
Multi-Level Timing Simulation on GPUs

Eric Schneider, Michael A. Kochte and Hans-Joachim Wunderlich
University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
{schneiec,kochte}@iti.uni-stuttgart.de, wu@informatik.uni-stuttgart.de

Abstract—Timing-accurate simulation of circuits is an im-
portant task in design validation of modern nano-scale CMOS
circuits. With shrinking technology nodes, detailed simulation
models down to transistor level have to be considered. While
conventional simulation at logic level lacks the ability to accu-
rately model timing behavior for complex cells, more accurate
simulation at lower abstraction levels becomes computationally
expensive for larger designs.

This work presents the first parallel multi-level waveform-
accurate timing simulation approach on graphics processing
units (GPUs). The simulation uses logic and switch level abstrac-
tion concurrently, thus allowing to combine their advantages by
trading off speed and accuracy. The abstraction can be lowered
in arbitrary regions of interest to locally increase the accuracy.
Waveform transformations allow for transparent switching be-
tween the abstraction levels. With the utilization of GPUs and
thoughtful unification of algorithms and data structures, a fast
and versatile high-throughput multi-level simulation is obtained
that is scalable for millions of cells while achieving runtime
savings of up to 89% compared to full simulation at switch level.

Keywords—timing simulation; switch level; multi-level; parallel
simulation; GPUs

I. INTRODUCTION

Throughout the design of nano-scaled circuits, the timing-
accurate simulation of circuits plays an important role for
design validation. Accurate simulation has become essential
not only for the validation of the circuit timing itself, but
also for power estimation and the evaluation of non-functional
properties [1, 2] as well as test applications, such as fault
simulation [3–5], which all need to be performed as early and
as accurate as possible during the design phase. A lot of effort
has been put into utilizing more accurate simulation models
down to the layout [5–8]. Regarding complex cells, simulation
at higher levels lacks the ability of accurately representing
functional and timing behavior in order to allow low-level
fault injection and reasonably accurate timing analyses [8].
The evaluation at lower levels, i.e., switch level and analog
simulation in SPICE, is thus crucial for these applications.
But the wider modeling capabilities and higher accuracy
comes at the cost of drastic runtime complexity. Despite the
parallelization of these simulations [9, 10], their application
to larger designs remains still expensive.

In order to exploit the advantages of both high- and low-
level simulation approaches, combined simulation across mul-
tiple abstraction levels has been proposed that trade-off speed
and accuracy [2, 7, 11–14]. Multi-level approaches that are
based on the use of low-level pre-characterization, aggregate
and abstract electrical properties of cells [15], which are then
utilized by higher-level simulators [2, 7]. The behavior of cells
in different parameter corners as well as faults and patterns is
thereby stored offline. These characterization steps have to be
repeated for every new corner or cell that needs to be con-
sidered. Hierarchical multi-level solutions partition the circuit
into regions for separate high- and low-level simulation [11–
14], while the low-level simulation is limited to smaller parts

in a design that are of particular interest. During the evaluation,
simulation data is then exchanged at the boundaries between
the different abstraction levels.

With the introduction of general purpose computing on
graphics processing units (GPUs), the first circuit and fault
simulation approaches have been proposed [16–21] that are
able to vastly accelerate the simulation by parallelization
through programs called kernels. These methods distribute
the evaluation of independent circuit structures under different
input stimuli to independent threads running on the many pro-
cessing elements of the GPU. Although high simulation speed-
ups of up to three orders of magnitude have been reported, the
underlying programming paradigm involves certain restrictions
that need to be tackled carefully, especially when moving to
lower levels and mixing abstractions. Since memory transfers
and synchronizations are costly compared to the execution
of bare arithmetic instructions, accesses should be minimized
or coalesced as much as possible and all threads should run
isolated with uniform control flow and data structures in order
to sustain high computing performance [16].

This work presents the first multi-level timing simulation
approach on GPUs that combines the evaluation of higher
and lower abstraction levels transparently for efficient paral-
lelization on many-core architectures. The abstraction level is
switched during simulation in user-defined regions of interest
to enable a more accurate modeling of the functional and
timing behavior if required, while reducing the overall over-
head of time-consuming low-level evaluations. By thoughtful
unification of the models, similarities in data structures and
algorithms can be exploited for an efficient parallelization of
the execution being applicable even to larger designs.

The following section provides background on state-of-the-
art GPU timing simulators. Section III introduces our novel
multi-level simulation approach for GPUs. In Section IV, the
handling of signals across the different abstraction levels is ex-
plained. Finally, experimental results regarding the scalability
are discussed in Section V.

II. BACKGROUND

Timing-accurate simulation at logic level is usually done
in an event-driven manner based on the time wheel [22],
that utilizes dynamic lists to schedule switching events at
discrete points in time to compute the full switching histories
(waveforms) of all cells. While general event-driven time
simulation approaches allow to reduce simulation overhead,
their parallelization is complex and requires thorough list
management and synchronization at the cost of memory and
performance [23]. In [24] a plain and oblivious time simula-
tion on GPUs is proposed that computes signal waveforms
under consideration of individual pin-to-pin delays for ris-
ing and falling transitions and also employs pulse filtering.
The computational complexity is hidden by exploitation of
massive high-throughput parallelization from structural and

978-1-5090-0602-1/18/$31.00 ©2018 IEEE

5C-2

470

data-parallelism that allows to utilize the high floating-point
computing throughput of the GPU cores.

Typically, logic level timing simulators utilize timing data
obtained from annotations in standard delay format (SDF),
and establish look-up tables of gate delays to quickly retrieve a
constant signal propagation delay for given input transitions as
denoted in Fig. 1a). However, for complex cells the complexity
of the timing descriptions quickly grows, due to conditional
delays. Also, in case multiple transitions occur at the same
time (e.g., rising transitions at all inputs of a NOR-gate),
the simulation models typically pick the minimum delay
over all inputs, completely ignoring low-level effects, such as
simultaneous input switching found in CMOS cells [25].

In the switch level timing simulator of [21], the cell de-
scriptions and evaluation algorithms are based on first-order
CMOS parameters. Each transistor of a cell is viewed as a
threshold-based binary switch that changes its internal resis-
tance based on the applied input. Pull-up nets and pull-down
nets are then viewed as input-controlled voltage dividers that
charge the output load capacitance of a cell. Thus, the timing
behavior is described in terms of RC-characteristics allowing
to model relevant CMOS-related delay effects. Fig. 1b) depicts
continuous signal slopes at input and output of an inverter cell
with the output signal being a function of the time constant τ
that has been derived from its RC-characteristics.

For the evaluation of a design (e.g., along the critical path),
not all cells need to be simulated with lowest abstraction
all the time, but rather only when high accuracy is actually
required [11–14]. This leads to the development of multi-
level approaches, by sharing inputs and outputs between fast
high- and accurate low-level models in order to trade-off speed
versus accuracy. For example, in [13] a simulator combining
transaction level and logic level has been developed. By
limiting the accurate and computationally more expensive
evaluation to smaller regions, speed-ups of up to four orders
of magnitude are achieved.

However, multi-level simulation in the GPU context of-
ten conflicts with the underlying many-core programming
paradigm, since high- and low-level algorithms typically uti-
lize different data structures and algorithms and can also
involve working sets with large memory footprint. Excessive
data transfers from GPU devices to host systems and synchro-
nization routines cause performance penalties and should be
avoided at all cost. Thus, in order to realize an efficient multi-
level simulation, a thoughtful unification and organization of
both algorithms and data structures is necessary.

III. PARALLEL MULTI-LEVEL TIME SIMULATION

In this work, a multi-level simulation approach is presented
that provides the waveform-accurate logic level time sim-
ulation with the ability to increase the accuracy to switch
level wherever and whenever required. While the logic level
abstraction provides a faster evaluation of the timing, the
switch level abstraction allows to model and evaluate the
behavior and effects of CMOS cells with transistor granularity,
such as multiple-input switching and signal slopes. For the
logic and switch level simulation, the simulation concepts of
[24] and [21] are adopted. The logic descriptions of the cells
use SDF-annotated timing. The first-order parameters of the
switch level description are extracted from the descriptions of
library cells and SPICE simulations of the transistor models.
The transitioning between the abstractions is organized by
distinguished regions of interest (ROI). Any node in the circuit

� ������

�	
�

����

�	

� �

����

���

�����

� ��

���

���

���

���

���

���

�� ��

����������	

�

a) b)

Fig. 1. Example of signals in a) logic level and b) switch level simulation
of an inverter cell for comparison.

graph (input, output or cell) can be marked as ROI, causing
its simulation to be performed with switch level accuracy. The
set of active ROIs in a simulation instance will be referred to
as a ROI group, which can represent a set of single isolated
nodes, full paths, input or output cones as well as arbitrary
sets of nodes.

A. Overview
The multi-level simulation is outlined in Fig. 2. The sim-

ulation is composed of two phases: a pre-processing (step
1–3) and the actual simulation phase (step 4–6). During
pre-processing, the combinational netlist is extracted from
the synthesized design and the timing is annotated (step 1).
The cells in the netlist are topologically sorted (step 2) and
the resulting levelized netlist format allows the simulator to
process the design in a single pass. Once initialized, the user
can specify ROI groups to be simulated with switch level
accuracy (step 3).

The defined ROI groups are then provided as input to the
simulator where each group is processed in an individual sim-
ulation loop (step 4–6). Starting with each loop, the simulator
marks all cells in the current group (step 4) to be simulated
at lower level during simulation and the node descriptions are
updated accordingly during the process. Then, input stimuli
are applied to the circuit inputs and the cells in the levelized
netlist are simulated level by level in topological order from
inputs to outputs (step 5). The switching between the different
abstraction levels is completely transparent, as waveform rep-
resentations are transformed during the evaluation of a cell.
Eventually, the signal waveforms of the circuit outputs are
computed and evaluated given a user-defined sample time.
After simulation, the marked cells are restored for simulation
of the next group of ROIs.

B. Data Structures
The implemented multi-level approach processes logic and

switch level abstractions interchangeably throughout the sim-
ulation. To enable an efficient simulation on the GPU, both
the logic and switch level kernels access the same memory
for input and output data. Hence, waveforms of both types
as well as cell descriptions of different abstraction levels are
present in the GPU device memory.

The signal switching histories of the logic level timing
simulation are represented by binary waveforms, each of
which is modeled as a sequence (t0, t1, ...) of temporally
ordered time points ti ∈ R

+ that indicate toggles of the
respective signal value. Similarly, in the switch level simu-
lation the waveforms are modeled as sequences (p0, p1, ...) of
so-called pivots [21]. A pivot pi comprises parameters that
describe the signal change of a cell output as a function
over a continuous time interval [ti, ti+1]. Exponential curve
segments are utilized as pivot function to closely resemble
the (dis-)charging processes of RC-subcircuits caused by input
signal changes. A voltage waveform of a signal is then formed

5C-2

471

������������	��
�����

���������

����	�����	����
����

�
�	���

�����
�����	�

�

�

�
�
		�	������

������

�
�����
��

���
�
��
�
��
��
������������
�
���

��������
�����	���	
�
	
���
�����	������

�����	�
��	������

�����!�	
�
		�����	
�
	

���������
����
�����"

Fig. 2. Flow-chart of the overall multi-level simulation algorithm.

by cascading pivot segments into a piece-wise function that
approximates the changes in the voltage over time. Each pivot
in the switch level model is represented by a compact tuple
pi = (ti, vi, τi) composed of a time point ti denoting the start
of the i-th curve segment, as well as a stationary voltage vi
the exponential curve segment is heading to for the time after
ti. Finally, a time constant τi expresses the steepness of the
curve. This constant depends on the transistor states and is
calculated during execution of the switch level algorithm from
the parametric capacitances and resistances inside of the cell,
as well as the capacitive load connected to the output terminal.
The signal voltage is then described by the corresponding
curve segment in the interval t ∈ [ti, ti+1] given [21]:

w(t) := (w(ti)− vi) · e−
t−ti
τi + vi, ti ≤ t ≤ ti+1. (1)

This way, voltage waveforms are modeled continuously in time
and value as shown in Fig. 3, allowing to consider effects like
multiple-input switching and varying signal slopes with high
accuracy compared to SPICE.

Since during simulation the level of abstraction can change,
the type of input and output waveforms must be identified and
handled accordingly. If the type of an input waveform does not
match the abstraction of the current cell, the switching events
in the respective waveform are transformed to the required
abstraction level during execution on the GPU without inter-
action of the host process (cf. Section IV).

C. Evaluation Kernel
Algorithm 1 outlines the implemented multi-level evaluation

of a circuit. The inputs are a levelized netlist description G,
where each cell is described at either logic or switch level,
as well as stimuli for all circuit primary and pseudo-primary
inputs stored in a memory W . The cells of the circuit netlist
are then simulated level by level from inputs to outputs, with
all nodes on a level being evaluated by different threads
in parallel similar to [21, 24]. The evaluation of each cell
is performed by a mergesort algorithm that sorts all local
switching events at the inputs in temporal order, such that
all events are processed in a single pass.

For each cell, first the waveforms at its inputs are
fetched (line 3). The type of each input waveform is then
determined and the respective data structures for the input
processing are initialized (line 4–8). During the process, the
initial signal value of each waveform is determined in order to
initialize the state of the cell and the output waveform (line 9).
The events of all input waveforms are then processed in

0

0.3

0.8

1.1

0 20 40 60 80

O
u
tp

u
t
[V

]

time [ps]

t3=22.5ps
v3=0.0V
τ3=3.1ps

t4=27.6ps
v4=1.1V
τ4=5.6ps

t7=45.7ps
v7=0.0V
τ7=8.6ps

U7_switch
U7_SPICE
U4_switch
U4_SPICE
U3_switch
U3_SPICE

Fig. 3. Signal transitions from SPICE transient analysis (dotted) of a small
example circuit represented as pivot curve primitives (bold) at switch level.

the main cell simulation loop (line 10–23) in temporal order
from earliest to latest by using a cell-local schedule E, that
keeps the immediate next event to be processed for each
input waveform. The earliest next input event is consumed,
indicating a change in an input signal value. All implications
of the value change on the cell state are transformed to the
targeted abstraction level of the current cell. If the current cell
to be evaluated is marked as a region of interest (ROI), the
low-level switch level simulation kernel is called in order to
process the state change (line 14), otherwise the logic level
kernel is used (line 17). If an input event causes a change in
the output signal value, a new switching event is appended to
the output waveform (line 20). After processing the event, the
next event in the input waveform is determined and scheduled
for evaluation in the loop (line 22). When all events have been
processed, the main simulation loop terminates and the output
waveform of the cell is stored (line 24).

Algorithm 1: Transparent multi-level circuit simulation.

Input: netlist G, primary input waveforms (stored in W)
1 foreach level L in the netlist G do
2 foreach node n on level L (in parallel) do
3 Load input waveforms I ⊆ W for node n.
4 foreach waveform wi in I do
5 Look-up abstraction level of wi.
6 Set-up data structures and initial state.
7 Get first event e of wi and put into schedule E.
8 end
9 Initialize output waveform wn.

10 while Events to process in schedule E do
11 Remove earliest event e from E.
12 if node n is ROI then
13 Transform e to switch level event.
14 Compute new switch level state of n.
15 else
16 Transform e to logic level event.
17 Compute new logic level state of n.
18 end
19 if new state of n causes output change then
20 Compute output event and add to wn.
21 end
22 Get next event e of wi ∈ I and put into E.
23 end
24 Store wn to waveforms W := W ∪ {wn}.
25 end
26 end

To simplify the memory management on the GPU, all wave-
forms have a specified capacity for storing events. Similar to
[26, 27], overflow checks are performed throughout simulation
ensuring that all switches are contained. In case overflows
did occur on a level, additional memory is allocated for the
culprit waveforms and the simulation of the level is repeated.
This causes some overhead due to memory management, that
quickly diminishes after processing a few stimuli.

D. Parallelization
A multi-dimensional parallelization scheme is adopted to

speed up the simulation [26]. The simulation kernels exploit
structural parallelism from cells on the same level, that can be

5C-2

472

processed concurrently due to input and output independence,
as well as waveform parallelism from the different pattern
pairs (waveform stimuli) to be evaluated.

For the parallel execution on a GPU, all simulation kernels
create grids of threads on the devices as depicted in Fig. 4.
The grids are two-dimensional arrays of threads, with each
thread computing the respective output waveform of one cell
for a particular waveform input. In the vertical dimension,
each thread computes the function of a different, but data-
independent cell, whereas in the horizontal dimension, the cell
is concurrently evaluated for different input stimuli. If a cell is
marked as ROI, the respective threads will execute the switch
level algorithm (denoted by ’∗’).

On the GPU, threads are scheduled for parallel execution
in so-called batches. The threads of each batch are then
processed in a single instruction multiple data (SIMD) fashion
on the GPU multi-processing elements. All threads within a
batch have been aligned to evaluate the same cell, but for
different input stimuli, which allows to sustain the memory
coalescing properties for memory accesses [24]. Even though
the abstraction levels can be mixed arbitrarily throughout the
circuit, no further control-flow divergence is caused, since the
abstraction of the cell, and hence the used functions for the
waveform transformation and evaluation, remains the same for
all the threads of a batch.

The indices of threads within the grid structure are utilized
to navigate and coalesce memory accesses for efficient ac-
cess to circuit data and waveform storage. Furthermore, by
identifying topological dependencies between different ROI
groups, the simulation parallelism can be further enhanced by
simultaneous processing of multiple ROI groups. ROI groups
that do not share common output logic can be activated and
evaluated concurrently in one and the same simulation loop.

IV. WAVEFORM TRANSFORMATION AND EVALUATION

The transformation between the different waveform formats
is done bidirectionally from high abstraction to lower abstrac-
tion and vice versa during cell evaluation. We utilize two map-
pings to transform between high-level waveforms of discrete
logic values and low-level waveforms with continuous voltage
levels. The mappings are applied to the input waveforms events
during the evaluation of a cell for calculating the implications
and state changes on its respective abstraction level.

A. Logic to Switch Level Transformation
At logic level, the signal transitions are considered to be

rectangular and binary in value (high or low). These transitions
are modeled by an infinitely small time constant τε > 0
at switch level, which allows to approximate instantaneous
transitions with negligible error. Given the VDD and GND
voltage levels of the targeted technology, the initial pivot is
set in the output waveform to specify the initial voltage level
of the cell. All transitions at times (t0, t1, ...) in the original
binary waveform are then translated by substitution of the
signal toggles ti one after another with pivots. Based on the
targeted logic value of a transition, the stationary voltage of
its corresponding pivot pi is selected as follows:

ti �→ pi :=

⎧⎨
⎩
(ti,VDD, τε) if (ti rising),

(ti,GND, τε) elif (ti falling),

(ti,
VDD+GND

2 , τε) else.

(2)

However, such instantaneous transitions never occur in
CMOS circuits. To provide more appropriate input waveforms

���������	
���
��
�
�����

��� ��� ���

���������	��
�	��	���

��
��� �

���

���
	�
�����

���
	�
�����

���
	�
�����

��	
��	�� ��	
��	� ��	
��	��

��
��� �

��
���

���

���
	�
�����

���
	�
�����

���
	�
�����

���
	�
����

���
	�
����

���
	�
����

�

���
�	

�	
��

���
�

�	�
������	�	��
����

���������

�����������	
��������
�	��������
��

�����������	
��������
�	��������
��

�

�

�

�

�

���

���

���

���

� � �

� � �

�

�

Fig. 4. Two-dimensional parallel evaluation of multiple data-independent
cells and stimuli of varying abstraction in a topologically ordered netlist.

for the cell under investigations, the RC-properties of the
driving cells are extracted from cell library and layout. These
are utilized to adjust the time point of the switching as well as
input slope. For this, we assume the standard definition of the
propagation delay of the driving cell. Thus, for binary output
toggles, the original signal, i.e., at electrical level, is assumed
to have passed the VDD+GND

2 voltage level. Suppose the signal
value of the waveform w at time ti is w(ti) = 0 and a new
curve segment pi = (ti, vi, τi) starts charging the signal line to
voltage vi with time constant τi. Given a particular threshold
voltage level Vth, the time x when the curve segment meets
the threshold is determined by [21]:

x := ti − τi · log
(

Vth − vi
w(ti)− vi

)
. (3)

Suppose at time x a binary switch occurs in logic simula-
tion. The above equation is transformed in order to fit a time
parameter ti of the targeted curve segment pi according to
the RC-characteristics of the driving cell given the parame-
ter τi to match the transition time x. While w(x) represents
the initial signal value at the time of the transition, hence,
w(x) = GND (VDD) for rising (or falling, respectively), the
threshold value Vth is set to the 50 percent voltage level
given by VDD+GND

2 . The fitted parameters are then obtained
by transforming and solving Eq. (3) for ti:

ti := x+ τi · log(0.5). (4)

The solution is then utilized as the respective starting point
of the pivot segment for either rising (ti,VDD, τi) or falling
transitions (ti,GND, τi). The curve of this pivot reflects the
transient response of an RC-element, thus allowing for a
more realistic input representation for the targeted cell. The
resulting waveforms of the transformations with infinitely
small time constant (”τε trans.”) as well as with consider-
ation of RC-characteristics to match the 50 percent voltage
level (”RC 50% VDD”) are shown in Fig. 5. Note that the
waveform transformation using τε overlaps the logic level
representation (”source”) and closely matches with negligible
error (< τε) according to Eq. (4).

B. Switch to Logic Level Transformation
Once a region of interest has been simulated, the obtained

low-level signal information has to be transformed again prior
to the continuation of the higher-level simulation. During
simulation, the output signals of cells might show intermediate
voltage levels, which do not correspond to well-defined high
or low logic values. Since these intermediate values might
be interpreted differently by the subsequent stages, an un-
known (X) value will be assumed. Thus, we use a threshold
interval (VthL, VthH) ⊂ [GND,VDD], which is bounded by
a low (VthL) and high (VthH) signal threshold in order to

5C-2

473

GND

50%

VDD

 0 10 20 30 40 50 60 70 80

O
u

tp
u

t
[V

]

time [a.u.]

source
τ

ε
 trans.

RC 50% VDD

Fig. 5. Transformation of a source waveform from logic to switch level
description with varying RC-characteristics for rising and falling transitions.

map voltages to logic values. The mapping of arbitrary voltage
values w of a continuous waveform to a logic symbol is as
follows [28]:

val : R→ {0, 1, X}, val(w) :=
⎧⎨
⎩
0 if w ≤ VthL,

1 elif w ≥ VthH ,

X else.

(5)

During waveform transformation, the pivot elements of the
source signal are processed from earliest to latest. Within each
curve interval, the times of all possible intersection points with
the VthL and VthH thresholds are identified. For each point, the
targeted logic level waveform is assumed to switch its value
according to Eq. (5) at the given times.

An example of a low-level signal transformation from a
continuous signal waveform to logic level using a threshold
interval is illustrated in Fig. 6. After any intersection point of
a signal with a threshold level has been determined, the logic
value is classified from its current value and applied to the
waveform. In addition, pulse filtering can be used to remove
glitches that are unreasonable or physically impossible, even
in case of X-pulses.

The logic level timing model supports pin-to-pin delays
for rising and falling transitions [24]. In order to cope with
unknown signal values, the waveform modeling was extended
by a three-valued logic E3 = {0, 1, X} [29]. The propaga-
tion of unknowns (X) during logic level simulation is done
pessimistically. If a cell enters an undefined state, due to an
input change, the minimum propagation delay of the arriving
pin is applied. On the other hand, if the cell output transitions
to a defined state, the maximum propagation delay of the pin
is used. Unknown values that occur on an input of a cell are
masked by defined controlling off-path signal values.

V. EXPERIMENTAL RESULTS

The developed multi-level simulation approach has been
evaluated on designs from the ISCAS’89 and ITC’99 bench-
marks, as well as designs provided by NXP. All designs have
been synthesized using a 45nm standard-cell library. Full-scan
design is assumed, hence only the combinational structures
of the designs are considered during simulation. In order to
provide reasonable input stimuli, n-detect transition-fault test
pattern pairs have been generated using a commercial ATPG
tool (n = 10). Each circuit has been simulated with different
numbers of selected regions of interest (ROIs) that have been
randomly distributed over the design. All experiments were
conducted on a host system (eight Intel R© Xeon R© processors
clocked at 3.0GHz and 128GB of RAM) equipped with
NVIDIA R© Tesla R© K80 GPU-accelerator cards, with each
GPU device having 2496 cores clocked at 875MHz with 12GB
of global device memory. However, only one Xeon R© processor
core and one GPU device were used at a time during each
simulation. Regarding the circuit data, the maximum memory
occupied on the GPU for storing the description of circuit
p3881k with 3.7 million nodes was 360MB, which is roughly
3% of the available global device memory.

0 X 1 X0GND
VthL

VthH

VDD

0 20 40 60 80 100

O
ut

pu
t [

V
]

50% source
3-valued

X 0
time [a.u.]

Fig. 6. Threshold-based transformation (VthL < 50% < VthH) of an
arbitrary continuous signal to a ternary logic waveform with unknowns.

Table I summarizes the runtime impact of the ROI activation
during simulation. For each circuit, the size of the design in
nodes (cells and input/output ports) and the number of applied
input stimuli pairs are given in columns 2 and 3. Column 4
shows the runtime of a serial commercial event-driven logic
simulation simulating the provided stimuli set. As for the
presented GPU-accelerated multi-level simulation, absolute
runtimes for different ROI counts are given in columns 5–
14 along with the relative savings compared to the full
switch level simulation on GPU. A plain logic simulation
on the GPU without any active ROIs is shown in column 5.
The number of ROIs then consecutively increases throughout
columns 6–14. In columns 6–8, an absolute number of random
ROIs (”#Nodes”) has been activated, whereas for columns 9–
13, a relative amount of the total nodes was chosen. Column 14
represents the full switch level simulation. All times have
been extracted and averaged from three independent runs with
different random ROI distributions each. Finally, a simulation
scenario (”Longest Paths”) was investigated where ROIs have
been activated along circuit paths with less than 20% slack
with respect to the nominal circuit delay in order to process
signals along longest paths with lower abstraction. The number
of ROIs in percentage of all nodes as well as the respective
runtime of the simulation are reported in the last two columns.
All runtimes are compared to the full-switch level simulation
on the GPU (Col. 14) to show the relative runtime savings.

As shown in the table, the ratio of the runtime between logic
level (Col. 5) and switch level (Col. 14) ranged up to 10.5×
(for b18). Besides minor random fluctuations, the runtimes
of the mixed abstraction scaled linearly with the amount of
active ROIs from lowest to highest between the logic and full
switch level simulation runtimes. Some systematic runtime
abnormalities have been observed in the pure switch level
simulation, which sometimes showed lower runtime compared
to the simulation with a smaller number of ROIs (e.g., 50–75%
of the total nodes). Here, the signal slopes in the waveforms at
switch level caused a more aggressive pulse-filtering which in
turn reduced the simulation time. Yet, by activation of fewer
ROIs, the multi-level approach allows to avoid full switch-
level simulation providing runtime savings of over 80% (up
to 89% for single ROI activation). Even for multi-million cell
circuits, the maximum average simulation time per pattern
pair was 90ms for p3726k, and usually in the range of
few milliseconds for the other circuits. The peak simulation
throughput measured during the experiments was 444 million
node evaluations per second (MEPS).

VI. CONCLUSION

This paper presents the first high-throughput multi-level
time simulation for efficient parallel execution on graphics
processing units (GPUs). It utilizes mixing of different ab-
stractions by combining fast waveform-accurate high-level
simulation at logic level with low-level switch level modeling.
The presented approach exploits similarities in data structures
and execution patterns of the simulation models and transitions
between abstractions in user-defined regions of interests to

5C-2

474

TABLE I
IMPACT OF ACTIVE REGIONS OF INTEREST (ROI) ON RUNTIME AND RUNTIME SAVINGS OF THE GPU-ACCELERATED MULTI-LEVEL SIMULATION.

Pattern- Comm. Full Mixed Abstraction Full
Longest Paths

Circuit(1) Nodes(2)

Pairs(3)
Event- Logic- Active ROIs (#Nodes) Active ROIs (% of total Nodes) Switch-

Driven(4) Level(5) 1(6) 10(7) 100(8) 1%(9) 10%(10) 25%(11) 50%(12) 75%(13) Level(14) ROIs(15) Time(16)

s38417 19.0k 348 5.49s runtime: 36ms 52ms 53ms 58ms 55ms 76ms 110ms 126ms 152ms 173ms 15.63% 85ms
saving: 78.8% 70.0% 69.0% 66.5% 68.3% 55.8% 36.2% 26.9% 12.1% – 51.0%

s38584 23.1k 563 14.10s runtime: 51ms 72ms 73ms 78ms 85ms 126ms 148ms 185ms 216ms 266ms 10.87% 98ms
saving: 80.9% 73.0% 72.3% 70.5% 68.1% 52.6% 44.4% 30.4% 18.8% – 63.2%

b17 42.8k 2135 2:17m runtime: 227ms 250ms 257ms 265ms 322ms 537ms 674ms 1.08s 1.52s 1.80s 7.36% 419ms
saving: 87.4% 86.1% 85.7% 85.3% 82.1% 70.1% 62.5% 39.8% 15.3% – 76.7%

b18 125.3k 3174 0:13h runtime: 922ms 1.03s 1.12s 1.02s 1.32s 2.16s 3.23s 4.91s 7.07s 9.69s 11.81% 3.68s
saving: 90.5% 89.3% 88.5% 89.5% 86.4% 77.7% 66.6% 49.3% 27.0% – 62.0%

b19 250.2k 4651 0:41h runtime: 2.62s 2.89s 3.12s 3.46s 3.95s 7.22s 9.00s 14.26s 20.62s 27.36s 12.63% 10.39s
saving: 90.4% 89.4% 88.6% 87.3% 85.6% 73.6% 67.1% 47.9% 24.6% – 62.0%

p951k 1.09M 7063 4:18h runtime: 24.20s 26.62s 27.81s 28.37s 27.93s 38.87s 51.18s 1:13m 1:37m 2:06m 1.81% 32.76s
saving: 80.9% 78.9% 78.0% 77.6% 77.9% 69.3% 59.5% 41.9% 23.0% – 74.1%

p1522k 1.09M 17980 12:34h runtime: 50.60s 53.09s 47.46s 54.62s 1:04m 1:56m 2:23m 3:23m 4:41m 6:03m 0.41% 49.47s
saving: 86.1% 85.4% 87.0% 85.0% 82.3% 67.9% 60.5% 44.0% 22.5% – 86.4%

p2927k 1.67M 22107 28:54h runtime: 1:41m 1:44m 1:56m 1:42m 2:14m 3:50m 4:37m 6:30m 8:44m 0:11h 0.70% 1:51m
saving: 85.0% 84.6% 82.9% 84.9% 80.2% 66.1% 59.3% 42.6% 22.9% – 83.5%

p3188k 2.85M 26502 48:28h runtime: 3:00m 3:18m 3:18m 3:22m 3:53m 7:00m 9:38m 0:15h 0:20h 0:22h 0.13% 3:27m
saving: 86.6% 85.2% 85.2% 84.9% 82.7% 68.7% 57.0% 31.4% 6.6% – 84.5%

p3726k 3.56M 15512 48:14h runtime: 2:23m 2:39m 2:33m 2:40m 4:46m 7:39m 9:45m 0:16h 0:23h 0:18h 0.14% 3:57m
saving: 87.1% 85.6% 86.2% 85.6% 74.3% 58.8% 47.4% 11.6% -25.7% – 78.6%

p3847k 2.96M 31653 48:47h runtime: 4:48m 4:51m 4:47m 5:01m 5:34m 9:11m 0:11h 0:16h 0:23h 0:31h 0.58% 4:42m
saving: 84.5% 84.4% 84.6% 83.8% 82.0% 70.3% 62.9% 46.3% 25.7% – 84.8%

p3881k 3.69M 12092 27:31h runtime: 2:18m 2:13m 2:20m 2:14m 2:35m 4:08m 5:35m 7:32m 0:10h 0:13h 0.08% 2:05m
saving: 83.2% 83.8% 82.9% 83.7% 81.1% 69.8% 59.3% 45.0% 23.9% – 84.8%

selectively trade simulation speed for accuracy during execu-
tion. The transformation of waveform representations between
abstraction levels allows for fast and transparent evaluation
that enables efficient and timing-accurate multi-level timing
simulation of circuits. It is applicable to designs with millions
of cells and achieves runtime savings of up to 89% compared
to full switch level simulation on GPU.

ACKNOWLEDGMENT

This work has been funded by the German Research Founda-
tion (DFG) under the projects WU 245/16-1 and WU 245/17-1.

REFERENCES

[1] W. Huang, S. Ghosh, S. Velusamy et al., “HotSpot: A Compact Thermal
Modeling Methodology for Early-Stage VLSI Design,” IEEE Trans. on
Very Large Scale Integration Systems (TVLSI), vol. 14, no. 5, pp. 501–
513, May 2006.

[2] J. Jiang, M. Aparicio, M. Comte et al., “MIRID: Mixed-Mode IR-Drop
Induced Delay Simulator,” in Proc. 22nd Asian Test Symp. (ATS), Nov.
2013, pp. 177–182.

[3] M. Tehranipoor, K. Peng, and K. Chakrabarty, Test and Diagnosis for
Small-Delay Defects. Springer New York, 2011.

[4] A. Czutro, N. Houarche, P. Engelke et al., “A Simulator of Small-Delay
Faults Caused by Resistive-Open Defects,” in Proc. 13th European Test
Symp. (ETS), May 2008, pp. 113–118.

[5] A. D. Singh, “Cell Aware and Stuck-Open Tests,” in Proc. IEEE 21st
European Test Symp. (ETS), May 2016, pp. 1–6, Paper 15.1.

[6] C. Sebeke, J. P. Teixeira, and M. J. Ohletz, “Automatic Fault Extraction
and Simulation of Layout Realistic Faults for Integrated Analogue
Circuits,” in Proc. European Conf. on Design and Test (EDTC), Mar.
1995, pp. 464–468.

[7] F. Hapke, W. Redemund, A. Glowatz et al., “Cell-Aware Test,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 33, no. 9, pp. 1396–1409, Sep. 2014.

[8] H. H. Chen, S. Y.-H. Chen, P.-Y. Chuang, and C.-W. Wu, “Efficient
Cell-Aware Fault Modeling by Switch-Level Test Generation,” in Proc.
IEEE 25th Asian Test Symp. (ATS), Nov. 2016, pp. 197–202.

[9] K. Gulati, J. F. Croix, S. P. Khatri, and R. Shastry, “Fast Circuit
Simulation on Graphics Processing Units,” in Proc. 14th Asia and South
Pacific Design Automation Conf. (ASP-DAC), Jan. 2009, pp. 403–408.

[10] L. Han, X. Zhao, and Z. Feng, “TinySPICE: A Parallel SPICE Simulator
on GPU for Massively Repeated Small Circuit Simulations,” in Proc.
ACM/EDAC/IEEE 50th Design Automation Conf. (DAC), May 2013, pp.
1–8, Article 89.

[11] S. Gai, P. L. Montessoro, and F. Somenzi, “MOZART: A Concurrent
Multilevel Simulator,” IEEE Trans. on Computer-Aided Design of Inte-
grated Circuits and Systems (TCAD), vol. 7, no. 9, pp. 1005–1016, Sep.
1988.

[12] W. Meyer and R. Camposano, “Active Timing Multilevel Fault-
Simulation with Switch-Level Accuracy,” IEEE Trans. on Computer-

Aided Design of Integrated Circuits and Systems (TCAD), vol. 14, no. 10,
pp. 1241–1256, Oct. 1995.

[13] M. A. Kochte, C. G. Zöllin, R. Baranowski et al., “Efficient Simulation
of Structural Faults for the Reliability Evaluation at System-Level,” in
Proc. IEEE 19th Asian Test Symp. (ATS), Dec. 2010, pp. 3–8.

[14] R. S. Khaligh and M. Radetzki, “Modeling Constructs and Kernel for
Parallel Simulation of Accuracy Adaptive TLMs,” in Proc. Conf. on
Design, Automation Test in Europe (DATE), Mar. 2010, pp. 1183–1188.

[15] F. J. Ferguson and J. P. Shen, “A CMOS Fault Extractor for Inductive
Fault Analysis,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 7, no. 11, pp. 1181–1194, Nov. 1988.

[16] K. Gulati and S. P. Khatri, “Towards Acceleration of Fault Simulation
using Graphics Processing Units,” in Proc. ACM/IEEE 45th Design
Automation Conf. (DAC), Jun. 2008, pp. 822–827, Paper 45.1.

[17] D. Chatterjee, A. DeOrio, and V. Bertacco, “Event-Driven Gate-Level
Simulation with GP-GPUs,” in Proc. ACM/IEEE 46th Design Automa-
tion Conf. (DAC), Jul. 2009, pp. 557–562.

[18] M. A. Kochte, M. Schaal, H.-J. Wunderlich, and C. G. Zoellin, “Efficient
Fault Simulation on Many-Core Processors,” in Proc. ACM/IEEE 47th
Design Automation Conf. (DAC), Jun. 2010, pp. 380–385, Paper 23.4.

[19] M. Li and M. S. Hsiao, “3-D Parallel Fault Simulation With GPGPU,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 30, no. 10, pp. 1545–1555, Oct. 2011.

[20] S. Holst, E. Schneider, and H.-J. Wunderlich, “Scan Test Power Simu-
lation on GPGPUs,” in Proc. IEEE 21st Asian Test Symp. (ATS), Nov.
2012, pp. 155–160.

[21] E. Schneider, S. Holst, X. Wen, and H.-J. Wunderlich, “Data-Parallel
Simulation for Fast and Accurate Timing Validation of CMOS Circuits,”
in Proc. IEEE/ACM 33rd Int’l Conf. on Computer-Aided Design (IC-
CAD), Nov. 2014, pp. 17–23.

[22] E. G. Ulrich, “Exclusive Simulation of Activity in Digital Networks,”
Communications of the ACM, vol. 12, no. 2, pp. 102–110, Feb. 1969.

[23] M. L. Bailey, J. V. Briner, Jr., and R. D. Chamberlain, “Parallel Logic
Simulation of VLSI Systems,” ACM Computing Surveys, vol. 26, no. 3,
pp. 255–294, Sep. 1994.

[24] S. Holst, M. E. Imhof, and H.-J. Wunderlich, “High-Throughput Logic
Timing Simulation on GPGPUs,” ACM Trans. on Design Automation of
Electronic Systems, vol. 20, no. 3, pp. 1–22, Article 37, Jun. 2015.

[25] L.-C. Chen, S. K. Gupta, and M. A. Breuer, “A New Gate Delay Model
for Simultaneous Switching and Its Applications,” in Proc. 38th Design
Automation Conf. (DAC), Jun. 2001, pp. 289–294, Paper 19.2.

[26] E. Schneider, S. Holst, M. A. Kochte, X. Wen, and H.-J. Wunderlich,
“GPU-Accelerated Small Delay Fault Simulation,” in Proc. ACM/IEEE
Conf. on Design, Automation Test in Europe (DATE), Mar. 2015, pp.
1174–1179.

[27] E. Schneider, M. A. Kochte, S. Holst, X. Wen, and H. J. Wunderlich,
“GPU-Accelerated Simulation of Small Delay Faults,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 36, no. 5, pp. 829–841, May 2017.

[28] E. Schneider and H.-J. Wunderlich, “High-Throughput Transistor-Level
Fault Simulation on GPUs,” in Proc. IEEE 25th Asian Test Symp. (ATS),
Nov. 2016, pp. 151–156.

[29] J. P. Hayes, “Digital Simulation with Multiple Logic Values,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 5, no. 2, pp. 274–283, Apr. 1986.

5C-2

475

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

