with that name in the design, there really
isn't any difference. However, when multiple objects share the same name,
then using the get_* commands become more important. It avoids any pos-
sible confusion over which type of object is being referred to. Imagine a
case where there is a net called BIST_N1 and a port called BIST_N1. Con-
sider the SDC command:

set_load 0.05 BIST_N1

The question is which BIST_N1 is being referred to? The net or the port? It
is best in most cases to explicitly qualify the type of object, such as in:

set_load 0.05 [get_nets BIST_N1]

Consider another example of a clock MCLK and a port called MCLK, and
the following SDC command:

set_propagated_clock MCLK

Does the object refer to the port called MCLK, or to the clock called MCLK?
In this particular case, it refers to the clock since that is what the prece-
dence rules of set_propagated_clock command will select. However, to be
clear, it is better to qualify the object explicitly, either as:

set_propagated_clock [get_clocks MCLK]

Timing Constraints SECTION A.3

453

or as:

set_propagated_clock [get_ports MCLK]

With this explicit qualification, there is no need to depend on the prece-
dence rules, and the SDC is clear.

A.3 Timing Constraints

This section describes the SDC commands that are related to timing specifi-
cations.

create_clock -period period_value [-name clock_name]
[-waveform edge_list] [-add] [source_objects]

Defines a clock.
When clock_name is not specified, the clock name is the
name of the first source object.
The -period option specifies the clock period.
The -add option is used to create a clock at a pin that
already has an existing clock definition. Else if this
option is not used, this clock definition overrides any
other existing clock definition at that node.
The -waveform option specifies the rising edge and
falling edge (duty cycle) of the clock. The default
is (0, period/2). If a clock definition is on a path
after another clock, then it blocks the previous clock
from that point onwards.
Examples:
create_clock -period 20 -waveform {0 6} -name SYS_CLK \
[get_ports SYS_CLK] # Creates a clock of period
20ns with rising edge at 0ns and the falling edge
at 6ns.

create_clock -name CPU_CLK -period 2.33 \
-add [get_ports CPU_CLK] # Adds the clock definition

APPENDIX A SDC

454

to the port without overriding any existing
clock definitions.

create_generated_clock [-name clock_name]
-source master_pin [-edges edge_list]
[-divide_by factor] [-multiply_by factor]
[-duty_cycle percent] [-invert]
[-edge_shift shift_list] [-add] [-master_clock clock]
[-combinational]
source_objects

Defines an internally generated clock.
If no -name is specified, the clock name is that of the
first source object.
The source of the generated clock, specified by -source,
is a pin or port in the design.
If more than one clock feeds the source node,
the -master_clock option must be used to specify which of
these clocks to use as the source of the generated clock.
The -divide_by option can be used to specify the clock
division factor; similarly for -multiply_by.
The -duty_cycle can be used to specify the new duty cycle
for clock multiplication.
The -invert option can be specified if the phase of the
clock has been inverted.
Instead of using clock multiplication or division, clock
generation can also be specified using -edges
and -edge_shift options. The -edges option specifies a
list of three numbers specifying the edges of the master
clock edges to use for the first rising edge, the next
falling edge, and the next rising edge. For example, a
clock divider can be specified as -divide_by 2 or
as -edges {1 3 5}.
The -edge_shift option can be used in conjunction with
the -edges option to specify an amount to shift for each
of the three edges.
Examples:
create_generated_clock -divide_by 2 -source \

Timing Constraints SECTION A.3

455

[get_ports sys_clk] -name gen_sys_clk [get_pins UFF/Q]
create_generated_clock -add -invert -edges {1 2 8} \
-source [get_ports mclk] -name gen_clk_div

create_generated_clock -multiply_by 3 -source \
[get_ports ref_clk] -master_clock clk10MHz \
[get_pins UPLL/CLKOUT] -name gen_pll_clk

group_path [-name group_name] [-default]
[-weight weight_value] [-from from_list]
[-rise_from from_list] [-fall_from from_list]
[-to to_list] [-rise_to to_list] [-fall_to to_list]
[-through through_list] [-rise_through through_list]
[-fall_through through_list]

Gives a name to the specified group of paths.

set_clock_gating_check [-setup setup_value]
[-hold hold_value] [-rise] [-fall] [-high] [-low]
[object_list]

Provides the ability to specify a clock gating check on
any object.
Clock gating checks are performed only on gates that get
a clock signal.
By default, the setup and hold values are 0.
Examples:
set_clock_gating_check -setup 0.15 -hold 0.05 \
[get_clocks ck20m]

set_clock_gating_check -hold 0.3 \
[get_cells U0/clk_divider/UAND1]

set_clock_groups [-name name] [-logically_exclusive]
[-physically_exclusive] [-asynchronous] [-allow_paths]
-group clock_list

Specifies a group of clocks with the specific
property and assigns a name to the group.

APPENDIX A SDC

456

set_clock_latency [-rise] [-fall] [-min] [-max]
[-source] [-late] [-early] [-clock clock_list] delay
object_list

Specifies the clock latency for a given clock.
There are two types of latency: network and source.
Source latency is the clock network delay between the
clock definition pin and its source, while network
latency is the clock network delay between the clock
definition pin and the flip-flop clock pins.
Examples:
set_clock_latency 1.86 [get_clocks clk250]
set_clock_latency -source -late -rise 2.5 \
[get_clocks MCLK]

set_clock_latency -source -late -fall 2.3 \
[get_clocks MCLK]

set_clock_sense [-positive] [-negative] [-pulse pulse]
[-stop_propagation] [-clock clock_list] pin_list

Set clock property on pin.

set_clock_transition [-rise] [-fall] [-min] [-max]
transition clock_list

Specifies the clock transition at the clock
definition point.
Examples:
set_clock_transition -min 0.5 [get_clocks SERDES_CLK]
set_clock_transition -max 1.5 [get_clocks SERDES_CLK]

set_clock_uncertainty [-from from_clock]
[-rise_from rise_from_clock]
[-fall_from fall_from_clock] [-to to_clock]
[-rise_to rise_to_clock] [-fall_to fall_to_clock]
[-rise] [-fall] [-setup] [-hold]
uncertainty [object_list]

Specifies the clock uncertainty for clocks or for
clock-to-clock transfers.

Timing Constraints SECTION A.3

457

The setup uncertainty is subtracted from the data
required time for a path, and the hold uncertainty is
added to the data required time for each path.
Examples:
set_clock_uncertainty -setup -rise -fall 0.2 \
[get_clocks CLK2]

set_clock_uncertainty -from [get_clocks HSCLK] -to \
[get_clocks SYSCLK] -hold 0.35

set_data_check [-from from_object] [-to to_object]
[-rise_from from_object] [-fall_from from_object]
[-rise_to to_object] [-fall_to to_object]
[-setup] [-hold] [-clock clock_object] value

Performs the specified check between the two pins.
Example:
set_data_check -from [get_pins UBLK/EN] \
-to [get_pins UBLK/D] -setup 0.2

set_disable_timing [-from from_pin_name]
[-to to_pin_name] cell_pin_list

Disables a timing arc/edge inside the specified cell.
Example:
set_disable_timing -from A -to ZN [get_cells U1]

set_false_path [-setup] [-hold] [-rise] [-fall]
[-from from_list] [-to to_list] [-through through_list]
[-rise_from rise_from_list] [-rise_to rise_to_list]
[-rise_through -rise_through_list]
[-fall_from fall_from_list] [-fall_to fall_to_list]
[-fall_through fall_through_list]

Specifies a path exception that is not to be considered
for STA.
Examples:
set_false_path -from [get_clocks jtag_clk] \
-to [get_clocks sys_clk]

set_false_path -through U1/A -through U4/ZN

APPENDIX A SDC

458

set_ideal_latency [-rise] [-fall] [-min] [-max]
delay object_list

Sets ideal latency to specific objects.

set_ideal_network [-no_propagate] object_list
Identifies points in design that are sources of an
ideal network.

set_ideal_transition [-rise] [-fall] [-min] [-max]
transition_time object_list

Specifies the transition time for the ideal networks
and ideal nets.

set_input_delay [-clock clock_name] [-clock_fall]
[-rise] [-fall] [-max] [-min] [-add_delay]
[-network_latency_included] [-source_latency_included]
delay_value port_pin_list

Specifies the data arrival times at the specified input
ports relative to the clock specified.
The default is the rising edge of clock.
The -add_delay option allows the capability to add more
than one constraint to that particular pin or port.
Multiple input delays with respect to different clocks
can be specified using this -add_delay option.
By default, the clock source latency of the launch clock
is added to the input delay value, but when
the -source_latency_included option is specified, the
source network latency is not added because it is
assumed to be factored into the input delay value.
The -max delay is used for clock setup checks and recovery
checks, while the -min delay is used for hold and removal
checks. If only -min or -max or neither is specified,
the same value is used for both.
Examples:
set_input_delay -clock SYSCLK 1.1 [get_ports MDIO*]
set_input_delay -clock virtual_mclk 2.5 [all_inputs]

Timing Constraints SECTION A.3

459

set_max_delay [-rise] [-fall]
[-from from_list] [-to to_list] [-through through_list]
[-rise_from rise_from_list] [-rise_to rise_to_list]
[-rise_through rise_through_list]
[-fall_from fall_from_list] [-fall_to fall_to_list]
[-fall_through fall_through_list]
delay_value

Sets the maximum delay on the specified path.
This is used to specify delay between two arbitrary pins
instead of from a flip-flop to another flip-flop.
Examples:
set_max_delay -from [get_clocks FIFOCLK] \
-to [get_clocks MAINCLK] 3.5

set_max_delay -from [all_inputs] \
-to [get_cells UCKDIV/UFF1/D] 2.66

set_max_time_borrow delay_value object_list
Sets the max time that can be borrowed when analyzing
a path to a latch.
Example:
set_max_time_borrow 0.6 [get_pins CORE/CNT_LATCH/D]

set_min_delay [-rise] [-fall]
[-from from_list] [-to to_list] [-through through_list]
[-rise_from rise_from_list] [-rise_to rise_to_list]
[-rise_through rise_through_list]
[-fall_from fall_from_list] [-fall_to fall_to_list]
[-fall_through fall_through_list]
delay_value

Sets the min delay for the specified path, which can
be between any two arbitrary pins.
Examples:
set_min_delay -from U1/S -to U2/A 0.6
set_min_delay -from [get_clocks PCLK] \
-to [get_pins UFF/*/S]

APPENDIX A SDC

460

set_multicycle_path [-setup] [-hold] [-rise] [-fall]
[-start] [-end] [-from from_list] [-to to_list]
[-through through_list] [-rise_from rise_from_list]
[-rise_to rise_to_list]
[-rise_through rise_through_list]
[-fall_from fall_from_list] [-fall_to fall_to_list]
[-fall_through fall_through_list] path_multiplier

Specifies a path as a multicycle path. Multiple -through
can also be specified.
Use the -setup option if the multicycle path is just for
setup. Use the -hold option if the multicycle path is
for hold.
If neither -setup nor -hold is specified, the default
is -setup and the default hold multiplier is 0.
The -start refers to the path multiplier being applied to
the launch clock, while -end refers to the path
multiplier being applied to the capture clock.
Default is -start.
The value of the -hold multiplier represents the number
of clock edges away from the default hold multicycle
value which is 0.
Examples:
set_multicycle_path -start -setup \
-from [get_clocks PCLK] -to [get_clocks MCLK] 4

set_multicycle_path -hold -from UFF1/Q -to UCNTFF/D 2
set_multicycle_path -setup -to [get_pins UEDGEFF*] 4

set_output_delay [-clock clock_name] [-clock_fall]
[-level_sensitive]
[-rise] [-fall] [-max] [-min] [-add_delay]
[-network_delay_included] [-source_latency_included]
delay_value port_pin_list

Specifies the required time of the output relative
to the clock. The rising edge is default.
By default, the clock source latency is added to the
output delay value but when the -source_latency_included
option is specified, the clock latency value is not added

Environment Commands SECTION A.4

461

as it is assumed to be included in the output delay value.
The -add_delay option can be used to specify multiple
set_output_delay on a pin/port.

set_propagated_clock object_list
Specifies that clock latency needs to be computed,
that is, it is not ideal.
Example:
set_propagated_clock [all_clocks]

A.4 Environment Commands

This section describes the commands that are used to setup the environ-
ment of the design under analysis.

set_case_analysis value port_or_pin_list
Specifies the port or pin that is set to
the constant value.
Examples:
set_case_analysis 0 [get_pins UDFT/MODE_SEL]
set_case_analysis 1 [get_ports SCAN_ENABLE]

set_drive [-rise] [-fall] [-min] [-max]
resistance port_list

Is used to specify the drive strength of the input port.
It specifies the external drive resistance to the port.
A value of 0 signifies highest drive strength.
Example:
set_drive 0 {CLK RST}

set_driving_cell [-lib_cell lib_cell_name] [-rise]
[-fall] [-library lib_name] [-pin pin_name]
[-from_pin from_pin_name] [-multiply_by factor]
[-dont_scale] [-no_design_rule]

APPENDIX A SDC

462

[-input_transition_rise rise_time]
[-input_transition_fall fall_time] [-min] [-max]
[-clock clock_name] [-clock_fall] port_list

Is used to model the drive resistance of the cell
driving the input port.
Example:
set_driving_cell -lib_cell BUFX4 -pin ZN [all_inputs]

set_fanout_load value port_list
Sets the specified fanout load on the output ports.
Example:
set_fanout_load 5 [all_outputs]

set_input_transition [-rise] [-fall] [-min] [-max]
[-clock clock_name] [-clock_fall]
transition port_list

Specifies the transition time on an input pin.
Examples:
set_input_transition 0.2 \
[get_ports SD_DIN*]

set_input_transition -rise 0.5 \
[get_ports GPIO*]

set_load [-min] [-max] [-subtract_pin_load] [-pin_load]
[-wire_load] value objects

Set the value of capacitive load on pin or net in design.
The -subtract_pin_load option specifies to subtract the
pin cap from the indicated load.
Examples:
set_load 50 [all_outputs]
set_load 0.1 [get_pins UFF0/Q] # On an internal pin.
set_load -subtract_pin_load 0.025 \
[get_nets UCNT0/NET5] # On a net.

set_logic_dc port_list
set_logic_one port_list

Environment Commands SECTION A.4

463

set_logic_zero port_list
Sets the specified ports to be a don’t care value,
a logic one or a logic zero.
Examples:
set_logic_dc SE
set_logic_one TEST
set_logic_zero [get_pins USB0/USYNC_FF1/Q]

set_max_area area_value
Sets the max area limit for current design.
Example:
set_max_area 20000.0

set_max_capacitance value object_list
Specifies the max capacitance for ports or on a design.
If for a design, it specifies the max capacitance for all
pins in the design.
Examples:
set_max_capacitance 0.2 [current_design]
set_max_capacitance 1 [all_outputs]

set_max_fanout value object_list
Specifies the max fanout value for ports or on a design.
If for a design, it specifies the max fanout for all
output pins in the design.
Examples:
set_max_fanout 16 [get_pins UDFT0/JTAG/ZN]
set_max_fanout 50 [current_design]

set_max_transition [-clock_path]
[-data_path] [-rise] [-fall] value object_list

Specifies the max transition time on a port or
on a design. If for a design, it specifies the max
transition on all pins in a design.
Example:
set_max_transition 0.2 UCLKDIV0/QN

APPENDIX A SDC

464

set_min_capacitance value object_list
Specifies a minimum capacitance value for a port
or on pins in design.
Example:
set_min_capacitance 0.05 UPHY0/UCNTR/B1

set_operating_conditions [-library lib_name]
[-analysis_type type] [-max max_condition]
[-min min_condition] [-max_library max_lib]
[-min_library min_lib] [-object_list objects]
[condition]

Sets the specified operating condition for timing
analysis. Analysis type can be single, bc_wc, or
on_chip_variation. Operating conditions are defined in
libraries using the operating_conditions command.
Examples:
set_operating_conditions -analysis_type bc_wc
set_operating_conditions WCCOM
set_operating_conditions -analysis_type \
on_chip_variation

set_port_fanout_number value port_list
Sets maximum fanout of a port.
Example:
set_port_fanout_number 10 [get_ports GPIO*]

set_resistance [-min] [-max] value list_of_nets
Sets the resistance on the specified nets.
Examples:
set_resistance 10 -min U0/U1/NETA
set_resistance 50 -max U0/U1/NETA

set_timing_derate [-cell_delay] [-cell_check]
[-net_delay] [-data] [-clock] [-early] [-late]
derate_value [object_list]

Specifies derating values.

Environment Commands SECTION A.4

465

set_wire_load_min_block_size size
Specifies the minimum block size to be used when the
wire load mode is set to enclosed.
Example:
set_wire_load_min_block_size 5000

set_wire_load_mode mode_name
Defines the mechanism of how a wire load model is to be
used for nets in a hierarchical design.
The mode_name can be top, enclosed, or segmented.
The top mode causes the wire load model defined in the
top-level of the hierarchy to be used at all lower levels.
The enclosed mode causes the wire load model of the block
that fully encloses that net to be used for that net.
The segmented mode causes net segment in the block to use
the block’s wire load model.
Example:
set_wire_load_mode enclosed

set_wire_load_model -name model_name [-library lib_name]
[-min] [-max] [object_list]

Defines the wire load model to be used for the current
design or for the specified nets.
Example:
set_wire_load_model -name “eSiliconLightWLM”

set_wire_load_selection_group [-library lib_name]
[-min] [-max] group_name [object_list]

Sets the wire load selection group for a design when
determining wire load model based on cell area of the
blocks. Selection groups are typically defined in
technology libraries.

APPENDIX A SDC

466

A.5 Multi-Voltage Commands

These commands apply when multi-voltage islands are present in a de-
sign.

create_voltage_area -name name
[-coordinate coordinate_list] [-guard_band_x float]
[-guard_band_y float] cell_list

set_level_shifter_strategy [-rule rule_type]

set_level_shifter_threshold [-voltage float]
[-percent float]

set_max_dynamic_power power [unit]
Specify max dynamic power.
Example:
set_max_dynamic_power 0 mw

set_max_leakage_power power [unit]
Specify max leakage power.
Example:
set_max_leakage_power 12 mw

q

467

A P P E N D I X

B

Standard Delay
Format (SDF)

his appendix describes the standard delay annotation format and ex-
plains how backannotation is performed in simulation. The delay for-
mat describes cell delays and interconnect delays of a design netlist

and is independent of the language the design may be described in, may it
be VHDL or Verilog HDL, the two dominant standard hardware descrip-
tion languages.

While this chapter describes backannotation for simulation, backannota-
tion for STA is a more simple and straightforward process in which the
timing arcs in a DUA are annotated with the specified delays from the SDF.

T

APPENDIX B Standard Delay Format (SDF)

468

B.1 What is it?

SDF stands for Standard Delay Format. It is an IEEE standard - IEEE Std
1497. It is an ASCII text file. It describes timing information and con-
straints. Its purpose is to serve as a textual timing exchange medium be-
tween various tools. It can also be used to describe timing data for tools
that require it. Since it is an IEEE standard, timing information generated
by one tool can be consumed by a number of other tools that support such
a standard. The data is represented in a tool-independent and language-
independent way and it includes specification of interconnect delays, de-
vice delays and timing checks.

Since SDF is an ASCII file, it is human-readable, though these files tend to
be rather large for real designs. However, it is meant as an exchange medi-
um between tools. Quite often when exchanging information, one could
potentially run into a problem where a tool generates an SDF file but the
other tool that reads SDF does not read the SDF properly. The tool reader
could either generate an error or a warning reading the SDF or it might in-
terpret the values in the SDF incorrectly. In that case, one may have to look
into the file and see what went wrong. This chapter explains the basics of
the SDF file and provides necessary and sufficient information to help un-
derstand and debug any annotation problems.

Figure B-1 shows a typical flow of how an SDF file is used. A timing calcu-
lator tool typically generates the timing information that is stored in an
SDF file. This information is then backannotated into the design by the tool
that reads the SDF. Note that the complete design information is not cap-
tured in an SDF file, but only the delay values are stored. For example, in-
stance names and pin names of instances are captured in the SDF as they
are necessary to specify instance-specific or pin-specific delays. Therefore,
it is imperative that the same design be presented to both the SDF genera-
tion tool and the SDF reader tool.

One design can have multiple SDF files associated with it. One SDF file can
be created for one design. In a hierarchical design, multiple SDFs may be
created for each block in a hierarchy. During annotation, each SDF is ap-

What is it? SECTION B.1

469

plied to the appropriate hierarchical instance. Figure B-2 shows this figura-
tively.

An SDF file contains computed timing data for backannotation and for for-
ward-annotation. More specifically, it contains:

i. Cell delays

ii. Pulse propagation

iii. Timing checks

iv. Interconnect delays

v. Timing environment

Figure B-1 The SDF flow.

Timing calculator

Design netlist SDF

Analysis tool
(SDF annotator)

- Simulator
- Timing analysis (STA)
- Synthesis
- Layout

Library timing
Interconnect data

(pre-layout or post-layout)

Library
models

APPENDIX B Standard Delay Format (SDF)

470

Both pin-to-pin delay and distributed delay can be modeled for cell delays.
Pin-to-pin delays are represented using the IOPATH construct. These con-
structs define input to output path delays for each cell. The COND construct
can additionally be used to specify conditional pin-to-pin delays. State-de-
pendent path delays can be specified using the COND construct as well. Dis-
tributed delay modeling is specified using the DEVICE construct.

The pulse propagation constructs, PATHPULSE and PATHPULSEPERCENT, can be
used to specify the size of glitches that are allowed to propagate to the out-
put of a cell using the pin-to-pin delay model.

The range of timing checks that can be specified in SDF includes:

i. Setup: SETUP, SETUPHOLD

ii. Hold: HOLD, SETUPHOLD

iii. Recovery: RECOVERY, RECREM

iv. Removal: REMOVAL, RECREM

v. Maximum skew: SKEW, BIDIRECTSKEW

vi. Minimum pulse width: WIDTH

vii. Minimum period: PERIOD

Figure B-2 Multiple SDFs in a hierarchical design.

UART

RX TX

DIV

SDF
(Top-level)

SDF
(Block-level)

SDF
(Hierarchical)

The Format SECTION B.2

471

viii. No change: NOCHANGE

Conditions may be present on signals in timing checks. Negative values
are allowed in timing checks, though tools that don’t support negative val-
ues can choose to replace it with zero.

There are three styles of interconnect modeling that are supported in an
SDF description. The INTERCONNECT construct is the most general and often
used and can be used to specify point-to-point delay (from source to sink).
Thus a single net can have multiple INTERCONNECT constructs. The PORT con-
struct can be used to specify nets delays at only the load ports - it assumes
that there is only one source for the net. The NETDELAY construct can be used
to specify the delay of an entire net without regard to the sources or its
sinks and therefore is the least specific way of specifying delays on a net.

The timing environment provides information under which the design op-
erates. Such information includes the ARRIVAL, DEPARTURE, SLACK and WAVE-
FORM constructs. These constructs are mainly used for forward-annotation,
such as for synthesis.

B.2 The Format

An SDF file contains a header section followed by one or more cells. Each
cell represents a region or scope in a design. It can be a library primitive or
a user-defined black box.

(DELAYFILE
<header_section>
(CELL
<cell_section>

)
(CELL
<cell_section>

)

APPENDIX B Standard Delay Format (SDF)

472

... <other cells>
)

The header section contains general information and does not affect the se-
mantics of the SDF file, except for the hierarchy separator, timescale and
the SDF version number. The hierarchy separator, DIVIDER, by default is the
dot (‘.’) character. It can be replaced with the ‘/’ character by specifying:

(DIVIDER /)

If no timescale information is present in the header, the default is 1ns. Oth-
erwise a timescale, TIMESCALE, can be explicitly specified using:

(TIMESCALE 10ps)

which says to multiply all delay values specified in the SDF file by 10ps.

The SDF version, SDFVERSION, is required and is used by the consumer of
SDF to ensure that the file conforms to the specified SDF version. Other in-
formation that may be present in the header section, which is a general in-
formation category, includes date, program name, version and operating
condition.

(DESIGN "BCM")
(DATE "Tuesday, May 24, 2004")
(PROGRAM "Star Galaxy Automation Inc., TimingTool")
(VERSION "V2004.1")
(VOLTAGE 1.65:1.65:1.65)
(PROCESS "1.000:1.000:1.000")
(TEMPERATURE 0.00:0.00:0.00)

Following the header section is a description of one or more cells. Each cell
represents one or more instances (using wildcard) in the design. A cell may
either be a library primitive or a hierarchical block.

The Format SECTION B.2

473

(CELL
(CELLTYPE <cell_type>)
(INSTANCE <hierarchical_instance_name>)
(DELAY
<path_delay_section>

)
(TIMINGCHECK
<timing_check_section>

)
(TIMINGENV
<timing_environment_section>

)
(LABEL
<label_section>

)
)
. . . <other cells>

The order of cells is important as data is processed top to bottom. A later
cell description may override timing information specified by an earlier
cell description (usually it is not common to have timing information of the
same cell instance defined twice). In addition, timing information can be
annotated either as an absolute value or as an increment. If timing is incre-
mentally applied, it adds the new value to the existing value; if the timing
is absolute, it overwrites any previously specified timing information.

The cell instance can be a hierarchical instance name. The separator used
for hierarchy separator must conform to the one specified in the header
section. The cell instance name can optionally be the ‘*’ character referring
to a wildcard character, which means all cell instances of the specified type.

(CELL
(CELLTYPE "NAND2")
(INSTANCE *)
// Refers to all instances of NAND2.
. . .

APPENDIX B Standard Delay Format (SDF)

474

There are four types of timing specifications that can be described in a cell:

i. DELAY: Used to describe delays.

ii. TIMINGCHECK: Used to describe timing checks.

iii. TIMINGENV: Used to describe the timing environment.

iv. LABEL: Declares timing model variables that can be used to de-
scribe delays.

Here are some examples.

// An absolute path delay specification:
(DELAY
(ABSOLUTE
(IOPATH A Y (0.147))

)
)

// A setup and hold timing check specification:
(TIMINGCHECK
(SETUPHOLD (posedge Q) (negedge CK) (0.448) (0.412))

)

// A timing constraint between two points:
(TIMINGENV
(PATHCONSTRAINT UART/ENA UART/TX/CTRL (2.1) (1.5))

)

// A label that overrides the value of a Verilog HDL
// specparam:
(LABEL
(ABSOLUTE
(tCLKQ (0.480:0.512:0.578) (0.356:0.399:0.401))
(tsetupDCLK (0.112))

)
)

The Format SECTION B.2

475

There are four types of DELAY timing specifications:

i. ABSOLUTE: Replaces existing delay values for cell instance dur-
ing backannotation.

ii. INCREMENT: Adds the new delay data to any existing delay val-
ues of the cell instance.

iii. PATHPULSE: Specifies pulse propagation limit between an input
and output of the design. This limit is used to decide whether
to propagate a pulse appearing on the input to the output, or to
be marked with an 'X', or to get filtered out.

iv. PATHPULSEPERCENT: This is exactly identical to PATHPULSE except
that the values are described as percents.

Here are some examples.

// Absolute port delay:
(DELAY
(ABSOLUTE
(PORT UART.DIN (0.170))
(PORT UART.RX.XMIT (0.645))

)
)

// Adds IO path delay to existing delays of cell:
(DELAY
(INCREMENT
(IOPATH (negedge SE) Q (1.1:1.22:1.35))

)
)

// Pathpulse delay:
(DELAY
(PATHPULSE RN Q (3) (7))

)
// The ports RN and Q are input and output of the

APPENDIX B Standard Delay Format (SDF)

476

// cell. The first value, 3, is the pulse rejection
// limit, called r-limit; it defines the narrowest pulse
// that can appear on output. Any pulse narrower than
// this is rejected, that is, it will not appear on
// output. The second value, 7, if present, is the
// error limit - also called e-limit. Any pulse smaller
// than e-limit causes the output to be an X.
// The e-limit must be greater than r-limit. See
// Figure B-3. When a pulse that is less than 3 (r-limit)

// occurs, the pulse does not propagate to the output.
// When the pulse width is between the 3 (r-limit) and
// 7 (e-limit), the output is an X. When the pulse width
// is larger than 7 (e-limit), pulse propagates to output
// without any filtering.

Figure B-3 Error limit and rejection limit.

2

5

8

RN

Q

RN

Q

RN

Q

No pulse

X

Unfiltered

The Format SECTION B.2

477

// Pathpulsepercent delay type:
(DELAY
(PATHPULSEPERCENT CIN SUM (30) (50))

)
// The r-limit is specified as 30% of the delay time from
// CIN to SUM and the e-limit is specified as 50% of
// this delay.

There are eight types of delay definitions that can be described with either
ABSOLUTE or INCREMENT:

i. IOPATH: Input-output path delays.

ii. RETAIN: Retain definition. Specifies the time for which an out-
put shall retain its previous value after a change on its related
input port.

iii. COND: Conditional path delay. Can be used to specify state-de-
pendent input-to-output path delays.

iv. CONDELSE: Default path delay. Specifies default value to use for
conditional paths.

v. PORT: Port delays. Specifies interconnect delays that are mod-
eled as delay at input ports.

vi. INTERCONNECT: Interconnect delays. Specifies the propagation
delay across a net from a source to its sink.

vii. NETDELAY: Net delays. Specifies the propagation delay from all
sources to all sinks of a net.

viii. DEVICE: Device delay. Primarily used to describe a distributed
timing model. Specifies propagation delay of all paths through
a cell to the output port.

Here are some examples.

// IO path delay between posedge of CK and Q:
(DELAY

APPENDIX B Standard Delay Format (SDF)

478

(ABSOLUTE
(IOPATH (posedge CK) Q (2) (3))

)
)
// 2 is the propagation rise delay and 3 is the
// propagation fall delay.

// Retain delay in an IO path:
(DELAY
(ABSOLUTE
(IOPATH A Y
(RETAIN (0.05:0.05:0.05) (0.04:0.04:0.04))
(0.101:0.101:0.101) (0.09:0.09:0.09))

)
)
// Y shall retain its previous value for 50ps (40ps for
// a low value) after a change of value on input A.
// 50ps is the retain high value, 40ps is the retain
// low value, 101ps is the propagate rise delay and
// 90ps is the propagate fall delay. See Figure B-4.

Figure B-4 RETAIN delay.

IOPATH delay

RETAIN delay

A

Y

The Format SECTION B.2

479

// Conditional path delay:
(DELAY
(ABSOLUTE
(COND SE == 1'b1 (IOPATH (posedge CK) Q (0.661)))

)
)

// Default conditional path delay:
(DELAY
(ABSOLUTE
(CONDELSE (IOPATH ADDR[7] COUNT[0] (0.870) (0.766)))

)
)

// Port delay on input FRM_CNT[0]:
(DELAY
(ABSOLUTE
(PORT UART/RX/FRM_CNT[0] (0.439))

)
)

// Interconnect delay:
(DELAY
(ABSOLUTE
(INTERCONNECT O1/Y O2/B (0.209:0.209:0.209))

)
)

// Net delay:
(DELAY
(ABSOLUTE
(NETDELAY A3/B (0.566))

)
)

APPENDIX B Standard Delay Format (SDF)

480

Delays

So far we have seen many different forms of delays. There are additional
forms of delay specification. In general, delays can be specified as a set of
one, two, three, six or twelve tokens that can be used to describe the fol-
lowing transition delays: 0->1, 1->0, 0->Z, Z->1, 1->Z, Z->0, 0->X, X->1,
1->X, X->0, X->Z, Z->X. The following table shows how fewer than twelve
delay tokens are used to represent the twelve transitions.

Here are some examples of these delays.

(DELAY
(ABSOLUTE

Transition 2-values
(v1 v2)

3-values
(v1 v2 v3)

6-values
(v1 v2 v3
v4 v5 v6)

12-values
(v1 v2 v3 v4 v5
v6 v7 v8 v9 v10

v11 v12)

0->1 v1 v1 v1 v1

1->0 v2 v2 v2 v2

0->Z v1 v3 v3 v3

Z->1 v1 v1 v4 v4

1->Z v2 v3 v5 v5

Z->0 v2 v2 v6 v6

0->X v1 min(v1,v3) min(v1,v3) v7

X->1 v1 v1 max(v1,v4) v8

1->X v2 min(v2,v3) min(v2,v5) v9

X->0 v2 v2 max(v2,v6) v10

X->Z max(v1,v2) v3 max(v3,v5) v11

Z->X min(v1,v2) min(v1,v2) min(v6,v4) v12

Table B-5 Mapping to twelve transition delays.

The Format SECTION B.2

481

// 1-value delay:
(IOPATH A Y (0.989))
// 2-value delay:
(IOPATH B Y (0.989) (0.891))
// 6-value delay:
(IOPATH CTRL Y (0.121) (0.119) (0.129)

(0.131) (0.112) (0.124))
// 12-value delay:
(COND RN == 1'b0
(IOPATH C Y (0.330) (0.312) (0.330) (0.311) (0.328)

(0.321) (0.328) (0.320) (0.320)
(0.318) (0.318) (0.316)

)
)
// In this 2-value delay, the first one is null
// implying the annotator is not to change its value.
(IOPATH RN Q () (0.129))

)
)

Each delay token can, in turn, be written as one, two or three values as
shown in the following examples.

(DELAY
(ABSOLUTE
// One value in a delay token:
(IOPATH A Y (0.117))
// The delay value, the pulse rejection limit
// (r-limit) and X filter limit (e-limit) are same.

// Two values in a delay (note no colon):
(IOPATH (posedge CK) Q (0.12 0.15))
// 0.12 is the delay value and 0.15 is the r-limit
// and e-limit.

APPENDIX B Standard Delay Format (SDF)

482

// Three values in a delay:
(IOPATH F1/Y AND1/A (0.339 0.1 0.15))
// Path delay is 0.339, r-limit is 0.1 and
// e-limit is 0.15.

)
)

Delay values in a single SDF file can be written using signed real numbers
or as triplets of form:

(8.0 : 3.6 : 9.8)

to denote minimum, typical, maximum delays that represent the three pro-
cess operating conditions of the design. The choice of which value is select-
ed is made by the annotator typically based on a user-provided option. The
values in the triplet form are optional, though it should have at least one.
For example, the following are legal.

(::0.22)
(1.001: :0.998)

Values that are not specified are simply not annotated.

Timing Checks

Timing check limits are specified in the section that starts with the TIM-
INGCHECK keyword. In any of these checks, a COND construct can be used to
specify conditional timing checks. In some cases, two additional condition-
al checks can be specified, SCOND and CCOND, that are associated with the
stamp event and the check event.

Following are the set of checks:

i. SETUP: Setup timing check

ii. HOLD: Hold timing check

The Format SECTION B.2

483

iii. SETUPHOLD: Setup and hold timing check

iv. RECOVERY: Recovery timing check

v. REMOVAL: Removal timing check

vi. RECREM: Recovery and removal timing check

vii. SKEW: Unidirectional skew timing check

viii. BIDIRECTSKEW: Bidirectional skew timing check

ix. WIDTH: Width timing check

x. PERIOD: Period timing check

xi. NOCHANGE: No-change timing check

Here are some examples.

(TIMINGCHECK
// Setup check limit:
(SETUP din (posedge clk) (2))

// Hold check limit:
(HOLD din (negedge clk) (0.445:0.445:0.445))

// Conditional hold check limit :
(HOLD (COND RST==1'b1 D) (posedge CLK) (1.15))
// Hold check between D and positive edge of CLK, but
// only when RST is 1.

// Setup and hold check limit:
(SETUPHOLD J CLK (1.2) (0.99))
// 1.2 is the setup limit and 0.99 is the hold limit.

// Conditional setup and hold limit:
(SETUPHOLD D CLK (0.809) (0.591) (CCOND ~SE))
// Condition applies with CLK for setup and
// with D for hold.

APPENDIX B Standard Delay Format (SDF)

484

// Conditional setup and hold check limit:
(SETUPHOLD (COND ~RST D) (posedge CLK) (1.452) (1.11))
// Setup and hold check between D and positive edge
// of CLK, but only when RST is low.

// RECOVERY check limit:
(RECOVERY SE (negedge CLK) (0.671))

// Conditional removal check limit:
(REMOVAL (COND ~LOAD CLEAR) CLK (2.001:2.1:2.145))
// Removal check between CLEAR and CLK but only
// when LOAD is low.

// Recovery and removal check limit:
(RECREM RST (negedge CLK) (1.1) (0.701))
// 1.1 is the recovery limit and 0.701 is the
// removal limit.

// Skew conditional check limit:
(SKEW (COND MMODE==1'b1 GNT) (posedge REQ) (3.2))

// Bidirectional skew check limit:
(BIDIRECTSKEW (posedge CLOCK1) (negedge TCK) (1.409))

// Width check limit:
(WIDTH (negedge RST) (12))

// Period check limit:
(PERIOD (posedge JTCLK) (13.33))

// Nochange check limit:
(NOCHANGE (posedge REQ) (negedge GNT) (2.5) (3.12))

)

The Format SECTION B.2

485

Labels

Labels are used to specify values for VHDL generics or Verilog HDL speci-
fy parameters.

(LABEL
(ABSOLUTE
(tholddclk (0.809))
(tphAY (0.553))

)
)

Timing Environment

There are a number of constructs available that can be used to describe the
timing environment of a design. However, these constructs are used for
forward-annotation rather than backward-annotation, such as in logic syn-
thesis tools. These are not described in this text.

B.2.1 Examples

We provide complete SDFs for two designs.

Full-adder

Here is the Verilog HDL netlist for a full-adder circuit.

module FA_STR (A, B, CIN, SUM, COUT);
input A, B, CIN;
output SUM, COUT;
wire S1, S2, S3, S4, S5;

XOR2X1 X1 (.Y(S1), .A(A), .B(B));
XOR2X1 X2 (.Y(SUM), .A(S1), .B(CIN));

APPENDIX B Standard Delay Format (SDF)

486

AND2X1 A1 (.Y(S2), .A(A), .B(B));
AND2X1 A2 (.Y(S3), .A(B), .B(CIN));
AND2X1 A3 (.Y(S4), .A(A), .B(CIN));

OR2X1 O1 (.Y(S5), .A(S2), .B(S3));
OR2X1 O2 (.Y(COUT), .A(S4), .B(S5));

endmodule

Here is the complete corresponding SDF file produced by a timing analysis
tool.

(DELAYFILE
(SDFVERSION "OVI 2.1")
(DESIGN "FA_STR")
(DATE "Mon May 24 13:56:43 2004")
(VENDOR "slow")
(PROGRAM "CompanyName ToolName")
(VERSION "V2.3")
(DIVIDER /)
// OPERATING CONDITION "slow"
(VOLTAGE 1.35:1.35:1.35)
(PROCESS "1.000:1.000:1.000")
(TEMPERATURE 125.00:125.00:125.00)
(TIMESCALE 1ns)
(CELL
(CELLTYPE "FA_STR")
(INSTANCE)
(DELAY
(ABSOLUTE
(INTERCONNECT A A3/A (0.000:0.000:0.000))
(INTERCONNECT A A1/A (0.000:0.000:0.000))
(INTERCONNECT A X1/A (0.000:0.000:0.000))
(INTERCONNECT B A2/A (0.000:0.000:0.000))
(INTERCONNECT B A1/B (0.000:0.000:0.000))
(INTERCONNECT B X1/B (0.000:0.000:0.000))
(INTERCONNECT CIN A3/B (0.000:0.000:0.000))

The Format SECTION B.2

487

(INTERCONNECT CIN A2/B (0.000:0.000:0.000))
(INTERCONNECT CIN X2/B (0.000:0.000:0.000))
(INTERCONNECT X2/Y SUM (0.000:0.000:0.000))
(INTERCONNECT O2/Y COUT (0.000:0.000:0.000))
(INTERCONNECT X1/Y X2/A (0.000:0.000:0.000))
(INTERCONNECT A1/Y O1/A (0.000:0.000:0.000))
(INTERCONNECT A2/Y O1/B (0.000:0.000:0.000))
(INTERCONNECT A3/Y O2/A (0.000:0.000:0.000))
(INTERCONNECT O1/Y O2/B (0.000:0.000:0.000))

)
)

)
(CELL
(CELLTYPE "XOR2X1")
(INSTANCE X1)
(DELAY
(ABSOLUTE
(IOPATH A Y (0.197:0.197:0.197)

(0.190:0.190:0.190))
(IOPATH B Y (0.209:0.209:0.209)

(0.227:0.227:0.227))
(COND B==1'b1 (IOPATH A Y (0.197:0.197:0.197)

(0.190:0.190:0.190)))
(COND A==1'b1 (IOPATH B Y (0.209:0.209:0.209)

(0.227:0.227:0.227)))
(COND B==1'b0 (IOPATH A Y (0.134:0.134:0.134)

(0.137:0.137:0.137)))
(COND A==1'b0 (IOPATH B Y (0.150:0.150:0.150)

(0.163:0.163:0.163)))
)

)
)
(CELL
(CELLTYPE "XOR2X1")
(INSTANCE X2)
(DELAY
(ABSOLUTE

APPENDIX B Standard Delay Format (SDF)

488

(IOPATH (posedge A) Y (0.204:0.204:0.204)
(0.196:0.196:0.196))

(IOPATH (negedge A) Y (0.198:0.198:0.198)
(0.190:0.190:0.190))

(IOPATH B Y (0.181:0.181:0.181)
(0.201:0.201:0.201))

(COND B==1'b1 (IOPATH A Y (0.198:0.198:0.198)
(0.196:0.196:0.196)))

(COND A==1'b1 (IOPATH B Y (0.181:0.181:0.181)
(0.201:0.201:0.201)))

(COND B==1'b0 (IOPATH A Y (0.135:0.135:0.135)
(0.140:0.140:0.140)))

(COND A==1'b0 (IOPATH B Y (0.122:0.122:0.122)
(0.139:0.139:0.139)))

)
)

)

(CELL
(CELLTYPE "AND2X1")
(INSTANCE A1)
(DELAY
(ABSOLUTE
(IOPATH A Y (0.147:0.147:0.147)

(0.157:0.157:0.157))
(IOPATH B Y (0.159:0.159:0.159)

(0.173:0.173:0.173))
)

)
)
(CELL
(CELLTYPE "AND2X1")
(INSTANCE A2)
(DELAY
(ABSOLUTE
(IOPATH A Y (0.148:0.148:0.148)

(0.157:0.157:0.157))

The Format SECTION B.2

489

(IOPATH B Y (0.160:0.160:0.160)
(0.174:0.174:0.174))

)
)

)
(CELL
(CELLTYPE "AND2X1")
(INSTANCE A3)
(DELAY
(ABSOLUTE
(IOPATH A Y (0.147:0.147:0.147)

(0.157:0.157:0.157))
(IOPATH B Y (0.159:0.159:0.159)

(0.173:0.173:0.173))
)

)
)
(CELL
(CELLTYPE "OR2X1")
(INSTANCE O1)
(DELAY
(ABSOLUTE
(IOPATH A Y (0.138:0.138:0.138)

(0.203:0.203:0.203))
(IOPATH B Y (0.151:0.151:0.151)

(0.223:0.223:0.223))
)

)
)
(CELL
(CELLTYPE "OR2X1")
(INSTANCE O2)
(DELAY
(ABSOLUTE
(IOPATH A Y (0.126:0.126:0.126)

(0.191:0.191:0.191))
(IOPATH B Y (0.136:0.136:0.136)

APPENDIX B Standard Delay Format (SDF)

490

(0.212:0.212:0.212))
)

)
)

)

All delays in the INTERCONNECTs are 0 as this is pre-layout data and ideal in-
terconnects are modeled.

Decade Counter

Here is the Verilog HDL model for a decade counter.

module DECADE_CTR (COUNT, Z);
input COUNT;
output [0:3] Z;
wire S1, S2;

AND2X1 a1 (.Y(S1), .A(Z[2]), .B(Z[1]));

JKFFX1
JK1 (.J(1'b1), .K(1'b1), .CK(COUNT),

.Q(Z[0]), .QN()),
JK2 (.J(S2), .K(1'b1), .CK(Z[0]), .Q(Z[1]), .QN()),
JK3 (.J(1'b1), .K(1'b1), .CK(Z[1]),

.Q(Z[2]), .QN()),
JK4 (.J(S1), .K(1'b1), .CK(Z[0]),

.Q(Z[3]), .QN(S2));
endmodule

The complete corresponding SDF follows.

(DELAYFILE
(SDFVERSION "OVI 2.1")
(DESIGN "DECADE_CTR")
(DATE "Mon May 24 14:30:17 2004")

The Format SECTION B.2

491

(VENDOR "Star Galaxy Automation, Inc.")
(PROGRAM "MyCompanyName ToolTime")
(VERSION "V2.3")
(DIVIDER /)
// OPERATING CONDITION "slow"
(VOLTAGE 1.35:1.35:1.35)
(PROCESS "1.000:1.000:1.000")
(TEMPERATURE 125.00:125.00:125.00)
(TIMESCALE 1ns)
(CELL
(CELLTYPE "DECADE_CTR")
(INSTANCE)
(DELAY
(ABSOLUTE
(INTERCONNECT COUNT JK1/CK (0.191:0.191:0.191))
(INTERCONNECT JK1/Q Z\[0\] (0.252:0.252:0.252))
(INTERCONNECT JK2/Q Z\[1\] (0.186:0.186:0.186))
(INTERCONNECT JK3/Q Z\[2\] (0.18:0.18:0.18))
(INTERCONNECT JK4/Q Z\[3\] (0.195:0.195:0.195))
(INTERCONNECT JK3/Q a1/A (0.175:0.175:0.175))
(INTERCONNECT JK2/Q a1/B (0.207:0.207:0.207))
(INTERCONNECT JK4/QN JK2/J (0.22:0.22:0.22))
(INTERCONNECT JK1/Q JK2/CK (0.181:0.181:0.181))
(INTERCONNECT JK2/Q JK3/CK (0.193:0.193:0.193))
(INTERCONNECT a1/Y JK4/J (0.224:0.224:0.224))
(INTERCONNECT JK1/Q JK4/CK (0.218:0.218:0.218))

)
)

)
(CELL
(CELLTYPE "AND2X1")
(INSTANCE a1)
(DELAY
(ABSOLUTE
(IOPATH A Y (0.179:0.179:0.179)

(0.186:0.186:0.186))
(IOPATH B Y (0.190:0.190:0.190)

APPENDIX B Standard Delay Format (SDF)

492

(0.210:0.210:0.210))
)

)
)
(CELL
(CELLTYPE "JKFFX1")
(INSTANCE JK1)
(DELAY
(ABSOLUTE
(IOPATH (posedge CK) Q (0.369:0.369:0.369)

(0.470:0.470:0.470))
(IOPATH (posedge CK) QN (0.280:0.280:0.280)

(0.178:0.178:0.178))
)

)
(TIMINGCHECK
(SETUP (posedge J) (posedge CK)
(0.362:0.362:0.362))

(SETUP (negedge J) (posedge CK)
(0.220:0.220:0.220))

(HOLD (posedge J) (posedge CK)
(-0.272:-0.272:-0.272))

(HOLD (negedge J) (posedge CK)
(-0.200:-0.200:-0.200))

(SETUP (posedge K) (posedge CK)
(0.170:0.170:0.170))

(SETUP (negedge K) (posedge CK)
(0.478:0.478:0.478))

(HOLD (posedge K) (posedge CK)
(-0.158:-0.158:-0.158))

(HOLD (negedge K) (posedge CK)
(-0.417:-0.417:-0.417))

(WIDTH (negedge CK)
(0.337:0.337:0.337))

(WIDTH (posedge CK) (0.148:0.148:0.148))
)

)

The Format SECTION B.2

493

(CELL
(CELLTYPE "JKFFX1")
(INSTANCE JK2)
(DELAY
(ABSOLUTE
(IOPATH (posedge CK) Q (0.409:0.409:0.409)

(0.512:0.512:0.512))
(IOPATH (posedge CK) QN (0.326:0.326:0.326)

(0.222:0.222:0.222))
)

)
(TIMINGCHECK
(SETUP (posedge J) (posedge CK)
(0.348:0.348:0.348))

(SETUP (negedge J) (posedge CK)
(0.227:0.227:0.227))

(HOLD (posedge J) (posedge CK)
(-0.257:-0.257:-0.257))

(HOLD (negedge J) (posedge CK)
(-0.209:-0.209:-0.209))

(SETUP (posedge K) (posedge CK)
(0.163:0.163:0.163))

(SETUP (negedge K) (posedge CK)
(0.448:0.448:0.448))

(HOLD (posedge K) (posedge CK)
(-0.151:-0.151:-0.151))

(HOLD (negedge K) (posedge CK)
(-0.392:-0.392:-0.392))

(WIDTH (negedge CK) (0.337:0.337:0.337))
(WIDTH (posedge CK) (0.148:0.148:0.148))

)
)
(CELL
(CELLTYPE "JKFFX1")
(INSTANCE JK3)
(DELAY
(ABSOLUTE

APPENDIX B Standard Delay Format (SDF)

494

(IOPATH (posedge CK) Q (0.378:0.378:0.378)
(0.485:0.485:0.485))

(IOPATH (posedge CK) QN (0.324:0.324:0.324)
(0.221:0.221:0.221))

)
)
(TIMINGCHECK
(SETUP (posedge J) (posedge CK)
(0.339:0.339:0.339))

(SETUP (negedge J) (posedge CK)
(0.211:0.211:0.211))

(HOLD (posedge J) (posedge CK)
(-0.249:-0.249:-0.249))

(HOLD (negedge J) (posedge CK)
(-0.192:-0.192:-0.192))

(SETUP (posedge K) (posedge CK)
(0.163:0.163:0.163))

(SETUP (negedge K) (posedge CK)
(0.449:0.449:0.449))

(HOLD (posedge K) (posedge CK)
(-0.152:-0.152:-0.152))

(HOLD (negedge K) (posedge CK)
(-0.393:-0.393:-0.393))

(WIDTH (negedge CK) (0.337:0.337:0.337))
(WIDTH (posedge CK) (0.148:0.148:0.148))

)
)
(CELL
(CELLTYPE "JKFFX1")
(INSTANCE JK4)
(DELAY
(ABSOLUTE
(IOPATH (posedge CK) Q (0.354:0.354:0.354)

(0.464:0.464:0.464))
(IOPATH (posedge CK) QN (0.364:0.364:0.364)

(0.256:0.256:0.256))
)

The Annotation Process SECTION B.3

495

)
(TIMINGCHECK
(SETUP (posedge J) (posedge CK)
(0.347:0.347:0.347))

(SETUP (negedge J) (posedge CK)
(0.226:0.226:0.226))

(HOLD (posedge J) (posedge CK)
(-0.256:-0.256:-0.256))

(HOLD (negedge J) (posedge CK)
(-0.208:-0.208:-0.208))

(SETUP (posedge K) (posedge CK)
(0.163:0.163:0.163))

(SETUP (negedge K) (posedge CK)
(0.448:0.448:0.448))

(HOLD (posedge K) (posedge CK)
(-0.151:-0.151:-0.151))

(HOLD (negedge K) (posedge CK)
(-0.392:-0.392:-0.392))

(WIDTH (negedge CK) (0.337:0.337:0.337))
(WIDTH (posedge CK) (0.148:0.148:0.148))

)
)

)

B.3 The Annotation Process

In this section, we describe how the annotation of the SDF occurs to an
HDL description. SDF annotation can be performed by a number of tools,
such as logic synthesis, simulation and static timing analysis; the SDF an-
notator is the component of these tools that reads the SDF, interprets and
annotates the timing values to the design. It is assumed that the SDF file is
created using information that is consistent with the HDL model and that
the same HDL model is used during backannotation. Additionally, it is the
responsibility of the SDF annotator to ensure that the timing values in the
SDF are interpreted correctly.

APPENDIX B Standard Delay Format (SDF)

496

The SDF annotator annotates the backannotation timing generics and pa-
rameters. It reports any errors if there is any noncompliance to the stan-
dard, either in syntax or in the mapping process. If certain SDF constructs
are not supported by an SDF annotator, no errors are produced - the anno-
tator simply ignores these.

If the SDF annotator fails to modify a backannotation timing generic, then
the value of the generic is not modified during the backannotation process,
that is, it is left unchanged.

In a simulation tool, backannotation typically occurs just following the
elaboration phase and directly preceding negative constraint delay calcula-
tion.

B.3.1 Verilog HDL

In Verilog HDL, the primary mechanism for annotation is the specify
block. A specify block can specify path delays and timing checks. Actual
delay values and timing check limit values are specified via the SDF file.
The mapping is an industry standard and is defined in IEEE Std 1364.

Specify path delays, specparam values, timing check constraint limits and
interconnect delays are among the information obtained from an SDF file
and annotated in a specify block of a Verilog HDL module. Other con-
structs in an SDF file are ignored when annotating to a Verilog HDL mod-
el. The LABEL section in SDF defines specparam values. Backannotation is
done by matching SDF constructs to corresponding Verilog HDL declara-
tions and then replacing the existing timing values with those in the SDF
file.

The Annotation Process SECTION B.3

497

Here is a table that shows how SDF delay values are mapped to Verilog
HDL delay values.

Verilog
transition

1-value
(v1)

2-values (v1
v2)

3-values (v1
v2 v3)

6-values (v1
v2 v3 v4 v5

v6)

12-values (v1
v2 v3 v4 v5 v6
v7 v8 v9 v10

v11 v12)

0->1 v1 v1 v1 v1 v1

1->0 v1 v2 v2 v2 v2

0->z v1 v1 v3 v3 v3

z->1 v1 v1 v1 v4 v4

1->z v1 v2 v3 v5 v5

z->0 v1 v2 v2 v6 v6

0->x v1 v1 min(v1 v3) min(v1 v3) v7

x->1 v1 v1 v1 max(v1 v4) v8

1->x v1 v2 min (v2 v3) min(v2 v5) v9

x->0 v1 v2 v2 max(v2 v6) v10

x->z v1 max(v1 v2) v3 max(v3 v5) v11

z->x v1 min(v1 v2) min(v1 v2) min(v4 v6) v12

Table B-6 Mapping SDF delays to Verilog HDL delays.

APPENDIX B Standard Delay Format (SDF)

498

The following table describes the mapping of SDF constructs to Verilog
HDL constructs.

See later section for examples.

Kinds SDF construct Verilog HDL

Propagation delay IOPATH Specify paths

Input setup time SETUP $setup, $setuphold

Input hold time HOLD $hold, $setuphold

Input setup and hold SETUPHOLD $setup, $hold,
$setuphold

Input recovery time RECOVERY $recovery

Input removal time REMOVAL $removal

Recovery and removal RECREM $recovery, $removal,
$recrem

Period PERIOD $period

Pulse width WIDTH $width

Input skew time SKEW $skew

No-change time NOCHANGE $nochange

Port delay PORT Interconnect delay

Net delay NETDELAY Interconnect delay

Interconnect delay INTERCONNECT Interconnect delay

Device delay DEVICE_DELAY Specify paths

Path pulse limit PATHPULSE Specify path pulse limit

Path pulse limit PATHPULSEPERCENT Specify path pulse limit

Table B-7 Mapping of SDF to Verilog HDL.

The Annotation Process SECTION B.3

499

B.3.2 VHDL

Annotation of SDF to VHDL is an industry standard. It is defined in the
IEEE standard for VITAL ASIC Modeling Specification, IEEE Std 1076.4;
one of the components of this standard describes the annotation of SDF de-
lays into ASIC libraries. Here, we present only the relevant part of the VI-
TAL standard as it relates to SDF mapping.

SDF is used to modify backannotation timing generics in a VITAL-compli-
ant model directly. Timing data can be specified only for a VITAL-compli-
ant model using SDF. There are two ways to pass timing data into a VHDL
model: via configurations, or directly into simulation. The SDF annotation
process consists of mapping SDF constructs and corresponding generics in
a VITAL-compliant model during simulation.

In a VITAL-compliant model, there are rules on how generics are to be
named and declared that ensures that a mapping can be established be-
tween the timing generics of a model and the corresponding SDF timing
information.

A timing generic is made up of a generic name and its type. The name
specifies the kind of timing information and the type of the generic speci-
fies the kind of timing value. If the name of generic does not follow the VI-
TAL standard, then it is not a timing generic and does not get annotated.

APPENDIX B Standard Delay Format (SDF)

500

Here is the table showing how SDF delay values are mapped to VHDL de-
lays.

In VHDL, timing information is backannotated via generics. Generic
names follow a certain convention so as to be consistent or derived from
SDF constructs. With each of the timing generic names, an optional suffix
of a conditioned edge can be specified. The edge specifies an edge associat-
ed with the timing information.

VHDL
transition

1-value
(v1)

2-values
(v1 v2)

3-values
(v1 v2 v3)

6-values
(v1 v2 v3
v4 v5 v6)

12-values (v1 v2
v3 v4 v5 v6 v7 v8
v9 v10 v11 v12)

0->1 v1 v1 v1 v1 v1

1->0 v1 v2 v2 v2 v2

0->z v1 v1 v3 v3 v3

z->1 v1 v1 v1 v4 v4

1->z v1 v2 v3 v5 v5

z->0 v1 v2 v2 v6 v6

0->x - - - - v7

x->1 - - - - v8

1->x - - - - v9

x->0 - - - - v10

x->z - - - - v11

z->x - - - - v12

Table B-8 Mapping SDF delays to VHDL delays.

Mapping Examples SECTION B.4

501

Table B-9 shows the different kinds of timing generic names.

B.4 Mapping Examples

Here are examples of mapping SDF constructs to VHDL generics and Ver-
ilog HDL declarations.

Kinds SDF construct VHDL generic

Propagation delay IOPATH tpd_InputPort_OutputPort [_condition]

Input setup time SETUP tsetup_TestPort_RefPort [_condition]

Input hold time HOLD thold_TestPort_RefPort [_condition]

Input recovery time RECOVERY trecovery_TestPort_RefPort [_condition]

Input removal time REMOVAL tremoval_TestPort_RefPort [_condition]

Period PERIOD tperiod_InputPort [_condition]

Pulse width WIDTH tpw_InputPort [_condition]

Input skew time SKEW tskew_FirstPort_SecondPort [_condition]

No-change time NOCHANGE tncsetup_TestPort_RefPort [_condition]
tnchold_TestPort_RefPort [_condition]

Interconnect path delay PORT tipd_InputPort

Device delay DEVICE tdevice_InstanceName [_OutputPort]

Internal signal delay tisd_InputPort_ClockPort

Biased propagation delay tbpd_InputPort_OutputPort_ClockPort [
_condition]

Internal clock delay ticd_ClockPort

Table B-9 Mapping of SDF to VHDL generics.

APPENDIX B Standard Delay Format (SDF)

502

Propagation Delay

• Propagation delay from input port A to output port Y with a rise
time of 0.406 and a fall of 0.339.

// SDF:
(IOPATH A Y (0.406) (0.339))

-- VHDL generic:
tpd_A_Y : VitalDelayType01;

// Verilog HDL specify path:
(A *> Y) = (tplhAY, tphlAY);

• Propagation delay from input port OE to output port Y with a rise
time of 0.441 and a fall of 0.409. The minimum, nominal and
maximum delays are identical.

// SDF:
(IOPATH OE Y (0.441:0.441:0.441) (0.409:0.409:0.409))

-- VHDL generic:
tpd_OE_Y : VitalDelayType01Z;

// Verilog HDL specify path:
(OE *> Y) = (tplhOEY, tphlOEY);

• Conditional propagation delay from input port S0 to output port
Y.

// SDF:
(COND A==0 && B==1 && S1==0
(IOPATH S0 Y (0.062:0.062:0.062) (0.048:0.048:0.048)
)

)

Mapping Examples SECTION B.4

503

-- VHDL generic:
tpd_S0_Y_A_EQ_0_AN_B_EQ_1_AN_S1_EQ_0 :
VitalDelayType01;

// Verilog HDL specify path:
if ((A == 1'b0) && (B == 1'b1) && (S1 == 1'b0))
(S0 *> Y) = (tplh$S0$Y, tphl$S0$Y);

• Conditional propagation delay from input port A to output port
Y.

// SDF:
(COND B == 0
(IOPATH A Y (0.130) (0.098)
)

)

-- VHDL generic:
tpd_A_Y_B_EQ_0 : VitalDelayType01;

// Verilog HDL specify path:
if (B == 1'b0)
(A *> Y) = 0;

• Propagation delay from input port CK to output port Q.

// SDF:
(IOPATH CK Q (0.100:0.100:0.100) (0.118:0.118:0.118))

-- VHDL generic:
tpd_CK_Q : VitalDelayType01;

// Verilog HDL specify path:
(CK *> Q) = (tplhCKQ, tphlCKQ);

APPENDIX B Standard Delay Format (SDF)

504

• Conditional propagation delay from input port A to output port
Y.

// SDF:
(COND B == 1
(IOPATH A Y (0.062:0.062:0.062) (0.048:0.048:0.048)
)

)

-- VHDL generic:
tpd_A_Y_B_EQ_1 : VitalDelayType01;

// Verilog HDL specify path:
if (B == 1'b1)
(A *> Y) = (tplhAY, tphlAY);

• Propagation delay from input port CK to output port ECK.

// SDF:
(IOPATH CK ECK (0.097:0.097:0.097))

-- VHDL generic:
tpd_CK_ECK : VitalDelayType01;

// Verilog HDL specify path:
(CK *> ECK) = (tplhCKECK, tphlCKECK);

• Conditional propagation delay from input port CI to output port
S.

// SDF:
(COND (A == 0 && B == 0) || (A == 1 && B == 1)
(IOPATH CI S (0.511) (0.389)

Mapping Examples SECTION B.4

505

)
)

-- VHDL generic:
tpd_CI_S_OP_A_EQ_0_AN_B_EQ_0_CP_OR_OP_A_EQ_1_AN_B_EQ_1_CP:
VitalDelayType01;

// Verilog HDL specify path:
if ((A == 1'b0 && B == 1'b0) || (A == 1'b1 && B == 1'b1))
(CI *> S) = (tplhCIS, tphlCIS);

• Conditional propagation delay from input port CS to output port
S.

// SDF:
(COND (A == 1 ^ B == 1 ^ CI1 == 1) &&

!(A == 1 ^ B == 1 ^ CI0 == 1)
(IOPATH CS S (0.110) (0.120) (0.120)

(0.110) (0.119) (0.120)
)

)

-- VHDL generic:
tpd_CS_S_OP_A_EQ_1_XOB_B_EQ_1_XOB_CI1_EQ_1_CP_AN_NT_
OP_A_EQ_1_XOB_B_EQ_1_XOB_CI0_EQ_1_CP:
VitalDelayType01;

// Verilog HDL specify path:
if ((A == 1'b1 ^ B == 1'b1 ^ CI1N == 1'b0) &&

!(A == 1'b1 ^ B == 1'b1 ^ CI0N == 1'b0))
(CS *> S) = (tplhCSS, tphlCSS);

APPENDIX B Standard Delay Format (SDF)

506

• Conditional propagation delay from input port A to output port
ICO.

// SDF:
(COND B == 1 (IOPATH A ICO (0.690)))

-- VHDL generic:
tpd_A_ICO_B_EQ_1 : VitalDelayType01;

// Verilog HDL specify path:
if (B == 1'b1)
(A *> ICO) = (tplhAICO, tphlAICO);

• Conditional propagation delay from input port A to output port
CO.

// SDF:
(COND (B == 1 ^ C == 1) && (D == 1 ^ ICI == 1)
(IOPATH A CO (0.263)
)

)

-- VHDL generic:
tpd_A_CO_OP_B_EQ_1_XOB_C_EQ_1_CP_AN_OP_D_EQ_1_XOB_ICI_E
Q_1_CP: VitalDelayType01;

// Verilog HDL specify path:
if ((B == 1'b1 ^ C == 1'b1) && (D == 1'b1 ^ ICI == 1'b1))
(A *> CO) = (tplhACO, tphlACO);

• Delay from positive edge of CK to Q.

// SDF:
(IOPATH (posedge CK) Q (0.410:0.410:0.410)
(0.290:0.290:0.290))

Mapping Examples SECTION B.4

507

-- VHDL generic:
tpd_CK_Q_posedge_noedge : VitalDelayType01;

// Verilog HDL specify path:
(posedge CK *> Q) = (tplhCKQ, tphlCKQ);

Input Setup Time

• Setup time between posedge of D and posedge of CK.

// SDF:
(SETUP (posedge D) (posedge CK) (0.157:0.157:0.157))

-- VHDL generic:
tsetup_D_CK_posedge_posedge: VitalDelayType;

// Verilog HDL timing check task:
$setup(posedge CK, posedge D, tsetupDCK, notifier);

• Setup between negedge of D and posedge of CK.

// SDF:
(SETUP (negedge D) (posedge CK) (0.240))

-- VHDL generic:
tsetup_D_CK_negedge_posedge: VitalDelayType;

// Verilog HDL timing check task:
$setup(posedge CK, negedge D, tsetupDCK, notifier);

APPENDIX B Standard Delay Format (SDF)

508

• Setup time between posedge of input E with posedge of reference
CK.

// SDF:
(SETUP (posedge E) (posedge CK) (-0.043:-0.043:-0.043))

-- VHDL generic:
tsetup_E_CK_posedge_posedge : VitalDelayType;

// Verilog HDL timing check task:
$setup(posedge CK, posedge E, tsetupECK, notifier);

• Setup time between negedge of input E and posedge of reference
CK.

// SDF:
(SETUP (negedge E) (posedge CK) (0.101) (0.098))

-- VHDL generic:
tsetup_E_CK_negedge_posedge : VitalDelayType;

// Verilog HDL timing check task:
$setup(posedge CK, negedge E, tsetupECK, notifier);

• Conditional setup time between SE and CK.

// SDF:
(SETUP (cond E != 1 SE) (posedge CK) (0.155) (0.135))

-- VHDL generic:
tsetup_SE_CK_E_NE_1_noedge_posedge : VitalDelayType;

// Verilog HDL timing check task:
$setup(posedge CK &&& (E != 1'b1), SE, tsetupSECK,

notifier);

Mapping Examples SECTION B.4

509

Input Hold Time

• Hold time between posedge of D and posedge of CK.

// SDF:
(HOLD (posedge D) (posedge CK) (-0.166:-0.166:-0.166))

-- VHDL generic:
thold_D_CK_posedge_posedge: VitalDelayType;

// Verilog HDL timing check task:
$hold (posedge CK, posedge D, tholdDCK, notifier);

• Hold time between RN and SN.

// SDF:
(HOLD (posedge RN) (posedge SN) (-0.261:-0.261:-0.261))

-- VHDL generic:
thold_RN_SN_posedge_posedge: VitalDelayType;

// Verilog HDL timing check task:
$hold (posedge SN, posedge RN, tholdRNSN, notifier);

• Hold time between input port SI and reference port CK.

// SDF:
(HOLD (negedge SI) (posedge CK) (-0.110:-0.110:-0.110))

-- VHDL generic:
thold_SI_CK_negedge_posedge: VitalDelayType;

// Verilog HDL timing check task:
$hold (posedge CK, negedge SI, tholdSICK, notifier);

APPENDIX B Standard Delay Format (SDF)

510

• Conditional hold time between E and posedge of CK.

// SDF:
(HOLD (COND SE ^ RN == 0 E) (posedge CK))

-- VHDL generic:
thold_E_CK_SE_XOB_RN_EQ_0_noedge_posedge:
VitalDelayType;

// Verilog HDL timing check task:
$hold (posedge CK &&& (SE ^ RN == 0), posedge E,

tholdECK, NOTIFIER);

Input Setup and Hold Time

• Setup and hold timing check between D and CLK. It is a condition-
al check. The first delay value is the setup time and the second
delay value is the hold time.

// SDF:
(SETUPHOLD (COND SE ^ RN == 0 D) (posedge CLK)
(0.69) (0.32))

-- VHDL generic (split up into separate setup and hold):
tsetup_D_CK_SE_XOB_RN_EQ_0_noedge_posedge:
VitalDelayType;

thold_D_CK_SE_XOB_RN_EQ_0_noedge_posedge:
VitalDelayType;

-- Verilog HDL timing check (it can either be split up or
-- kept as one construct depending on what appears in the
-- Verilog HDL model):
$setuphold(posedge CK &&& (SE ^ RN == 1'b0)), posedge D,

tsetupDCK, tholdDCK, notifier);
-- Or as:

Mapping Examples SECTION B.4

511

$setup(posedge CK &&& (SE ^ RN == 1'b0)), posedge D,
tsetupDCK, notifier);

$hold(posedge CK &&& (SE ^ RN == 1'b0)), posedge D,
tholdDCK, notifier);

Input Recovery Time

• Recovery time between CLKA and CLKB.

// SDF:
(RECOVERY (posedge CLKA) (posedge CLKB)
(1.119:1.119:1.119))

-- VHDL generic:
trecovery_CLKA_CLKB_posedge_posedge: VitalDelayType;

// Verilog timing check task:
$recovery (posedge CLKB, posedge CLKA,

trecovery$CLKB$CLKA, notifier);

• Conditional recovery time between posedge of CLKA and
posedge of CLKB.

// SDF:
(RECOVERY (posedge CLKB)
(COND ENCLKBCLKArec (posedge CLKA)) (0.55:0.55:0.55)

)

-- VHDL generic:
trecovery_CLKB_CLKA_ENCLKBCLKArec_EQ_1_posedge_
posedge: VitalDelayType;

// Verilog timing check task:
$recovery (posedge CLKA && ENCLKBCLKArec, posedge CLKB,

trecovery$CLKA$CLKB, notifier);

APPENDIX B Standard Delay Format (SDF)

512

• Recovery time between SE and CK.

// SDF:
(RECOVERY SE (posedge CK) (1.901))

-- VHDL generic:
trecovery_SE_CK_noedge_posedge: VitalDelayType;

// Verilog timing check task:
$recovery (posedge CK, SE, trecoverySECK, notifier);

• Recovery time between RN and CK.

// SDF:
(RECOVERY (COND D == 0 (posedge RN)) (posedge CK) (0.8))

-- VHDL generic:
trecovery_RN_CK_D_EQ_0_posedge_posedge:
VitalDelayType;

// Verilog timing check task:
$recovery (posedge CK && (D == 0), posedge RN,

trecoveryRNCK, notifier);

Input Removal Time

• Removal time between posedge of E and negedge of CK.

// SDF:
(REMOVAL (posedge E) (negedge CK) (0.4:0.4:0.4))

-- VHDL generic:
tremoval_E_CK_posedge_negedge: VitalDelayType;

Mapping Examples SECTION B.4

513

// Verilog timing check task:
$removal (negedge CK, posedge E, tremovalECK,

notifier);

• Conditional removal time between posedge of CK and SN.

// SDF:
(REMOVAL (COND D != 1'b1 SN) (posedge CK) (1.512))

-- VHDL generic:
tremoval_SN_CK_D_NE_1_noedge_posedge : VitalDelayType;

// Verilog timing check task:
$removal (posedge CK &&& (D != 1'b1), SN,

tremovalSNCK, notifier);

Period

• Period of input CLKB.

// SDF:
(PERIOD CLKB (0.803:0.803:0.803))

-- VHDL generic:
tperiod_CLKB: VitalDelayType;

// Verilog timing check task:
$period (CLKB, tperiod$CLKB);

• Period of input port EN.

// SDF:
(PERIOD EN (1.002:1.002:1.002))

APPENDIX B Standard Delay Format (SDF)

514

-- VHDL generic:
tperiod_EN : VitalDelayType;

// Verilog timing check task:
$period (EN, tperiod$EN);

• Period of input port TCK.

// SDF:
(PERIOD (posedge TCK) (0.220))

-- VHDL generic:
tperiod_TCK_posedge: VitalDelayType;

// Verilog timing check task:
$period (posedge TCK, tperiod$TCK);

Pulse Width

• Pulse width of high pulse of CK.

// SDF:
(WIDTH (posedge CK) (0.103:0.103:0.103))

-- VHDL generic:
tpw_CK_posedge: VitalDelayType;

// Verilog timing check task:
$width (posedge CK, tminpwh$CK, 0, notifier);

• Pulse width for a low pulse CK.

// SDF:
(WIDTH (negedge CK) (0.113:0.113:0.113))

Mapping Examples SECTION B.4

515

-- VHDL generic:
tpw_CK_negedge: VitalDelayType;

// Verilog timing check task:
$width (negedge CK, tminpwl$CK, 0, notifier);

• Pulse width for a high pulse on RN.

// SDF:
(WIDTH (posedge RN) (0.122))

-- VHDL generic:
tpw_RN_posedge: VitalDelayType;

// Verilog timing check task:
$width (posedge RN, tminpwh$RN, 0, notifier);

Input Skew Time

• Skew between CK and TCK.

// SDF:
(SKEW (negedge CK) (posedge TCK) (0.121))

-- VHDL generic:
tskew_CK_TCK_negedge_posedge: VitalDelayType;

// Verilog timing check task:
$skew (posedge TCK, negedge CK, tskewTCKCK, notifier);

• Skew between SE and negedge of CK.

// SDF:
(SKEW SE (negedge CK) (0.386:0.386:0.386))

APPENDIX B Standard Delay Format (SDF)

516

-- VHDL generic:
tskew_SE_CK_noedge_negedge: VitalDelayType;

// Verilog HDL timing check task:
$skew (negedge CK, SE, tskewSECK, notifier);

No-change Setup Time

The SDF NOCHANGE construct maps to both tncsetup and tnchold VHDL gener-
ics.

• No-change setup time between D and negedge CK.

// SDF:
(NOCHANGE D (negedge CK) (0.343:0.343:0.343))

-- VHDL generic:
tncsetup_D_CK_noedge_negedge: VitalDelayType;
tnchold_D_CK_noedge_negedge: VitalDelayType;

// Verilog HDL timing check task:
$nochange (negedge CK, D, tnochangeDCK, notifier);

No-change Hold Time

The SDF NOCHANGE construct maps to both tncsetup and tnchold VHDL gener-
ics.

• Conditional no-change hold time between E and CLKA.

// SDF:
(NOCHANGE (COND RST == 1'b1 (posedge E)) (posedge CLKA)
(0.312))

Mapping Examples SECTION B.4

517

-- VHDL generic:
tnchold_E_CLKA_RST_EQ_1_posedge_posedge:
VitalDelayType;

tncsetup_E_CLKA_RST_EQ_1_posedge_posedge:
VitalDelayType;

// Verilog HDL timing check task:
$nochange (posedge CLKA &&& (RST == 1'b1), posedge E,

tnochangeECLKA, notifier);

Port Delay

• Delay to port OE.

// SDF:
(PORT OE (0.266))

-- VHDL generic:
tipd_OE: VitalDelayType01;

// Verilog HDL:
No explicit Verilog declaration.

• Delay to port RN.

// SDF:
(PORT RN (0.201:0.205:0.209))

-- VHDL generic:
tipd_RN : VitalDelayType01;

// Verilog HDL:
No explicit Verilog declaration.

APPENDIX B Standard Delay Format (SDF)

518

Net Delay

• Delay on net connected to port CKA.

// SDF:
(NETDELAY CKA (0.134))

-- VHDL generic:
tipd_CKA: VitalDelayType01;

// Verilog HDL:
No explicit Verilog declaration.

Interconnect Path Delay

• Interconnect path delay from port Y to port D.

// SDF:
(INTERCONNECT bcm/credit_manager/U304/Y
bcm/credit_manager/frame_in/PORT0_DOUT_Q_reg_26_/D
(0.002:0.002:0.002) (0.002:0.002:0.002))

-- VHDL generic of instance
-- bcm/credit_manager/frame_in/PORT0_DOUT_Q_reg_26_:
tipd_D: VitalDelayType01;
-- The “from” port does not contribute to the timing
-- generic name.

// Verilog HDL:
No explicit Verilog declaration.

Complete Syntax SECTION B.5

519

Device Delay

• Device delay of output SM of instance uP.

// SDF:
(INSTANCE uP) . . . (DEVICE SM . . .

-- VHDL generic:
tdevice_uP_SM

// Verilog specify paths:
// All specify paths to output SM.

B.5 Complete Syntax

Here is the complete syntax1 for SDF shown using the BNF form. Terminal
names are in uppercase, keywords are in bold uppercase but are case in-
sensitive. The start terminal is delay_file.

absolute_deltype ::= (ABSOLUTE del_def { del_def })

alphanumeric ::=
a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p |

q | r | s | t | u | v | w | x | y | z
| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P |

Q | R | S | T | U | V | W | X | Y | Z
| _ | $
| decimal_digit

any_character ::=
character

| special_character
| \”

1. The syntax is reprinted with permission from IEEE Std. 1497-2001, Copyright 2001, by
IEEE. All rights reserved.

APPENDIX B Standard Delay Format (SDF)

520

arrival_env ::=
(ARRIVAL [port_edge] port_instance rvalue rvalue
rvalue rvalue)

bidirectskew_timing_check ::=
(BIDIRECTSKEW port_tchk port_tchk value value)

binary_operator ::=
+

| -
| *
| /
| %
| ==
| !=
| ===
| !==
| &&
| ||
| <
| <=
| >
| >=
| &
| |
| ^
| ^~
| ~^
| >>
| <<

bus_net ::= hierarchical_identifier [integer : integer]

bus_port ::= hierarchical_identifier [integer : integer]

ccond ::= (CCOND [qstring] timing_check_condition)

cell ::= (CELL celltype cell_instance { timing_spec })

celltype ::= (CELLTYPE qstring)

Complete Syntax SECTION B.5

521

cell_instance ::=
(INSTANCE [hierarchical_identifier])

| (INSTANCE *)

character ::=
alphanumeric

| escaped_character

cns_def ::=
path_constraint

| period_constraint
| sum_constraint
| diff_constraint
| skew_constraint

concat_expression ::= , simple_expression

condelse_def ::= (CONDELSE iopath_def)

conditional_port_expr ::=
simple_expression

| (conditional_port_expr)
| unary_operator (conditional_port_expr)
| conditional_port_expr binary_operator

conditional_port_expr

cond_def ::=
(COND [qstring] conditional_port_expr iopath_def)

constraint_path ::= (port_instance port_instance)

date ::= (DATE qstring)

decimal_digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

delay_file ::= (DELAYFILE sdf_header cell { cell })

deltype ::=
absolute_deltype

| increment_deltype
| pathpulse_deltype
| pathpulsepercent_deltype

APPENDIX B Standard Delay Format (SDF)

522

delval ::=
rvalue

| (rvalue rvalue)
| (rvalue rvalue rvalue)

delval_list ::=
delval

| delval delval
| delval delval delval
| delval delval delval delval [delval] [delval]
| delval delval delval delval delval delval delval

[delval] [delval] [delval] [delval] [delval]

del_def ::=
iopath_def

| cond_def
| condelse_def
| port_def
| interconnect_def
| netdelay_def
| device_def

del_spec ::= (DELAY deltype { deltype })

departure_env ::=
(DEPARTURE [port_edge] port_instance rvalue rvalue
rvalue rvalue)

design_name ::= (DESIGN qstring)

device_def ::= (DEVICE [port_instance] delval_list)

diff_constraint ::=
(DIFF constraint_path constraint_path value [value])

edge_identifier ::=
posedge

| negedge
| 01
| 10
| 0z
| z1

Complete Syntax SECTION B.5

523

| 1z
| z0

edge_list ::=
pos_pair { pos_pair }

| neg_pair { neg_pair }

equality_operator ::=
==

| !=
| ===
| !==

escaped_character ::=
\ character

| \ special_character
| \”

exception ::= (EXCEPTION cell_instance { cell_instance })

hchar := . | /

hierarchical_identifier ::= identifier { hchar identifier }

hierarchy_divider ::= (DIVIDER hchar)

hold_timing_check ::= (HOLD port_tchk port_tchk value)

identifier ::= character { character }

increment_deltype ::= (INCREMENT del_def { del_def })

input_output_path ::= port_instance port_instance

integer ::= decimal_digit { decimal_digit }

interconnect_def ::=
(INTERCONNECT port_instance port_instance delval_list)

inversion_operator ::=
!

| ~

APPENDIX B Standard Delay Format (SDF)

524

iopath_def ::=
(IOPATH port_spec port_instance { retain_def } delval_list)

lbl_def ::= (identifier delval_list)

lbl_spec ::= (LABEL lbl_type { lbl_type })

lbl_type :=
(INCREMENT lbl_def { lbl_def })

| (ABSOLUTE lbl_def { lbl_def })

name ::= (NAME qstring)

neg_pair ::=
(negedge signed_real_number [signed_real_number])
(posedge signed_real_number [signed_real_number])

net ::=
scalar_net

| bus_net

netdelay_def ::= (NETDELAY net_spec delval_list)

net_instance ::=
net

| hierarchical_identifier hier_divider_char net

net_spec ::=
port_instance

| net_instance

nochange_timing_check ::=
(NOCHANGE port_tchk port_tchk rvalue rvalue)

pathpulsepercent_deltype ::=
(PATHPULSEPERCENT [input_output_path] value [value])

pathpulse_deltype ::=
(PATHPULSE [input_output_path] value [value])

path_constraint ::=
(PATHCONSTRAINT [name] port_instance port_instance
{ port_instance } rvalue rvalue)

Complete Syntax SECTION B.5

525

period_constraint ::=
(PERIODCONSTRAINT port_instance value [exception])

period_timing_check ::= (PERIOD port_tchk value)

port ::=
scalar_port

| bus_port

port_def ::= (PORT port_instance delval_list)

port_edge ::= (edge_identifier port_instance)

port_instance ::=
port

| hierarchical_identifier hchar port

port_spec ::=
port_instance

| port_edge

port_tchk ::=
port_spec

| (COND [qstring] timing_check_condition port_spec)

pos_pair ::=
(posedge signed_real_number [signed_real_number])
(negedge signed_real_number [signed_real_number])

process ::= (PROCESS qstring)

program_name ::= (PROGRAM qstring)

program_version ::= (VERSION qstring)

qstring ::= “ { any_character } “

real_number ::=
integer

| integer [. integer]
| integer [. integer] e [sign] integer

APPENDIX B Standard Delay Format (SDF)

526

recovery_timing_check ::=
(RECOVERY port_tchk port_tchk value)

recrem_timing_check ::=
(RECREM port_tchk port_tchk rvalue rvalue)

| (RECREM port_spec port_spec rvalue rvalue
[scond] [ccond])

removal_timing_check ::= (REMOVAL port_tchk port_tchk value)

retain_def ::= (RETAIN retval_list)

retval_list ::=
delval

| delval delval
| delval delval delval

rtriple ::=
signed_real_number : [signed_real_number] :
[signed_real_number]

| [signed_real_number] : signed_real_number :
[signed_real_number]

| [signed_real_number] : [signed_real_number] :
signed_real_number

rvalue ::=
([signed_real_number])

| ([rtriple])

scalar_constant ::=
0

| 'b0
| 'B0
| 1'b0
| 1'B0
| 1
| 'b1
| 'B1
| 1'b1
| 1'B1

Complete Syntax SECTION B.5

527

scalar_net ::=
hierarchical_identifier

| hierarchical_identifier [integer]

scalar_node ::=
scalar_port

| hierarchical_identifier

scalar_port ::=
hierarchical_identifier

| hierarchical_identifier [integer]

scond ::= (SCOND [qstring] timing_check_condition)

sdf_header ::=
sdf_version [design_name] [date] [vendor]
[program_name] [program_version] [hierarchy_divider]
[voltage] [process] [temperature] [time_scale]

sdf_version ::= (SDFVERSION qstring)

setuphold_timing_check ::=
(SETUPHOLD port_tchk port_tchk rvalue rvalue)

| (SETUPHOLD port_spec port_spec rvalue rvalue
[scond] [ccond])

setup_timing_check ::= (SETUP port_tchk port_tchk value)

sign ::= + | -

signed_real_number ::= [sign] real_number

simple_expression ::=
(simple_expression)

| unary_operator (simple_expression)
| port
| unary_operator port
| scalar_constant
| unary_operator scalar_constant
| simple_expression ? simple_expression : simple_expression
| { simple_expression [concat_expression] }
| { simple_expression { simple_expression

[concat_expression] } }

skew_constraint ::= (SKEWCONSTRAINT port_spec value)

skew_timing_check ::= (SKEW port_tchk port_tchk rvalue)

slack_env ::=
(SLACK port_instance rvalue rvalue rvalue rvalue
[real_number])

special_character ::=
! | # | % | & | ‘ | (|) | * | + | , | - | . | / | : | ; | < | = | > | ? |

@ | [| \ |] | ^ | ` | { | | | } | ~

sum_constraint ::=
(SUM constraint_path constraint_path { constraint_path }
rvalue [rvalue])

tchk_def ::=
setup_timing_check

| hold_timing_check
| setuphold_timing_check
| recovery_timing_check
| removal_timing_check
| recrem_timing_check
| skew_timing_check
| bidirectskew_timing_check
| width_timing_check
| period_timing_check
| nochange_timing_check

tc_spec ::= (TIMINGCHECK tchk_def { tchk_def })

temperature ::=
(TEMPERATURE rtriple)

| (TEMPERATURE signed_real_number)

tenv_def ::=
arrival_env

| departure_env
| slack_env
| waveform_env

Complete Syntax SECTION B.5

529

te_def ::=
cns_def

| tenv_def

te_spec ::= (TIMINGENV te_def { te_def })

timescale_number ::= 1 | 10 | 100 | 1.0 | 10.0 | 100.0

timescale_unit ::= s | ms | us | ns | ps | fs

time_scale ::= (TIMESCALE timescale_number timescale_unit)

timing_check_condition ::=
scalar_node

| inversion_operator scalar_node
| scalar_node equality_operator scalar_constant

timing_spec ::=
del_spec

| tc_spec
| lbl_spec
| te_spec

triple ::=
real_number : [real_number] : [real_number]

| [real_number] : real_number : [real_number]
| [real_number] : [real_number] : real_number

unary_operator ::=
+

| -
| !
| ~
| &
| ~&
| |
| ~|
| ^
| ~̂
| ~̂

APPENDIX B Standard Delay Format (SDF)

530

value ::=
([real_number])

| ([triple])

vendor ::= (VENDOR qstring)

voltage ::=
(VOLTAGE rtriple)

| (VOLTAGE signed_real_number)

waveform_env ::=
(WAVEFORM port_instance real_number edge_list)

width_timing_check ::= (WIDTH port_tchk value)

q

531

A P P E N D I X

C

Standard Parasitic
Extraction Format

(SPEF)

his appendix describes the Standard Parasitic Extraction Format
(SPEF). It is part of the IEEE Std 1481.

C.1 Basics

SPEF allows the description of parasitic information of a design (R, L and C)
in an ASCII exchange format. A user can read and check values in a SPEF
file, though the user would never create this file manually. It is mainly

T

APPENDIX C Standard Parasitic Extraction Format (SPEF)

532

used to pass parasitic information from one tool to another. Figure C-1
shows that SPEF can be generated by tools such as a place-and-route tool
or a parasitic extraction tool, and then used by a timing analysis tool, in cir-
cuit simulation or to perform crosstalk analysis.

Parasitics can be represented at many different levels. SPEF supports the
distributed net model, the reduced net model and the lumped capacitance
model. In the distributed net model (D_NET), each segment of a net route
has its own R and C. In a reduced net model (R_NET), only a single reduced R
and C is considered on the load pins of the net and a pie model (C-R-C) is
considered on the driver pin of the net. In a lumped capacitance model,
only a single capacitance is specified for the entire net. Figure C-2 shows an
example of a physical net route. Figure C-3 shows the distributed net mod-

el. Figure C-4 shows the reduced net model and Figure C-5 shows the
lumped capacitance model.

Figure C-1 SPEF is a tool exchange medium.

Figure C-2 A layout of a net.

SPEF

Place-and-route

Parasitic extraction

Timing analysis

Circuit simulation

Crosstalk analysis

Output pin Input pin 1

Input pin 2

(Load)

(Load)

(Driver)

Q

A

S0

Basics SECTION C.1

533

Figure C-3 Distributed net (D_NET) model.

Figure C-4 Reduced net (R_NET) model.

Figure C-5 Lumped capacitance model.

Q

A

S0

+-

+-

Q

S0

A

Q

S0

A

APPENDIX C Standard Parasitic Extraction Format (SPEF)

534

Interconnect parasitics depends on process. SPEF supports the specifica-
tion of best-case, typical, and worst-case values. Such triplets are allowed
for R, L and C values, port slews and loads.

By providing a name map consisting of a map of net names and instance
names to indices, the SPEF file size is made effectively smaller, and more
importantly, all long names appear in only one place.

A SPEF file for a design can be split across multiple files and can also be hi-
erarchical.

C.2 Format

The format of a SPEF file is as follows.

header_definition
[name_map]
[power_definition]
[external_definition]
[define_definition]
internal_definition

The header definition contains basic information such as the SPEF version
number, design name and units for R, L and C. The name map specifies the
mapping of net names and instance names to indices. The power definition
declares the power nets and ground nets. The external definition defines the
ports of the design. The define definition identifies instances, whose SPEF is
described in additional files. The internal definition contains the guts of the
file, which are the parasitics of the design.

Figure C-6 shows an example of a header definition.

Format SECTION C.2

535

*SPEF name

specifies the SPEF version.

*DESIGN name

specifies the design name.

*DATE string

specifies the time stamp when the file was created.

*VENDOR string

*SPEF "IEEE 1481-1998"
*DESIGN "ddrphy"
*DATE "Thu Oct 21 00:49:32 2004"
*VENDOR "SGP Design Automation"
*PROGRAM "Galaxy-RCXT"
*VERSION "V2000.06 "
*DESIGN_FLOW "PIN_CAP NONE" "NAME_SCOPE
LOCAL"
*DIVIDER /
*DELIMITER :
*BUS_DELIMITER []
*T_UNIT 1.00000 NS
*C_UNIT 1.00000 FF
*R_UNIT 1.00000 OHM
*L_UNIT 1.00000 HENRY

// A comment starts with the two characters “//”.

// TCAD_GRD_FILE /cad/13lv/galaxy-rcxt/
t013s6ml_fsg.nxtgrd
// TCAD_TIME_STAMP Tue May 14 22:19:36 2002

Figure C-6 A header definition.

APPENDIX C Standard Parasitic Extraction Format (SPEF)

536

specifies the vendor tool that was used to create the SPEF.

*PROGRAM string

specifies the program that was used to generate the SPEF.

*VERSION string

specifies the version number of the program that was used to create the
SPEF.

*DESIGN_FLOW string string string . . .

specifies at what stage the SPEF file was created. It describes information
about the SPEF file that cannot be derived by reading the file. The pre-
defined string values are:

• EXTERNAL_LOADS : External loads are fully specified in the SPEF
file.

• EXTERNAL_SLEWS : External slews are fully specified in the SPEF
file.

• FULL_CONNECTIVITY : Logical netlist connectivity is present in the
SPEF.

• MISSING_NETS : Some logical nets may be missing from the SPEF
file.

• NETLIST_TYPE_VERILOG : Uses Verilog HDL type naming conven-
tions.

• NETLIST_TYPE_VHDL87 : Uses VHDL87 naming convention.
• NETLIST_TYPE_VHDL93 : Uses VHDL93 netlist naming conven-

tion.
• NETLIST_TYPE_EDIF : Uses EDIF type naming convention.
• ROUTING_CONFIDENCE positive_integer : Default routing confi-

dence number for all nets, basically the level of accuracy of the
parasitics.

Format SECTION C.2

537

• ROUTING_CONFIDENCE_ENTRY positive_integer string : Supple-
ments the routing confidence values.

• NAME_SCOPE LOCAL | FLAT : Specifies whether paths in the SPEF
file are relative to file or to top of design.

• SLEW_THRESHOLDS low_input_threshold_percent
high_input_threshold_percent : Specifies the default input
slew threshold for the design.

• PIN_CAP NONE | INPUT_OUTPUT | INPUT_ONLY : Specifies what
type of pin capacitances are included as part of total capacitance.
The default is INPUT_OUTPUT.

The line in the header definition:

*DIVIDER /

specifies the hierarchy delimiter. Other characters that can be used are ., :,
and / .

*DELIMITER :

specifies the delimiter between an instance and its pin. Other possible char-
acters that can be used are ., /, :, or |.

*BUS_DELIMITER []

specifies the prefix and suffix that are used to identify a bit of a bus. Other
possible characters that can be used for prefix and suffix are {, (, <, :, . and },),
>.

*T_UNIT positive_integer NS | PS

specifies the time unit.

*C_UNIT positive_integer PF | FF

APPENDIX C Standard Parasitic Extraction Format (SPEF)

538

specifies the capacitance unit.

*R_UNIT positive_integer OHM | KOHM

specifies the resistance unit.

*L_UNIT positive_integer HENRY | MH | UH

specifies the inductance unit.

A comment in a SPEF file can appear in two forms.

// Comment - until end of line.

/* This comment can
extend across multiple
lines */

Figure C-7 shows an example of a name map. It is of the form:

*NAME_MAP
*positive_integer name
*positive_integer name
. . .

The name map specifies the mapping of names to unique integer values
(their indices). The name map helps in reducing the file size by making all
future references of the name by the index. A name can be a net name or an
instance name. Given the name map in Figure C-7, the names can later be
referenced in the SPEF file by using their index, such as:

*364:D // D pin of instance
// mcdll_write_data/write19/d_out_2x_reg_19

*11172:Y // Y pin of instance
// Tie_VSSQ_assign_buf_318_N_1

Format SECTION C.2

539

*5426:116 // Internal node of net
// mcdll_read_data/read21/capture_pos_0[21]

*5426:10278 // Internal node of net *5426
*12 // The net int_d_out[57]

The name map thus avoids repeating long names and their paths by using
their unique integer representation.

*NAME_MAP
*1 memclk
*2 memclk_2x
*3 reset_
*4 refresh
*5 resync
*6 int_d_out[63]
*7 int_d_out[62]
*8 int_d_out[61]
*9 int_d_out[60]
*10 int_d_out[59]
*11 int_d_out[58]
*12 int_d_out[57]
. . .
*364 mcdll_write_data/write19/d_out_2x_reg_19
*366 mcdll_write_data/write20/d_out_2x_reg_20
*368 mcdll_write_data/write21/d_out_2x_reg_21
. . .
*5423 mcdll_read_data/read21/capture_data[53]
. . .
*5426 mcdll_read_data/read21/capture_pos_0[21]
. . .
*11172 Tie_VSSQ_assign_buf_318_N_1
. . .
*14954 test_se_15_S0
*14955 wr_sdly_course_enc[0]_L0
*14956 wr_sdly_course_enc[0]_L0_1
*14957 wr_sdly_course_enc[0]_S0

Figure C-7 A name map.

APPENDIX C Standard Parasitic Extraction Format (SPEF)

540

The power definition section defines the power and ground nets.

*POWER_NETS net_name net_name . . .
*GROUND_NETS net_name net_name . . .

Here are some examples.

*POWER_NETS VDDQ
*GROUND_NETS VSSQ

The external definition contains the definition of the logical and physical
ports of the design. Figure C-8 shows an example of logical ports. Logical
ports are described in the form:

*PORTS
port_name direction { conn_attribute }
port_name direction { conn_attribute }
. . .

where a port_name can be the port index of form *positive_integer. The
direction is I for input, O for output and B for bidirectional. Connection attri-
butes are optional, and can be the following:

• *C number number : Coordinates of the port.
• *L par_value : Capacitive load of the port.
• *S par_value par_value : Defines the shape of the waveform on

the port.
• *D cell_type : Defines the driving cell of the port.

Physical ports in a SPEF file are defined using:

*PHYSICAL_PORTS
pport_name direction { conn_attribute }
pport_name direction { conn_attribute }
. . .

Format SECTION C.2

541

The define definition section defines entity instances that are referenced in
the current SPEF file but whose parasitics are described in additional SPEF
files.

*DEFINE instance_name { instance_name } entity_name
*PDEFINE physical_instance entity_name

The *PDEFINE is used when the entity instance is a physical partition (in-
stead of a logical hierarchy). Here are some examples.

*DEFINE core/u1ddrphy core/u2ddrphy “ddrphy”

This implies that there would be another SPEF file with a *DESIGN value of
ddrphy - this file would contain the parasitics for the design ddrphy. It is

*PORTS
*1 I
*2 I
*3 I
*4 I
*5 I
*6 I
*7 I
*8 I
*9 I
*10 I
*11 I
. . .
*450 O
*451 O
*452 O
*453 O
*454 O
*455 O
*456 O

Figure C-8 An external definition.

APPENDIX C Standard Parasitic Extraction Format (SPEF)

542

possible to have physical and logical hierarchy. Any nets that cross the hi-
erarchical boundaries have to be described as distributed nets (D_NET).

The internal definition forms the guts of the SPEF file - it describes the para-
sitics for the nets in the design. There are basically two forms: the distribut-
ed net, D_NET, and the reduced net, R_NET. Figure C-9 shows an example of a
distributed net definition.

In the first line,

*D_NET *5426 0.899466

*5426 is the net index (see name map for the net name) and 0.899466 is the
total capacitance value on the net. The capacitance value is the sum of all
capacitances on the net including cross-coupling capacitances that are as-
sumed to be grounded, and including load capacitances. It may or may not

*D_NET *5426 0.899466

*CONN
*I *14212:D I *C 21.7150 79.2300
*I *14214:Q O *C 21.4950 76.6000 *D DFFQX1

*CAP
1 *5426:10278 *5290:8775 0.217446
2 *5426:10278 *16:3754 0.0105401
3 *5426:10278 *5266:9481 0.0278254
4 *5426:10278 *5116:9922 0.113918
5 *5426:10278 0.529736

*RES
1 *5426:10278 *14212:D 0.340000
2 *5426:10278 *5426:10142 0.916273
3 *5426:10142 *14214:Q 0.340000
*END

Figure C-9 Distributed net parasitics for net *5426.

Format SECTION C.2

543

include pin capacitances depending on the setting of PIN_CAP in the
*DESIGN_FLOW definition.

The connectivity section describes the drivers and loads for the net. In:

*CONN
*I *14212:D I *C 21.7150 79.2300
*I *14214:Q O *C 21.4950 76.6000 *D DFFQX1

*I refers to an internal pin (*P is used for a port), *14212:D refers to the D
pin of instance *14212 which is an index (see name map for actual name).
“I” says that it is a load (input pin) on the net. “O” says that it is a driver
(output pin) on the net. *C and *D are as defined earlier in connection attri-
butes - *C defines the coordinates of the pin and *D defines the driving cell
of the pin.

The capacitance section describes the capacitances of the distributed net. The
capacitance unit is as specified earlier with *C_UNIT.

*CAP
1 *5426:10278 *5290:8775 0.217446
2 *5426:10278 *16:3754 0.0105401
3 *5426:10278 *5266:9481 0.0278254
4 *5426:10278 *5116:9922 0.113918
5 *5426:10278 0.529736

The first number is the capacitance identifier. There are two forms of ca-
pacitance specification; the first through fourth are of one form and the
fifth is of the second form. The first form (first through fourth) specifies the
cross-coupling capacitances between two nets, while the second form (with
id 5) specifies the capacitance to ground. So in capacitance id 1, the cross-
coupling capacitance between nets *5426 and *5290 is 0.217446. And in ca-
pacitance id 5, the capacitance to ground is 0.529736. Notice that the first
node name is necessarily the net name for the D_NET that is being described.
The positive integer following the net index (10278 in *5426:10278) speci-
fies an internal node or junction point. So capacitance id 4 states that there

APPENDIX C Standard Parasitic Extraction Format (SPEF)

544

is a coupling capacitance between net *5426 with internal node 10278 and
net *5116 with internal node 9922, and the value of this coupling capaci-
tance is 0.113918.

The resistance section describes the resistances of the distributed net. The re-
sistance unit is as specified with *R_UNIT.

*RES
1 *5426:10278 *14212:D 0.340000
2 *5426:10278 *5426:10142 0.916273
3 *5426:10142 *14214:Q 0.340000

The first field is the resistance identifier. So there are three resistance com-
ponents for this net. The first one is between the internal node *5426:10278
to the D pin on *14212 and the resistance value is 0.34. The capacitance and
resistance section can be better understood with the RC network shown pic-
torially in Figure C-10.

Figure C-11 shows another example of a distributed net. This net has one
driver and two loads and the total capacitance on the net is 2.69358. Figure
C-12 shows the RC network that corresponds to the distributed net specifi-
cation.

Figure C-10 RC for net *5426.

D
1

*14214 *14212

2 3

*5426:10278

*5426:10142

DFFQX1

5

1 2 3 4

*5290:8775

*16:3754 *5266:9481

*5116:9922

Q

Format SECTION C.2

545

In general, an internal definition can comprise of the following specifica-
tions:

• D_NET: Distributed RC network form of a logical net.
• R_NET: Reduced RC network form of a logical net.
• D_PNET: Distributed form of a physical net.
• R_PNET: Reduced form of a physical net.

*D_NET *5423 2.69358

*CONN
*I *14207:D I *C 21.7450 94.3150
*I *14205:D I *C 21.7450 90.4900
*I *14211:Q O *C 21.4900 83.8800 *D DFFQX1

*CAP
1 *5423:10107 *547:12722 0.202686
2 *5423:10107 *5116:10594 0.104195
3 *5423:10107 *5233:9552 0.208867
4 *5423:10107 *5265:9483 0.0225810
5 *5423:10107 *267:9668 0.0443454
6 *5423:10107 *5314:7853 0.120589
7 *5423:10212 *2109:996 0.0293744
8 *5423:10212 *5187:7411 0.526945
9 *5423:14640 *6577:10075 0.126929
10 *5423:10213 1.30707

*RES
1 *5423:10107 *5423:10212 2.07195
2 *5423:10107 *5423:10106 0.340000
3 *5423:10212 *5423:10211 0.340000
4 *5423:10212 *5423:14640 1.17257
5 *5423:14640 *5423:10213 0.340000
6 *5423:10213 *14207:D 0.0806953
7 *5423:10211 *14205:D 0.210835
8 *5423:10106 *14211:Q 0.0932139
*END

Figure C-11 Another example of a distributed net *5423.

APPENDIX C Standard Parasitic Extraction Format (SPEF)

546

Here is the syntax.

*D_NET net_index total_cap [*V routing_confidence]
[conn_section]
[cap_section]
[res_section]
[inductance_section]

*END

*R_NET net_index total_cap [*V routing_confidence]
[driver_reduction]

Figure C-12 RC network for D_NET *5423.

Q D
*14211 *14205

3

DFFQX1 51 2 3 4

D
*14207

8 2 1 6

4

5 7

6 7 8

9 10

*2
10

9:
99

6

*5
18

7:
74

11

*6
57

7:
10

07
5

*5
42

3:
10

21
2

*5
42

3:
14

64
0

*5
42

3:
10

21
3

*5
42

3:
10

21
1

*5
42

3:
10

10
7

*5
42

3:
10

10
6

*5
47

:1
27

22

*5
11

6:
10

59
4

*5
23

3:
95

52

*5
26

5:
94

83

*2
67

:9
66

8

*5
31

4:
78

53

Format SECTION C.2

547

*END

*D_PNET pnet_index total_cap [*V routing_confidence]
[pconn_section]
[pcap_section]
[pres_section]
[pinduc_section]

*END

*R_PNET pnet_index total_cap [*V routing_confidence]
[pdriver_reduction]

*END

The inductance section is used to specify inductances and the format is simi-
lar to the resistance section. The *V is used to specify the accuracy of the
parasitics of the net. These can be specified individually with a net or can
be specified globally using the *DESIGN_FLOW statement with the
ROUTING_CONFIDENCE value, such as:

*DESIGN_FLOW “ROUTING_CONFIDENCE 100”

which specifies that the parasitics were extracted after final cell placement
and final route and 3d extraction was used. Other possible values of rout-
ing confidence are:

• 10: Statistical wireload model
• 20: Physical wireload model
• 30: Physical partitions with locations, and no cell placement
• 40: Estimated cell placement with steiner tree based route
• 50: Estimated cell placement with global route
• 60: Final cell placement with steiner route
• 70: Final cell placement with global route
• 80: Final cell placement, final route, 2d extraction
• 90: Final cell placement, final route, 2.5d extraction

APPENDIX C Standard Parasitic Extraction Format (SPEF)

548

• 100: Final cell placement, final route, 3d extraction

A reduced net is a net that has been reduced from a distributed net form.
There is one driver reduction section for each driver on a net. The driver re-
duction section is of the form:

*DRIVER pin_name
*CELL cell_type
// Driver reduction: one such section for each driver
// of net:
*C2_R1_C1 cap_value res_value cap_value
*LOADS // One following set for each load on net:
*RC pin_name rc_value
*RC pin_name rc_value
. . .

The *C2_R1_C1 shows the parasitics for the pie model on the driver pin of
the net. The rc_value in the *RC construct is the Elmore delay (R*C). Figure
C-13 shows an example of a reduced net SPEF and Figure C-14 shows the

RC network pictorially.

A lumped capacitance model is described using either a *D_NET or a *R_NET
construct with just the total capacitance and with no other information.
Here are examples of lumped capacitance declarations.

*R_NET *1200 2.995
*DRIVER *1201:Q
*CELL SEDFFX1
*C2_R1_C1 0.511 2.922 0.106
*LOADS
*RC *1202:A 1.135
*RC *1203:A 0.946
*END

Figure C-13 Reduced net example.

Format SECTION C.2

549

*D_NET *1 80.2096
*CONN
*I *2:Y O *L 0 *D CLKMX2X2
*P *1 O *L 0
*END

*R_NET *17 58.5204
*END

Values in a SPEF file can be in a triplet form that represents the process
variations, such as:

0.243:0.269:0.300

0.243 is the best-case value, 0.269 is the typical value and 0.300 is the
worst-case value.

Figure C-14 Reduced net model.

Q
*1201

SEDFFX1

+-

+-

C2

R1

C1

R

C

R

C

*1202

*1203

A

A

APPENDIX C Standard Parasitic Extraction Format (SPEF)

550

C.3 Complete Syntax

This section describes the complete syntax1 of a SPEF file.

A character can be escaped by preceding with a backslash (\). Comments
come in two forms: // starts a comment until end of line, while /* . . .*/
is a multi-line comment.

In the following syntax, bold characters such as (, [are part of the syntax.
All constructs are arranged alphabetically and the start symbol is
SPEF_file.

alpha ::= upper | lower

bit_identifier ::=
identifier

| <identifier><prefix_bus_delim><digit>{<digit>}
[<suffix_bus_delim>]

bus_delim_def ::=
*BUS_DELIMITER prefix_bus_delim [suffix_bus_delim]

cap_elem ::=
cap_id node_name par_value

| cap_id node_name node_name2 par_value

cap_id ::= pos_integer

cap_load ::= *L par_value

cap_scale ::= *C_UNIT pos_number cap_unit

cap_sec ::= *CAP cap_elem { cap_elem }

cap_unit ::= PF | FF

cell_type ::= index | name

1. Syntax is reprinted here with permission from IEEE Std. 1481-1999, Copyright 1999,
by IEEE. All rights reserved.

Complete Syntax SECTION C.3

551

cnumber ::= (real_component imaginary_component)

complex_par_value ::=
cnumber

| number
| cnumber:cnumber:cnumber
| number:number:number

conf ::= pos_integer

conn_attr ::= coordinates | cap_load | slews | driving_cell

conn_def ::=
*P external_connection direction { conn_attr }

| *I internal_connection direction { conn_attr }

conn_sec ::=
*CONN conn_def { conn_def } { internal_node_coord }

coordinates ::= *C number number

date ::= *DATE qstring

decimal ::= [sign]<digit>{<digit>} .{<digit>}

define_def ::= define_entry { define_entry }

define_entry ::=
*DEFINE inst_name { inst_name } entity

| *PDEFINE physical_inst entity

design_flow ::= *DESIGN_FLOW qstring [qstring]

design_name ::= *DESIGN qstring

digit ::= 0 - 9

direction ::= I | B | O

driver_cell ::= *CELL cell_type

driver_pair ::= *DRIVER pin_name

APPENDIX C Standard Parasitic Extraction Format (SPEF)

552

driver_reduc ::= driver_pair driver_cell pie_model load_desc

driving_cell ::= *D cell_type

d_net ::=
*D_NET net_ref total_cap [routing_conf]
[conn_sec]
[cap_sec]
[res_sec]
[induc_sec]
*END

d_pnet ::=
*D_PNET pnet_ref total_cap [routing_conf]
[pconn_sec]
[pcap_sec]
[pres_sec]
[pinduc_sec]
*END

entity ::= qstring

escaped_char ::= \<escaped_char_set>

escaped_char_set ::= <special_char> | “

exp ::= <radix><exp_char><integer>

exp_char ::= E | e

external_connection ::= port_name | pport_name

external_def ::=
port_def [physical_port_def]

| physical_port_def

float ::=
decimal

| fraction
| exp

fraction ::= [sign] .<digit>{<digit>}

Complete Syntax SECTION C.3

553

ground_net_def ::= *GROUND_NETS net_name { net_name }

hchar ::= . | / | : | |

header_def ::=
SPEF_version
design_name
date
vendor
program_name
program_version
design_flow
hierarchy_div_def
pin_delim_def
bus_delim_def
unit_def

hierarchy_div_def ::= *DIVIDER hier_delim

hier_delim ::= hchar

identifier ::= <identifier_char>{<identifier_char>}

identifier_char ::=
<escaped_char>

| <alpha>
| <digit>
| _

imaginary_component ::= number

index ::= *<pos_integer>

induc_elem ::= induc_id node_name node_name par_value

induc_id ::= pos_integer

induc_scale ::= *L_UNIT pos_number induc_unit

induc_sec ::= *INDUC induc_elem { induc_elem }

induc_unit ::= HENRY | MH | UH

APPENDIX C Standard Parasitic Extraction Format (SPEF)

554

inst_name ::= index | path

integer ::= [sign]<digit>{<digit>}

internal_connection ::= pin_name | pnode_ref

internal_def ::= nets { nets }

internal_node_coord ::= *N internal_node_name coordinates

internal_node_name ::= <net_ref><pin_delim><pos_integer>

internal_pnode_coord ::= *N internal_pnode_name coordinates

internal_pnode_name ::= <pnet_ref><pin_delim><pos_integer>

load_desc ::= *LOADS rc_desc { rc_desc }

lower ::= a - z

mapped_item ::=
identifier

| bit_identifier
| path
| name
| physical_ref

name ::= qstring | identifier

name_map ::= *NAME_MAP name_map_entry { name_map_entry }

name_map_entry ::= index mapped_item

neg_sign ::= -

nets ::= d_net | r_net | d_pnet | r_pnet

net_name ::= net_ref | pnet_ref

net_ref ::= index | path

net_ref2 ::= net_ref

Complete Syntax SECTION C.3

555

node_name ::=
external_connection

| internal_connection
| internal_node_name
| pnode_ref

node_name2 ::=
node_name

| <pnet_ref><pin_delim><pos_integer>
| <net_ref2><pin_delim><pos_integer>

number ::= integer | float

partial_path ::= <hier_delim><bit_identifier>

partial_physical_ref ::= <hier_delim><physical_name>

par_value ::= float | <float>:<float>:<float>

path ::=
[<hier_delim>]<bit_identifier>{<partial_path>}
[<hier_delim>]

pcap_elem ::=
cap_id pnode_name par_value

| cap_id pnode_name pnode_name2 par_value

pcap_sec ::= *CAP pcap_elem { pcap_elem }

pconn_def ::=
*P pexternal_connection direction { conn_attr }

| *I internal_connection direction { conn_attr }

pconn_sec ::=
*CONN pconn_def { pconn_def } { internal_pnode_coord }

pdriver_pair ::= *DRIVER internal_connection

pdriver_reduc ::= pdriver_pair driver_cell pie_model load_desc

pexternal_connection ::= pport_name

physical_inst ::= index | physical_ref

APPENDIX C Standard Parasitic Extraction Format (SPEF)

556

physical_name ::= name

physical_port_def ::=
*PHYSICAL_PORTS pport_entry { pport_entry }

physical_ref ::= <physical_name>{<partial_physical_ref>}

pie_model ::=
*C2_R1_C1 par_value par_value par_value

pin ::= index | bit_identifier

pinduc_elem ::= induc_id pnode_name pnode_name par_value

pinduc_sec ::=
*INDUC
pinduc_elem
{ pinduc_elem }

pin_delim ::= hchar

pin_delim_def ::= *DELIMITER pin_delim

pin_name ::= <inst_name><pin_delim><pin>

pnet_ref ::= index | physical_ref

pnet_ref2 ::= pnet_ref

pnode ::= index | name

pnode_name ::=
pexternal_connection

| internal_connection
| internal_pnode_name
| pnode_ref

pnode_name2 ::=
pnode_name

| <net_ref><pin_delim><pos_integer>
| <pnet_ref2><pin_delim><pos_integer>

pnode_ref ::= <physical_inst><pin_delim><pnode>

Complete Syntax SECTION C.3

557

pole ::= complex_par_value

pole_desc ::= *Q pos_integer pole { pole }

pole_residue_desc ::= pole_desc residue_desc

port_def ::=
*PORTS
port_entry
{ port_entry }

pos_decimal ::= <digit>{<digit>}.{<digit>}

port ::= index | bit_identifier

port_entry ::= port_name direction { conn_attr }

port_name ::= [<inst_name><pin_delim>]<port>

pos_exp ::= pos_radix exp_char integer

pos_float ::= pos_decimal | pos_fraction | pos_exp

pos_fraction ::= .<digit>{<digit>}

pos_integer ::= <digit>{<digit>}

pos_number ::= pos_integer | pos_float

pos_radix ::= pos_integer | pos_decimal | pos_fraction

pos_sign ::= +

power_def ::=
power_net_def [ground_net_def]

| ground_net_def

power_net_def ::= *POWER_NETS net_name { net_name }

pport ::= index | name

pport_entry ::= pport_name direction { conn_attr }

APPENDIX C Standard Parasitic Extraction Format (SPEF)

558

pport_name ::= [<physical_inst><pin_delim>]<pport>

prefix_bus_delim ::= { | [| (| < | : | .

pres_elem ::= res_id pnode_name pnode_name par_value

pres_sec ::=
*RES
pres_elem
{ pres_elem }

program_name ::= *PROGRAM qstring

program_version ::= *VERSION qstring

qstring ::= “{qstring_char}”

qstring_char ::= special_char | alpha | digit | white_space | _

radix ::= decimal | fraction

rc_desc ::= *RC pin_name par_value [pole_residue_desc]

real_component ::= number

residue ::= complex_par_value

residue_desc := *K pos_integer residue { residue }

res_elem ::= res_id node_name node_name par_value

res_id ::= pos_integer

res_scale ::= *R_UNIT pos_number res_unit

res_sec ::=
*RES
res_elem
{ res_elem }

res_unit ::= OHM | KOHM

routing_conf ::= *V conf

Complete Syntax SECTION C.3

559

r_net ::=
*R_NET net_ref total_cap [routing_conf]
{ driver_reduc }
*END

r_pnet ::=
*R_PNET pnet_ref total_cap [routing_conf]
{ pdriver_reduc }
*END

sign ::= pos_sign | neg_sign

slews ::= *S par_value par_value [threshold threshold]

special_char ::=
! | # | $ | % | & | ` | (|) | * | + | , | - | . | / | : | ; | < | =| >

| ? | @ | [| \ |] | ^ | ‘ | { | | | } | ~

SPEF_file ::=
header_def
[name_map]
[power_def]
[external_def]
[define_def]
internal_def

SPEF_version ::= *SPEF qstring

suffix_bus_delim ::=] | } |) | >

threshold ::=
pos_fraction

| <pos_fraction>:<pos_fraction>:<pos_fraction>

time_scale ::= *T_UNIT pos_number time_unit

time_unit ::= NS | PS

total_cap ::= par_value

unit_def ::= time_scale cap_scale res_scale induc_scale

upper ::= A - Z

APPENDIX C Standard Parasitic Extraction Format (SPEF)

560

vendor ::= *VENDOR qstring

white_space ::= space | tab

q

561

Bibliography

1. [ARN51] Arnoldi, W.E., The principle of minimized iteration in the solution
of the matrix eigenvalue problem, Quarterly of Applied Mathematics, Vol-
ume 9, pages 17–25, 1951.

2. [BES07] Best, Roland E., Phase Locked Loops: Design, Simulation and Appli-
cations, McGraw-Hill Professional, 2007.

3. [BHA99] Bhasker, J., A VHDL Primer, 3rd edition, Prentice Hall, 1999.

4. [BHA05] Bhasker, J., A Verilog HDL Primer, 3rd edition, Star Galaxy Pub-
lishing, 2005.

5. [CEL02] Celik, M., Larry Pileggi and Altan Odabasioglu, IC Interconnect
Analysis, Springer, 2002.

6. [DAL08] Dally, William J., and John Poulton, Digital Systems Engineer-
ing, Cambridge University Press, 2008.

7. [ELG05] Elgamel, Mohamed A. and Magdy A. Bayoumi, Interconnect
Noise Optimization in Nanometer Technologies, Springer, 2005.

BIBLIOGRAPHY

562

8. [KAN03] Kang, S.M. and Yusuf Leblebici, CMOS Digital Integrated Cir-
cuits Analysis and Design, 3rd Edition, New York: McGraw Hill, 2003.

9. [LIB] Liberty Users Guide, available at
“http://www.opensourceliberty.org”.

10. [MON51] Monroe, M.E., Theory of Probability, New York: McGraw Hill,
1951.

11. [MUK86] Mukherjee, A., Introduction to nMOS & CMOS VLSI Systems
Design, Prentice Hall, 1986.

12. [NAG75] Nagel, Laurence W., SPICE2: A computer program to simulate
semiconductor circuits, Memorandum No. ERL-M520, University of Cali-
fornia, Berkeley, May 1975.

13. [QIA94] Qian, J., S. Pullela and L. Pillegi, Modeling the “Effective Capaci-
tance’’ for the RC Interconnect of CMOS Gates, IEEE Transaction on CAD
of ICS, Vol 13, No 12, Dec 94.

14. [RUB83] Rubenstein, J., P. Penfield, Jr., and M. A. Horowitz, Signal delay
in RC tree networks, IEEE Trans. Computer-Aided Design, Vol. CAD-2,
pp. 202-211, 1983.

15. [SDC07] Using the Synopsys Design Constraints Format: Application Note,
Version 1.7, Synopsys Inc., March 2007.

16. [SRI05] Srivastava, A., D. Sylvester, D. Blaauw, Statistical Analysis and
Optimization for VLSI: Timing and Power, Springer, 2005.

q

563

12-value delay 481
1-value delay 481
2.5d extraction 547
2d extraction 547
2-value delay 481
3d extraction 548
6-value delay 481

A
absolute path delay 474
absolute port delay 475
AC noise rejection 156
AC specifications 318
AC threshold 159
accurate RC 7
active clock edge 277
active edge 61, 236
active power 88, 412
additional margin 32
additional pessimism 32
aggressor net 165, 167
aggressors 149
all_clocks 449
all_inputs 449
all_outputs 449
all_registers 449
annotator 496
approximate RC 8
area specification 94

area units 100
async default path group 279
asynchronous control 277
asynchronous design 5
asynchronous input arc 74
asynchronous inputs 60

B
backannotation 467, 496
backslash 550
backward-annotation 485
balanced tree 108
BCF 41, 420
best-case fast 41, 227, 370, 420
best-case process 534
best-case tree 108
best-case value 549
bidirectional skew timing check 483
black box 73
byte lane 121

C
C value 534
CAC 336, 341
capacitance identifier 543
capacitance section 543
capacitance specification 543
capacitance unit 100, 538, 543

Index

INDEX

564

capacitive load 540
capture clock 172, 173, 174, 367, 370
capture clock edge 326
capture flip-flop 36
CCB 80
CCS 47, 76
CCS noise 80
CCS noise models 85
CCSN 80
ccsn_first_stage 82, 84, 85, 86
ccsn_last_stage 84, 85, 86
cell check delays 369
cell delay 368, 467, 469
cell instance 473
cell library 12, 113, 153, 392
cell placement 547
cell_rise 52
channel connected blocks 80
channel length 366
characterization 54
check event 482
circuit simulation 532
clock cycle 318
clock definitions 2
clock domain 36, 273, 435
clock domain crossing 10, 445
clock gating 365, 406, 413
clock gating check 192, 394
clock latency 30, 188
clock period jitter 31
clock reconvergence pessimism 373
clock reconvergence pessimism

removal 370
clock skew 30
clock source 181
clock specification 181
clock synchronizer 10, 38, 445
clock tree 6, 236, 370
clock tree synthesis 189
clock uncertainty 186, 335
clock_gating_default 399
closing edge 377
CMOS 5
CMOS gate 16
CMOS inverter 16
CMOS technology 15
combinational cell 33
comment 538
common base period 306
common clock path 370, 375
common path pessimism 370, 375
common path pessimism

removal 370
common point 370
composite current source 76
COND 72
conditional check 510
conditional hold time 510
conditional path delay 477, 479
conditional propagation delay 502
conditional recovery time 511
conditional removal time 513
conditional setup time 508
conditional timing check 482
connection attribute 540, 543
connectivity section 543
constrained pin 385, 392
constrained_pin 63
controlled current source 115
coordinates 540
coupled nets 118
coupling capacitance 118, 149, 544
CPP 370
CPPR 370
create_clock 182, 453
create_generated_clock 190, 454
create_voltage_area 466
critical nets 120
critical path 6, 247
cross-coupling capacitance 542, 543
crosstalk 2, 121
crosstalk analysis 147, 532
crosstalk delta delay 149
crosstalk glitch 83, 160
crosstalk noise 147, 163
CRPR 370
current loops 102
current spikes 148
current_design 450
current_instance 448
cycle stealing 377

D
D_NET 532, 542
DAC interface 360
data to data check 385
data to data hold check 385
data to data setup check 385
DC margin 87, 154
DC noise analysis 156
DC noise limits 153
DC noise margin 153, 157
DC transfer characteristics 153

INDEX

565

dc_current 82, 153
DDR xix
DDR interface 121
DDR memory 10
DDR SDRAM 317
DDR SDRAM interface 341
deep n-well 177
default conditional path delay 479
default path delay 477
default path group 209
default wireload model 112
define definition 534, 541
delay 474
delay specification 480
delay-locked loop 336
derate specification 374
derating 367
derating factor 96, 97, 368
design name 534
design rules 215
Design Under Analysis 180
detailed extraction 104
device delay 477, 519
device threshold 41
diffusion leakage 92
distributed delay 470
distributed net 532, 542
distributed RC 149, 545
distributed RC tree 103
distributed timing 477
DLL 336, 343, 349
DQ 341
DQS 341
DQS strobe 341
drive strength 211
driver pin 532, 548
driver reduction 548
driving cell 540
DSPF 113
DUA 3, 180, 317, 336
duty cycle 181

E
early path 35
ECSM 47, 76
edge times 181
EDIF 536
effective capacitance 75
effective current source model 76
electromigration 13
e-limit 476

Elmore delay 548
enclosed wireload mode 110
endpoint 207
entity instance 541
environmental conditions 96
error limit 476
escaped 550
escaped character 550
exchange format 531
expr 448
external definition 534, 540
external delay 206
external input delay 204
external load 536
external slew 536
extraction 119
extraction tool 7, 119
extrapolation slope 107

F
fall delay 51
fall glitch 152, 159
fall transition 51
fall_constraint 64
fall_glitch 154
fall_transition 51
false path 11, 38, 179, 272, 444
fanouts 21
fast clock domain 289
fast process 39, 96
file size 534
final route 7, 547
flip-flop 3
footer 414
forward-annotation 469, 471, 485
FPGA 5
frequency histogram 246
function specification 95
functional correlation 162
functional failures 5
functional mode 220

G
gate oxide tunneling 92
gating cell 394
gating pin 394
gating signal 394
generated clock 190, 328, 396, 435
generic 485
generic name 500
get_cells 450

INDEX

566

get_clocks 450
get_lib_cells 451
get_lib_pins 451
get_libs 451
get_nets 451
get_pins 451
get_ports 451
glitch 159, 470
glitch analysis 10, 147
glitch height 153
glitch magnitude 151, 153, 161
glitch propagation 159
glitch width 87, 153
global process variation 423
global route 7, 547
ground net 540
grounded capacitance 102, 118, 151,

164
group_path 455
guard ring 177

H
half-cycle path 274, 442
hardware description language 467
header 414
header definition 534
header section 471
hierarchical block 175, 472
hierarchical boundary 110, 542
hierarchical instance 473
hierarchical methodology 119
hierarchy delimiter 537
hierarchy separator 472, 473
high transition glitch 159
high Vt 92, 416
high-fanout nets 443
hold 62
hold check 3, 227
hold check arc 60
hold gating check 400
hold multicycle 262, 289
hold multiplier 269
hold time 509
hold timing check 248, 470, 474, 482,

510
hold_falling 393
hold_rising 393

I
ideal clock tree 30
ideal clocks 9

ideal interconnect 7, 9, 490
ideal waveform 25
IEEE Std 1076.4 499
IEEE Std 1364 496
IEEE Std 1481 531
IEEE Std 1497 468
IMD 431
inactive block 414
inductance 102, 547
inductance section 547
inductance unit 538
inertial delay 157
input arrival times 240
input constraints 319
input delay constraint 203
input external delay 255
input glitch 157
input specifications 206
input_threshold_pct_fall 25
input_threshold_pct_rise 25
insertion delay 188, 236
instance name 538
inter-clock uncertainty 187
interconnect capacitance 102
interconnect corner 418, 419
interconnect delay 467, 469, 477, 479
interconnect length 107
interconnect modeling 471
interconnect parasitics 101, 534
interconnect path delay 518
interconnect RC 419
interconnect resistance 102, 120, 419
interconnect trace 101, 102
inter-die device variation 423
inter-metal dielectric 431
internal definition 534, 542, 545
internal pin 543
internal power 88
internal switching power 88
intra-die device variation 424
IO buffer 43
IO constraints 218
IO interface 337
IO path delay 475, 477
IO timing 179
IR drop 366
is_needed 82

J
jitter 31

INDEX

567

K
k_temp 99
k_volt 98
k-factors 96, 97

L
L value 534
label 474, 485
latch 377
late path 35
latency 440
launch clock 174, 370
launch edge 303
launch flip-flop 36
layout extracted parasitics 119
leakage 19, 415
leakage power 88, 92, 412, 416
Liberty 26, 43, 94
library cell 43
library hold time 253
library primitive 471
library removal time 279
library time units 100
linear delay model 46
linear extrapolation 107
list 448
load capacitance 46, 542
load pin 532
local process variation 424
logic optimization 5
logic synthesis 485
logic-0 19
logic-1 19
logical hierarchy 541
logical net 536, 545
logical port 540
longest path 34
lookup table 48, 64
low transition glitch 159
low Vt 93, 416
lumped capacitance 532, 548

M
master clock 190, 328
max capacitance 215
max constraint 229
max output delay 327
max path 34, 172
max path analysis 166
max path check 323
max timing path 229

max transition 215
max_transition 58
maximal leakage 41
maximum delay 482, 502
maximum skew timing check 470
metal etch 430
metal layers 101
metal thickness 431
Miller capacitances 82
Miller effect 76
miller_cap_fall 82
miller_cap_rise 82
min constraint 250
min output delay 327
min path 34, 172
min path analysis 166
min path check 323
minimum delay 482, 502
minimum period timing check 470
minimum pulse width timing

check 470
MMMC 421
MOS devices 92
MOS transistor 15
multi Vt cell 416
multicycle 444
multicycle hold 264
multicycle path 179, 260, 292
multicycle setup 264
multicycle specification 285, 335, 390
multi-mode multi-corner 421
multiple aggressors 160

N
name directory 119
name map 534, 538, 542
narrow glitch 155
negative bias 417
negative crosstalk delay 166, 167
negative fall delay 170
negative hold check 65
negative rise delay 170
negative slack 246
negative unate 33, 59
negative_unate 52
neighboring aggressors 149
neighboring signal 102
net 101
net delay 368, 479, 518
net index 542
net name 538

INDEX

568

netlist connectivity 536
network latency 188
NLDM 47, 75, 393
NMOS 15
NMOS device 414
NMOS transistor 16
no change timing check 471
no-change data check 391
no-change hold time 516
no-change setup time 516
no-change timing check 483
no-change window 391
noise 2, 83
noise immunity 87
noise immunity model 87
noise rejection level 155
noise tolerance 155
noise_immunity_above_high 87, 159
noise_immunity_below_low 87, 159
noise_immunity_high 87, 159
noise_immunity_low 87, 159
nom_process 96
nom_temperature 96
nom_voltage 96
nominal delay 502
nominal temperature 41
nominal voltage 41
non-common 174
Non-Linear Delay Model 47
non-monotonic 46
non-sequential check 392
non-sequential hold check 393
non-sequential setup check 393
non-sequential timing check 365
non-unate 34, 68
N-well 417

O
OCV 366
OCV derating 371
on-chip variation 365
opening edge 377
operating condition 39, 96, 472
operating mode 418
output current 79
output external delay 257
output fall 56
output high drive 21
output low drive 21
output rise 56
output specifications 206

output switching power 88
output_current_fall 79
output_current_rise 80
output_threshold_pct_fall 25
output_threshold_pct_rise 26
output_voltage_fall 83
output_voltage_rise 83
overshoot 87
overshoot glitch 152, 159

P
parallel PMOS 17
parasitic corners 418
parasitic extraction 532
parasitic information 531
parasitic interconnect 104
parasitic RC 7
path delay 34, 496
path exception 444
path groups 209
path segmentation 224
pathpulse delay 475
pathpulsepercent delay 477
paths 207
PCB interconnect 349
period 181, 513
period timing check 483
physical hierarchy 542
physical net 532, 545
physical partition 541, 547
physical port 540
physical wireload 547
pie model 532, 548
pi-model 104
pin capacitance 20, 44, 537, 543
pin-to-pin delay 470
place-and-route 532
PLL 10
PMOS 15
PMOS device 415
PMOS transistor 16
point-to-point delay 471
port delay 477, 479, 517
port slew 534
positive crosstalk delay 166, 167
positive fall delay 170
positive glitch 150
positive rise delay 170
positive slack 247
positive unate 33, 59
positive_unate 56

INDEX

569

post-layout phase 104
power 12
power definition 534, 540
power dissipation 19
power gating 414
power gating cell 415
power net 540
power unit 100
pre-layout phase 104
process 534
process operating condition 482
process technology 12
propagated_noise 158
propagated_noise_high 83
propagated_noise_low 83
propagation delay 25, 477, 502
pull-down structure 17
pull-up resistance 21
pull-up structure 17
pulse propagation 469, 470
pulse rejection limit 476, 481
pulse width 476, 514
pulse width check 66
PVT 39, 336
PVT condition 366, 371
PVT corner 418
P-well 417

Q
quarter-cycle delay 343

R
R value 534
R_NET 532, 542
RC 7, 103
RC interconnect 103
RC network 23, 544, 548
RC time constant 23
RC tree 108
read cycle 343
receiver pin capacitance 76
receiver_capacitance1_fall 77, 78
receiver_capacitance1_rise 78
receiver_capacitance2_fall 77, 78
receiver_capacitance2_rise 77, 78
recovery 66
recovery check 435
recovery check arc 60
recovery time 66, 511
recovery timing check 279, 470, 483
reduced format 115

reduced net 532, 542, 548
reduced RC 545
reduced representation 118
reference_time 80
related clocks 305
related pin 385, 392
related_pin 63
removal 66
removal check arc 60
removal time 66, 512
removal timing check 277, 470, 483
resistance identifier 544
resistance section 544, 547
resistance unit 100, 538, 544
resistive tree 103
retain definition 477
retain delay 478
rise delay 51
rise glitch 152, 159
rise transition 51
rise_constraint 64
rise_glitch 154
rise_transition 51
rising_edge 69
r-limit 476
root-mean-squared 160
routing confidence 536
routing halo 177
RSPF 113
RTL 5

S
same-cycle checks 385, 389
SBPF 113
scan mode 65, 162
scenarios 421
SDC xvii, 4, 447
SDC commands 447
SDC file 447
SDF xvi, 94, 418, 468
sdf_cond 72, 95
segment 101
segmented wireload mode 110
selection groups 113
sequential arc 74
sequential cell 33, 60
series NMOS 17
set 448
set_case_analysis 219, 461
set_clock_gating_check 395, 407, 412,

455

INDEX

570

set_clock_groups 455
set_clock_latency 31, 188, 236, 456
set_clock_sense 456
set_clock_transition 186, 456
set_clock_uncertainty 31, 186, 456
set_data_check 385, 457
set_disable_timing 219, 434, 457
set_drive 210, 461
set_driving_cell 210, 461
set_false_path 38, 219, 272, 457
set_fanout_load 462
set_hierarchy_separator 448
set_ideal_latency 458
set_ideal_network 458
set_ideal_transition 458
set_input_delay 203, 239, 321, 369,

440, 458
set_input_transition 210, 213, 234,

462
set_level_shifter_strategy 466
set_level_shifter_threshold 466
set_load 211, 242, 462
set_logic_dc 462
set_logic_one 462
set_logic_zero 463
set_max_area 217, 463
set_max_capacitance 215, 463
set_max_delay 222, 459
set_max_dynamic_power 466
set_max_fanout 217, 463
set_max_leakage_power 466
set_max_time_borrow 459
set_max_transition 215, 463
set_min_capacitance 464
set_min_delay 222, 459
set_multicycle_path 219, 260, 460
set_operating_conditions 41, 464
set_output_delay 206, 257, 325, 369,

440, 460
set_port_fanout_number 464
set_propagated_clock 189, 461
set_resistance 464
set_timing_derate 368, 464
set_units 448
set_wire_load_min_block_size 465
set_wire_load_mode 110, 465
set_wire_load_model 465
set_wire_load_selection_group 113,

465
setup 62
setup capture edge 315
setup check 3, 227

setup check arc 60
setup constraint 63
setup launch edge 251
setup multicycle 289
setup multicycle check 260
setup receiving edge 251
setup time 62, 508
setup timing check 228, 470, 474, 482,

510
setup_falling 393
setup_rising 393
setup_template_3x3 64
shield wires 176
shielding 177
shortest path 35
sidewall 148
sidewall capacitance 118
signal integrity 147
signal traces 148
simulation 467
skew 30, 515
sleep mode 414
slew 28, 53
slew derate factor 54
slew derating 56
slew rate 120
slew threshold 54, 537
slew_derate_from_library 55
slew_lower_threshold_pct_fall 54
slew_lower_threshold_pct_rise 54
slew_upper_threshold_pct_fall 54
slew_upper_threshold_pct_rise 54
slow clock domain 289
slow corner 229
slow process 39, 96
source latency 188
source synchronous interface 317,

328
specify block 496
specify parameter 485
specparam 474
SPEF xvi, 113, 418, 531
SPICE 113
SRAM 317
SRAM interface 336
SSTA 427
stage_type 82
stamp event 482
standard cell 19, 43
standard delay annotation 467
standard parasitic extraction

format 531

INDEX

571

standard Vt 416
standby mode 88
standby power 12, 88
startpoint 207
state-dependent model 70
state-dependent path delay 470
state-dependent table 59
statistical static timing analysis 427
statistical wireload 547
steiner tree 547
straight sum 169
subthreshold current 92
synchronous inputs 60
synchronous outputs 61
synthesis 471

T
temperature inversion 41
temperature variations 366
thermal budget 12
threshold specification 26
time borrowing 365, 379
time stamp 535
timescale 472
timing analysis 2, 532
timing arc 33, 45, 59, 94, 219, 392, 434
timing break 434
timing check 469, 470, 474, 482, 496
timing constraint 474
timing corner 370
timing environment 469, 471, 474,

485
timing model variable 474
timing paths 207
timing sense 33
timing simulation 2
timing specification 474
timing windows 161
timing_sense 51
timing_type 64, 69
T-model 103
top wireload mode 110
total capacitance 537, 542, 548
total power 416
transition delay 480
transition time 23, 28
triplet form 549
triplets 482, 534
TYP 41
typical delay 482
typical leakage 41

typical process 39, 96, 534
typical value 549

U
unateness 34
uncertainty 186
undershoot 87
undershoot glitch 152, 159
unidirectional skew timing

check 483
units 99
upper metal layer 120
USB core 43
useful skew 444

V
valid endpoints 207
valid startpoints 207
Verilog HDL 4, 467, 485, 496, 536
version number 472, 534
VHDL 4, 467, 485, 499
VHDL87 536
VHDL93 536
vias 102
victim 149
victim net 150, 167
VIH 154
VIHmin 19
VIL 154
VILmax 19
virtual clock 217
virtual flip-flop 318
VITAL 499
VOH 154
VOL 154
voltage source 115
voltage threshold 366
voltage unit 100
voltage waveform 23

W
waveform specification 183
WCL 420
WCS 40, 420
well bias 417
when condition 71, 94
wide trace 120
width timing check 483
wildcard character 473
wire capacitance 148

INDEX

572

wireload mode 110
wireload model 7, 105
wireload selection group 112
worst-case cold 420
worst-case process 534
worst-case slow 40, 227, 370, 420
worst-case tree 108
worst-case value 549
write cycle 348

X
X filter limit 481
X handling 10

Z
zero delay 30
zero violation 246
zero-cycle checks 385
zero-cycle setup 389

q

	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	back-matter.pdf

