
Efficiently Exploiting Low Activity Factors
to Accelerate RTL Simulation

Scott Beamer∗
Computer Science & Engineering

University of California, Santa Cruz
Santa Cruz, CA, USA
sbeamer@ucsc.edu

David Donofrio∗
Hardware Architecture

Tactical Computing Laboratories
San Francisco, CA, USA

ddonofrio@tactcomplabs.com

Abstract—Hardware simulation is a critical tool for design, but its
slow speed often bottlenecks the entire design process. Although most
signals in a digital design rarely change, most leading simulators still
simulate the entirety of the design every cycle. Tracking which signals
are unchanged and can thus be reused typically introduces too much
overhead to deliver a practical speedup.

In this work, we explore the challenge of efficiently detecting oppor-
tunities for reuse, and we demonstrate practical techniques to profitably
exploit them. Thanks to our novel acyclic partitioning algorithm and
other optimizations, our generated simulators outperform open-source
and industrial state-of-the-art simulators.

I. INTRODUCTION

Due to the high financial and temporal cost of fabricating a chip,
simulation is an invaluable tool for hardware design. Simulation is
used in a variety of settings, whether it be development, design
space exploration, debugging, verification, or validation. To improve
simulation speed, common techniques include using reduced fidelity
models (e.g. transaction-accurate simulation) or hardware accelera-
tion (e.g. FPGA emulation). As such, cycle-accurate RTL simulation
performed by software is still the most commonly used tool and
remains a persistent bottleneck for hardware design. A substantial im-
provement in software cycle-accurate simulation performance could
lead to multiple qualitative improvements. Faster simulation increases
the number of designs that can be simulated in a day, which in turn
could be used to: explore a larger design space, fix bugs quicker,
increase coverage for verification, or even reduce computing costs.

Within many digital systems, many signals have low activity factors
as they rarely change [6], [20]. A low activity factor suggests that
most of the simulation results can be reused to save computation.
Unfortunately, the overhead of tracking which signals have changed
and triggering the necessary computation can often be much more
onerous than the computation saved. For this reason, most state-of-
the-art simulators use a full-cycle approach in which they evaluate
the entirety of the circuit every cycle instead of a classic event-driven
approach that is more activity proportional.

To profitably exploit low activity factors for a net speedup, two
primary sources of overhead must be reduced: detecting which signals
have changed and scheduling the needed signal computations. To
amortize the overhead of detecting activity, we coarsen the granularity
at which we track activity from single signals to modest partitions
of 10-100s of elements. To reduce the overhead of dynamically
scheduling the needed work, we generate a static schedule at compile
time. The principal obstacle for such an activity-driven simulation
approach is how to coarsen the design while still allowing for an
efficient execution. Our solution to this coarsening problem is our
key contribution: a novel acyclic graph partitioning algorithm.

∗ Early work performed at Lawrence Berkeley National Laboratory

In this work, we introduce the essential signal simulation approach,
a method to efficiently exploit low activity factors in order to
accelerate simulation. The result is an efficient simulation that skips
over regions of inactivity while being unencumbered by scheduling
overheads, repeat evaluations, or any substantial computation other
than simulating the target design. Crucial to our approach is our
acyclic partitioner which coarsens the design to reduce overheads.
Improving significantly over prior related work, our approach is
highly automated and requires near-minimal user intervention to
operate. To demonstrate the utility of our insights, we implement
ESSENT, a high-performance cycle-accurate simulator generator.
Over multiple designs, our generated simulators outperform both
a leading open-source simulator as well as a leading industrial
simulator by 1.5− 29.3×.

II. SIMULATION BACKGROUND

Early RTL simulators computed the values of hardware designs by
propagating signal updates as events, which also matched the seman-
tics of the languages they modeled (e.g. Verilog). With these event-
driven simulators, each time a signal is evaluated, it creates events to
evaluate its children. To reduce unnecessary repeat evaluations, the
events should be processed in a breadth-first manner, often referred
to as levelization [22], [23].

Although levelized simulators eliminate unnecessary repeat ac-
tivations, tracking which signals to activate and then dynamically
scheduling them adds considerable overhead. Full-cycle simulators
eliminate the scheduling overhead by performing the scheduling once
at compile time and reusing it each cycle (static schedule) [12]. For a
single static schedule to be sufficient, it needs to simulate the entirety
of the design every cycle.

We define an efficient execution in which each signal is evaluated at
most once per cycle to be a singular execution. A singular execution
is possible with both full-cycle and event-driven approaches. In order
for a schedule for a singular execution to exist, the graph must be
acyclic [4]. Most hardware designs are acyclic or can be transformed
to become acyclic. To break cycles from feedback paths through state
elements (register or memory), each state element can be split into
two nodes in the design graph (one for input & one for output). For
combinational loops, the entire strongly connected component can be
merged into a supernode. The supernode may need to be evaluated
repeatedly until convergence, but the surrounding graph context is
made acyclic by the transformation. In this work, we assume the
designs are acyclic after initial transformations.

Low activity factors are common in digital designs. A low activity
factor does not necessarily indicate wasteful design, as it is difficult
to toggle every signal every cycle. Even the commonly used wave-

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

form file format Value Change Dump (VCD) exploits inactivity for
compression by only recording signals when they change values.

Since in practice most signals rarely change, the simulation effort
should ideally be proportional to the amount of activity in the design
instead of the design size. Fortunately, event-driven simulation prop-
agates activity and its simulation effort is thus activity proportional.
Unfortunately, full-cycle simulation simulates the entire design every
cycle and is thus activity oblivious. However, the current fastest
simulators are typically full cycle, as the reduction in overhead
outweighs the efficiency loss from not exploiting low activity factors.

For a full-cycle simulator to exploit low activity factors, it must
detect which signals are unchanged to determine which outputs can be
reused without computing them. The overhead of detecting and acting
on these opportunities for reuse on a signal by signal granularity
typically exceeds the benefit of the skipped computation. To amortize
these overheads, the decision of which signals to conditionally
evaluate should be performed on a coarser granularity.

How the design is coarsened can greatly hinder the efficiency or the
usability of a simulator attempting to exploit inactivity. The design’s
module hierarchy does partition the design, but it is almost certainly
cyclic. In the general case, these frequent module cycles almost
entirely preclude singular execution. Prior work that uses the module
hierarchy to exploit low activity factors has been forced to reevaluate
modules multiple times per cycle [19] or unreasonably require the
user to ensure the module graph is acyclic [11]. Other prior work
groups together nearby signals into clusters [8]. However, to break
cycles to make the cluster graph acyclic, they replicate portions of
the design to reduce inter-cluster dependences.

III. ESSENTIAL SIGNAL SIMULATION

We present our essential signal simulation technique whose goal
is to expend simulation effort only on what is necessary and to
minimize all other unnecessary computations. In particular, our
method exploits low activity factors with low overhead by using
a conditional, coarsened, singular, static (CCSS) execution sched-
ule. Conditional execution allows for skipping the computation of
unchanged signals. Coarsening the design reduces the overhead of
detecting signal changes and triggering work. Singular execution
ensures each component is evaluated at most once per cycle. A static
schedule further reduces the scheduling overhead.

Efficiently achieving CCSS execution can be challenging, as the
coarsening process is often at odds with singular execution (Sec-
tion II). Our approach overcomes the shortcomings of prior work
through the introduction of an acyclic partitioner. A partitioning, as
opposed to a clustering, requires each signal to be in exactly one
partition (not replicated). Requiring the partitioning to be acyclic
guarantees the existence of a singular schedule.

Although CCSS execution provides outstanding simulation effi-
ciency, to be usable, it must not place unreasonable constraints on
the target design or overly burden the user. Our approach solves these
usability concerns through automation. Our novel acyclic partitioner
(Section IV) coarsens the design in a manner allowing for singular
execution without user assistance. Furthermore, we also automati-
cally generate all of the infrastructure to detect activity and trigger
necessary executions.

A. ESSENT Structure

We implement Essential Signal Simulation Enabled by Netlist
Transformations (ESSENT) to demonstrate the efficiency of our
proposed technique. ESSENT is a simulator generator that given
a hardware design, produces C++ code that can be compiled to

A B

C

P1

P2

P3

…
evalP2()
 active[2] = false
 C$old = C
 C = A + B
 active[3] |= C != C$old
…
eval()
 …
 if (active[2]) evalP2()
 …

main()
 for (max_cycles)
 eval()

+

Fig. 1. Example of how a partition (P2) gets mapped to a function and fits
into the rest of the simulator. When P2 is activated, it first deactivates itself
for the next cycle, saves the old values of its outputs, computes itself using
full-cycle simulation, and triggers its consumers if its output changed. P2 will
not be activated again unless P1 activates it because A or B changes.

produce a high-performance cycle-accurate simulator. We describe
the structure of the simulators it produces, the optimizations they
use, as well as the ESSENT tool itself.

The simulators generated by ESSENT use our proposed CCSS
execution method. ESSENT partitions the design (coarsened), deter-
mines activation conditions for each partition (conditional execution),
and schedules the partitions at compile time (static schedule). In
the generated simulator, ESSENT generates code for each partition
and joins them together with a single eval function. Thanks to the
partitioning being acyclic, the static schedule only needs to consider
each partition once (singular).

Partitions are only evaluated if they are active, so in addition to
evaluating themselves, they must also detect which other partitions
to activate (Figure 1). Once activated, each partition detects if its
outputs change and activates the consumers of those outputs. Since
a partition potentially has multiple outputs, we find it profitable to
trigger activations at the fine granularity of individual outputs since
it prevents unnecessary activations. Each partition will sleep the
following cycle unless it is activated again. In the main eval function,
the simulator also detects changes to external inputs to appropriately
trigger dependent activations.

We perform the triggering for activity in the push direction,
that is, each producer is responsible for awakening its consumers.
Alternatively, we could perform the triggering in the pull direction
(each partition checks if its inputs have changed), but we expect most
partitions to be inactive most of the time, so the push direction results
in less overhead. For the actual triggers themselves, we find using
an OR-reduction as shown in Figure 1 delivers the best performance
since it is branchless.

B. Simulation Optimizations

ESSENT utilizes numerous performance optimizations to accel-
erate its generated simulators including conditionally evaluating
multiplexor ways or classic compiler optimizations such as dead
code elimination, common subexpression elimination, and constant
propagation. In this section, we outline our most novel optimizations.

1) Optimizing State Element Evaluation: We initially represent
each state element as two nodes to eliminate potential cycles (Sec-
tion II). With the following optimization, we are usually able to
eliminate the second node from the split, saving both computation
and memory space.

We are able to update a register immediately (eliminate the need for
a second variable and a copy to it), if all of the register’s consumers
read it before it is updated [11], [15]. In terms of a directed graph
representation of the design, this optimization is safe if and only if
there is not a directed path from the register input node to any node
that reads the register output node. Once the optimization has been
determined to be safe, we add special ordering edges to the graph
from all of the register’s readers to the register input node to ensure
the reads will be scheduled before the write.

Although prior work performs the register update elision optimiza-
tion [11], [17], [21], we significantly improve it by making it com-
patible with our CCSS approach. Some prior coarsened simulators
even exclude registers from conditional execution [8], thus limiting
potential speedups.

We perform the state element update optimization pass after par-
titioning. Like the simpler unpartitioned case, when the optimization
is possible, we ensure that every partition that reads the state element
is scheduled before the partition that writes the state element. When
state elements are incorporated into partitions, they must awaken their
consumers in the following cycle. Our key insight is that the writing
partition can immediately awaken its consuming partitions. If a state
element is able to be updated in a single phase, that means all of
its consumers have already executed that cycle. Thus, it can safely
awaken them and those consuming partitions will not be evaluated
until the following cycle. A state element can also trigger a wakeup
to its own partition for the following cycle if that partition also reads
that state element (feedback loop).

The benefit of performing state element updates within condition-
ally evaluated partitions is that it reduces scheduling overhead. State
elements must wake up their consumers if they change, but these
equality tests and partition activations are unnecessary if the state
element inputs did not change. By incorporating a state element
update into its partition, these scheduling activities can also be
included in the partition, and thus performed only if the partition
is active. We perform this operation not only for registers, but also
for more complicated memories as well.

2) Optimizing Code Layout with Branch Hints: Like full-cycle
simulators, the simulators generated by ESSENT strain the host
processor with their large instruction working sets. Fortunately,
ESSENT’s extensive use of conditional execution provides an op-
portunity to shrink the effective instruction working set through
better code layout. ESSENT emits branch hints the compiler uses
to separate cold (infrequently used) code from hot code. ESSENT
automatically instructs the compiler that the following activities are
unlikely: multiplexor ways associated with reset, print statements,
and triggered assertion handling.

C. Implementation Details

ESSENT accepts hardware designs in FIRRTL, an intermediate
language for hardware [16]. Compared to classic netlist formats,
FIRRTL retains substantially more semantic information about the
design which can better guide optimizing transformations. Since
FIRRTL is an intermediate language, other projects can generate new
frontends or backends for FIRRTL and reuse the rest of the tool flow.
Chisel [2] is a hardware construction language that is the most mature
FIRRTL frontend with the largest designs. Spatial [14] and PyRTL [9]
have added support to emit Chisel or FIRRTL. Additionally, using
Yosys, one can translate most synthesizable Verilog to FIRRTL [24].
Our tool, ESSENT, is a backend that consumes FIRRTL as its input,
so it can take designs from any language that produces FIRRTL.

D

A

C

B

P1 P2 P1 P2

Fig. 2. Example of an acyclic graph (left) creating a cyclic partitioning (right).
If the partitions are evaluated atomically, there is no way to get the correct
result without reevaluating at least one partition. An alternate partitioning of
{A,B} and {C,D} is acyclic.

ESSENT itself is implemented in ∼3,400 lines of Scala, and it reuses
much of the infrastructure from FIRRTL’s supporting library.

IV. NOVEL ACYCLIC PARTITIONING ALGORITHM

Coarsening the design is the biggest challenge for a CCSS sim-
ulation approach (Section II). In particular, the partitioning must be
acyclic in order to enable an efficient schedule in which each partition
is evaluated at most once per simulated cycle (singular execution).
In an acyclic partitioning, the graph of partitions is acyclic. Even
if the graph representing the hardware design is acyclic, partitioning
the graph can induce cycles between partitions (Figure 2). In this
section, we describe our novel acyclic graph partitioning algorithm
which powers ESSENT.

Graph partitioning is a demanding optimization problem, whose
most practical algorithms are largely driven by heuristics. Due to
the complexity of these algorithms, it is typically preferable to use
existing optimized libraries. Unfortunately, there is far less research
on acyclic partitioning than general graph partitioning, and to the
best of our knowledge, there are no open-source acyclic partitioners,
despite claims to the contrary [18].

Our approach starts with an acyclic partitioning that has too many
partitions, and it greedily merges partitions until no more merges are
possible or the desired amount of coarsening is achieved. It quickly
produces a reasonable acyclic partitioning by leveraging insights into
common topological properties of hardware design graphs.

When merging partitions, in addition to using heuristics to consider
the most profitable merges, we must also ensure each merge will not
induce a cycle in the graph. We extend the work of Herrmann et
al. [13], and find a simple test to see if partitions can be merged:

Partitions A and B can be merged if and only if there is
no external path in either direction between them.

An external path traverses nodes not in either partition. If there is
an external path, when those partitions are merged, that path will be
become a cycle. Our approach typically merges partitions that are
adjacent to each other, so the edges that directly connect the two
partitions are safely consumed within the new partition.

For our merging process, our primary goal is to eliminate small
partitions, but we let the graph topology guide our approach and we
do not strongly enforce balance constraints or limit the number of
partitions. Small partitions are problematic, because they contain too
few components to fully amortize the cut edges. To identify small
partitions, we use a simple threshold parameter Cp, and any partition
with fewer than Cp nodes is considered “small.” In practice, Cp

is mostly insensitive to the target design, and this is a significant
improvement over prior work which exposed design-sensitive param-
eters to the user [8]. With a design-sensitive parameter, the user must
retune the parameter for every design or even design change, while
our design-insensitive parameter only needs to be tuned once for the
host platform.

A

B

C D

MFFC(A)

MFFC(B)

MFFC(C) MFFC(D)

Fig. 3. Example maximum fanout free cones (MFFC) of nodes A, B, C,
and D. Note if a node is in a MFFC, that node’s MFFC is contained within
that MFFC (e.g. MFFC(A) ⊂ MFFC(B)).

Small partitionArbitrary partition

(A) (B) (C)
New partition

Fig. 4. Merging phases used by partitioner after initial MFFC decomposition

To bootstrap our algorithm, we first decompose the graph into
maximum fanout free cones (MFFC). The MFFC of a node v is the
largest set of ancestors of v such that all of their descendants are
either in the MFFC(v) or v itself (Figure 3). Sometimes MFFCs are
trivially small (single node), and this happens when the target node
v has siblings (shares a parent). MFFCs are useful building blocks,
because any result from an MFFC(v) is only visible within the MFFC
and at its target output node v. This beneficial property guaranties a
MFFC-decomposition is acyclic [10].

Our merge-based acyclic partitioner performs the following:

Generate initial acyclic partitioning by decomposing the graph
into MFFCs. To find a better MFFC decomposition, we start
from the sink nodes (typically writes to state elements or external
outputs) and crawl upwards identifying MFFCs.

Merge single-parent partitions into their parents. If all of the
signals for a partition come from a single parent partition, the
partitions can be safely merged (Figure 4A).

Merge small partitions with small siblings. Repeated structures
such as operations on a bit-vector often result in partitions
with high fanout to many small child partitions. To capture
these structures in a single partition, we merge all small
partitions (size < Cp) with their small siblings (Figure 4B).
When choosing which merge to perform, we prioritize the
absolute number of cut edges eliminated by a merge, which
simultaneously maximizes the number of partitions in a merge
as well as the number of common ancestors.

Merge small partitions with any siblings. The remaining small
partitions do not have small siblings with which they share
input signals. We repeatedly attempt to merge these small
partitions with their potentially larger siblings, with a heuristic of
maximizing the fraction of input signals in common (Figure 4C).

V. EVALUATION

We establish the utility of our essential simulation technique by
demonstrating ESSENT’s performance advantages over prior work
and by dissecting how it reduces overhead while exploiting low
activity factors. In our evaluation, we use the following simulators:

100
101
102
103
104

r1
6

Si
gn

al
s

mean: 0.0214
dhrystone

mean: 0.0195
matmul

mean: 0.0163
pchase

100
101
102
103
104

r1
8

Si
gn

al
s

mean: 0.0174 mean: 0.0169 mean: 0.0173

0.0 0.5
Activity Factor

100
101
102
103
104
105

bo
om

Si
gn

al
s

mean: 0.0184

0.0 0.5
Activity Factor

mean: 0.0140

0.0 0.5
Activity Factor

mean: 0.0113

Fig. 5. Distribution of activity factors for all software workloads (horizontally)
executing on all processors (vertically). Across all configurations, activities are
typically low (note logarithmic y-axes).

Verilog FIRRTL FIRRTL
Design Lines Nodes Edges

r16 112,167 33,426 51,356
r18 328,367 67,803 123,151

boom 425,241 128,712 291,010
TABLE I

OPEN-SOURCE PROCESSOR DESIGNS USED FOR EVALUATION

Benchmark Cycles (K) Description
dhrystone 489.1 Dhrystone microbenchmark
matmul 715.8 Matrix multiplication benchmark
pchase 8,428.1 Pointer-chasing synthetic microbenchmark

TABLE II
SOFTWARE WORKLOADS FOR EVALUATION (CYCLE COUNTS FOR R16)

CommVer is a state-of-the-art commercial Verilog simulator
(anonymized due to license). We appropriately finesse its options
to maximize performance, including using 2-state simulation.

Verilator is an open-source Verilog simulator [21] with performance
matching or exceeding commercial tools [3].

Baseline is a pure full-cycle simulator produced by the ESSENT tool
flow with all optimizations disabled.

ESSENT is a CCSS simulator with all optimizations enabled, in-
cluding the conditional execution of acyclic partitions.

To evaluate the simulators, we use open-source processor designs
(Table I). Rocket Chip is a RISC-V SoC generator written in Chisel
that is used in research and industry [1]. To create more designs, we
use versions from both 2016 and 2018, and the increase in size shows
the increasing sophistication of the default SoC configuration. We
also use BOOM, an out-of-order processor generator [5]. We select
three different software workloads to animate our target processor
designs, and they expose a range of target CPU behaviors (Table II).
We use an Intel 8-core 3.6 GHz i7-7820X (Skylake) which has 11 MB
of L3 cache and 64 GB of DRAM to perform our experiments.

We first measure the activity factors of all of our designs executing
all of our workloads (Figure 5). We observe that typically only a few
percent of signals change on a given cycle, and this is consistent

Design Workload CommVer Verilator Baseline ESSENT Speedup

r16
dhrystone 37.13 3.68 4.63 1.40 3.31
matmul 54.21 5.17 7.12 1.85 3.84
pchase 457.87 52.90 78.75 20.60 3.82

r18
dhrystone 46.21 40.97 26.71 4.01 6.65
matmul 71.71 65.77 43.96 5.70 7.71
pchase 831.26 743.03 485.51 69.87 6.95

boom
dhrystone 381.32 76.29 111.04 50.44 2.20
matmul 431.67 109.70 161.17 59.85 2.69
pchase 5529.25 1650.41 2534.32 746.69 3.39

TABLE III
EXECUTION TIMES (SEC.) & ESSENT’S SPEEDUP (×) OVER BASELINE

with prior work [6], [8], [20]. Interestingly, the IPC of the software
workload the simulated processor executes has a significant relative
impact on the activity factor, but only a modest change in absolute
terms. These low activity factors provide an encouraging opportunity
to accelerate simulation.

We next compare the simulators on overall performance (Table III).
Our (unoptimized) baseline is comparable in performance to Verilator,
which is reasonable since they are both full-cycle simulators. Verilator
routinely outperforms CommVer, and raw performance is one of Ver-
ilator’s most compelling features. ESSENT significantly outperforms
the other simulators, besting Verilator by 1.5−11.5× and CommVer
by 7.2−29.3×. Despite being the newest and least mature simulator,
ESSENT’s performance advantage demonstrates the promise of the
essential signal simulation technique.

Digging deeper into the performance results, ESSENT enjoys a
substantially larger speedup on r18 than the other designs. The addi-
tional speedup (2.86−2.99×) is primarily due to the branch hints, as
they shrink the effective instruction working set below the cache size,
greatly reducing the number of cache misses (Section III-B2). The
effective instruction working sets for r16 and boom are not near the
cache size, so they only experience a modest 1.02− 1.13× speedup
from the branch hints.

Figure 6 shows the impact of our partitioning parameter Cp on the
generated simulator’s execution time. Across designs and workloads,
the strong convergence on a good value for Cp demonstrates that our
parameter is design-insensitive, so we select Cp = 8. Eliminating
design-sensitive parameters from the process eliminates the need to
perform extensive tuning before each new simulation [8].

The partitioning granularity is a tradeoff between overhead and the
fraction of the design simulated (Figure 7). We define the effective
activity factor to be the average fraction of the design simulated,
which is greater than or equal to the actual activity factor of the
design. ESSENT reduces the effective activity factor but it is counter-
weighted by overheads. We classify the overheads as either activity-
agnostic static overheads or activity-dependent dynamic overheads.
Static overheads are actions executed every cycle such as testing to
see if a partition is active and should thus be simulated. Dynamic
overheads are actions executed only if necessitated by activity such
as a partition testing which of its outputs have changed to determine
which subsequent partitions to activate.

Increasing Cp encourages the partitioner to merge more aggres-
sively, which results in fewer partitions. With larger partitions, the
effective activity increases since the execution is more coarse-grained.
To first order, the static overheads are proportional to the number
of partitions, while the dynamic overheads are proportional to the
number of edges cut by active partitions. Thus, decreasing the number
of partitions (increasing Cp) decreases static overheads. Interestingly,
the dynamic overheads are roughly constant, as larger (and fewer)

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

Cp parameter

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Si

m
ul

at
io

n
Ru

nt
im

e r16-dhrystone
r16-matmul
r16-pchase

r18-dhrystone
r18-matmul
r18-pchase

boom-dhrystone
boom-matmul
boom-pchase

Fig. 6. The best partitioning parameter Cp for performance is mostly
insensitive to the design and its software workload.

0 1 2 4 8 16 32 64 12
8

25
6

51
2

Cp parameter
(finer) (Partitioning Granularity) (coarser)

0

5

10

15

20

25

30

35

40

Ho
st

 In
st

ru
ct

io
ns

 (K
) /

 T
ar

ge
t C

yc
le

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ef
fe

ct
iv

e
Ac

tiv
ity

Effective Activity
Dynamic Overhead
Static Overhead
Base Simulation

Fig. 7. Impact of partitioning parameter Cp on overhead and effective activity
for r16 executing dhrystone. The selection of Cp = 8 (Figure 6) balances
the two types of overhead with the base simulation work. For this figure,
we calculate the overheads by executing different configurations and tracking
host instructions executed.

partitions typically have fewer edges cut. Overall, the highest perfor-
mance is achieved with a moderately aggressive partitioning, which
is a pragmatic balance between enjoying the benefit of a low effective
activity factor while mostly reducing the static overheads.

VI. RELATED WORK

Early prior work recognized low activity in designs as an oppor-
tunity for acceleration by only simulating a fraction of the design
each cycle. Charlton et al. propose using lazy evaluation to make
the simulation effort more activity proportional [6]. Although they
succeed in reducing the number of signal activations, they do not
report a practical speedup. Smith et al. propose BACKSIM, an
approach that works backward from the desired outputs to determine
the minimum number of signals to evaluate [20].

Our work leverages the strengths and improves upon many of
the weaknesses of prior simulation work (Table IV). In particular,
ESSENT greatly increases the automation for using a CCSS approach
while simultaneously reducing overheads to deliver significant per-
formance improvements in practice.

Conditional Coarsened Static Singular Coarsening Coarsening Triggering
Approach Execution Schedule Schedule Execution Method Automated Automated
Full-cycle (e.g. Verilator) X X N/A N/A N/A
Event-driven (e.g. Icarus Verilog) X X N/A N/A N/A
Pérez [19] X X X user (via modules) X
Cascade [11] X X X X user (via modules)
Chatterjee [8] X X clustering X X
ESSENT (this work) X X X X acyclic partitioner X X

TABLE IV
COMPARISON OF SIMULATION APPROACHES WITH ATTRIBUTES DEFINED IN SECTION II

Pérez et al. implement an optimized SystemC simulator [19] that
uses the user-provided module decomposition to coarsen the design
and evaluates modules only if they are active. They use repeat
evaluation to handle any cycles from the module graph.

Cascade is a C++ simulation library whose motivation to replace
SystemC is driven by a focus on performance and memory usage
efficiency [11]. Cascade uses a CCSS approach, but it lacks au-
tomation so much of the complexity of CCSS is passed onto the
user. They use the user-defined modules to coarsen the design, so
the user is responsible for breaking any cycles between modules.
Additionally, for each module the user wants to potentially sleep,
the user must provide a function to determine if the module has
quiesced. By contrast, ESSENT not only automatically acyclically
partitions the design, it also generates the necessary activity detection
and triggering infrastructure.

Chatterjee et al. implement a high-performance gate-level simulator
with optimizations for exposing parallelism and increasing regularity
to execute well on GPUs [7], [8]. They coarsen the design with an
acyclic clustering based on levelization. In order to increase the depth
of the clusters while maintaining the acyclic constraint, they replicate
gates to remove interdependences. In their evaluation, they report
the amount of replication is 14 − 76%. Although the clustering is
acyclic, we argue their execution is not singular due to replication
since multiple copies of the same gate can be evaluated in a given
cycle. The clustering process also requires design-specific parameters
for which they recommend frequent autotuning. Their system only
considers clusters of logic gates for conditional execution, and incurs
overhead from unconditionally evaluating state elements. ESSENT
has greater efficiency (static schedule, no replication, and condi-
tionally evaluates state elements) and greater automation (design-
insensitive partitioning parameter).

VII. DISCUSSION

In a quest to increase energy efficiency, we expect future hardware
designers to continue to reduce activity in their designs, whether it
be by writing RTL in a way to allow EDA tools to perform clock
gating or by implementing power gating for whole blocks. To harness
the simulation performance improvements possible with decreasing
activity, simulation effort should be made activity proportional.

In this work, we demonstrate that low activity factors can be
profitably exploited to accelerate simulation significantly. Our essen-
tial signal simulation technique combines CCSS execution with an
acyclic partitioner. CCSS execution reduces both the simulation effort
with conditional singular execution and the overheads with a static
schedule on a coarsened granularity. Our acyclic partitioner provides
the coarsening used to gracefully balance the benefit of skipping
inactive components with the cost of detecting inactivity. Further-
more, our approach is highly automated, making its use much more
practical. We are continuing to improve ESSENT, and it is available
open source: https://github.com/ucsc-vama/essent

REFERENCES

[1] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer,
et al. The rocket chip generator. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[2] Jonathan Bachrach, Huy Vo, Brian Richards, et al. Chisel: constructing
hardware in a scala embedded language. DAC, pages 1216–1225, 2012.

[3] Pete Bannon, Ganesh Venkataramanan, Debjit Das Sarma, and Emil
Talpes. Computer and redundancy solution for the full self-driving
computer. In IEEE Hot Chips 31 Symposium (HCS), 2019.

[4] Richard Buchmann and Alain Greiner. A fully static scheduling approach
for fast cycle accurate SystemC simulation of MPSoCs. Internatonal
Conference on Microelectronics, pages 101–104, 2007.

[5] Christopher Celio, Krste Asanovic, and David Patterson. The berkeley
out-of-order machine (BOOM): An industry- competitive, synthesizable,
parameterized RISC-V processor. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2015-167, 2015.

[6] Colin C Charlton, D Jackson, and Paul H Leng. Lazy simulation of
digital logic. Computer-Aided Design, 23(7):506–513, 1991.

[7] Debapriya Chatterjee, Andrew DeOrio, and Valeria Bertacco. Event-
driven gate-level simulation with GP-GPUs. DAC, page 557, 2009.

[8] Debapriya Chatterjee, Andrew DeOrio, and Valeria Bertacco. Gate-level
simulation with GPU computing. Transactions on Design Automation
Electronic Systems, 16(3):1–26, 2011.

[9] John Clow, Georgios Tzimpragos, Deeksha Dangwal, Sammy Guo,
Joseph McMahan, and Timothy Sherwood. A pythonic approach
for rapid hardware prototyping and instrumentation. In International
Conference on Field Programmable Logic and Applications (FPL), 2017.

[10] Jason Cong, Zheng Li, and Rajive Bagrodia. Acyclic multi-way
partitioning of boolean networks. DAC, pages 670–675, 1994.

[11] JP Grossman, Brian Towles, Joseph A Bank, and David E Shaw. The
role of Cascade, a cycle-based simulation infrastructure, in designing
the Anton special-purpose supercomputers. DAC, 2013.

[12] Craig Hansen. Hardware logic simulation by compilation. DAC, 1988.
[13] Julien Herrmann, Jonathan Kho, Bora Uçar, Kamer Kaya, and Ümit V

Çatalyürek. Acyclic partitioning of large directed acyclic graphs.
International Symposium on Cluster, Cloud and Grid Computing, pages
371–380, 2017.

[14] David Koeplinger, Matthew Feldman, et al. Spatial: A language and
compiler for application accelerators. PLDI, 53(4):296–311, 2018.

[15] Monica Lam. Software pipelining: An effective scheduling technique
for VLIW machines. PLDI, 23(7):318–328, 1988.

[16] Patrick S Li, Adam M Izraelevitz, and Jonathan Bachrach. Specification
for the FIRRTL language. EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-9, 2016.

[17] Derek Lockhart, Gary Zibrat, and Christopher Batten. PyMTL: A uni-
fied framework for vertically integrated computer architecture research.
International Symposium on Microarchitecture (MICRO), 2014.

[18] Orlando Moreira, Merten Popp, and Christian Schulz. Graph partitioning
with acyclicity constraints. arXiv.org, April 2017.

[19] Daniel Gracia Pérez, Gilles Mouchard, and Olivier Temam. A new opti-
mized implementation of the SystemC engine using acyclic scheduling.
DATE, 2004.

[20] Steven P Smith, M Ray Mercer, and Bishop Brock. Demand driven
simulation: BACKSIM. DAC, 1987.

[21] Wilson Snyder. Verilator: Speedy reference models, direct from RTL.
Presentation to University of Massachusetts Amherst, 2017.

[22] Laung-Terng Wang, Nathan E Hoover, Edwin H Porter, and John J Zasio.
SSIM: A software levelized compiled-code simulator. DAC, 1987.

[23] Zhicheng Wang and Peter M Maurer. LECSIM: a levelized event driven
compiled logic simulation. DAC, 1990.

[24] Clifford Wolf. Yosys open synthesis suite. www.clifford.at/yosys, 2016.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

