
Problem C: GPU Accelerated Logic Re-simulation
Yanqing Zhang, Haoxing (Mark) Ren, Ben Keller, Brucek Khailany

NVIDIA

Revision History

August 10th – (Detailed revisions highlighted in document)

• Updated benchmarks to include only smaller netlists for easier time to test and debug

• Updated scoring requirements to only need to pass saifdiff. Contestants are no longer required

to pass vcddiff to get a score – vcddiff is only used for debugging purposes from now on

• Updated benchmark debug VCD and input VCD files to maintain one consistent signal beginning

and end format.

• (Minor) clarifications regarding not needing to simulate inputs and pseudo-inputs. Clarifications

on required SAIF format.

Introduction
Timing-aware gate-level logic simulation is important to several EDA tasks, including simulation of test
vectors for delay-dependent fault simulation, accurate power analysis, and functional verification signoff
checks. Timing-aware gate-level simulation usually runs much slower than RTL simulation, from a few
cycles per second on smaller unit-level designs to many seconds per cycle on today’s largest full-chip SoC
designs. Typically, when running timing-aware gate-level simulation, correct behavior is already known in
advance from a previous RTL simulation result or from Automatic Test Pattern Generation (ATPG) vectors.
As a result, we can define the input stimuli to be waveforms at every primary input and pseudo-primary
inputs such as register/RAM outputs captured from an RTL simulation trace. We refer to such cases as
logic “re”-simulation, since we can take a known trace on all primary and pseudo-primary inputs from a
previous RTL simulation or ATPG vector, re-simulate the trace using propagation of signals through timing-
aware gate-level combinational logic, and verify that results at the primary and pseudo-primary outputs
match the reference RTL simulation results. In this logic re-simulation use case, a simulator can be
parallelized both across cycles (stimuli) as well as the design (logic gates), and we expect to be able to
exploit modern highly-parallel computing systems such as GPUs to achieve very large speedups.

Previous work in academic research and commercial tool development has proposed various techniques
for accelerating gate-level logic simulation on GPUs. Early academic research demonstrated a 4-62x
speedup when running gate-level simulation benchmarks on an NVIDIA 8000GT GPU compared to a 3.4
GHz Pentium 4 processor [1]. Commercial tools such as RocketSim have been reported to achieve up to
a 23x speedup using GPUs on gate simulation [2] in 2013 on very large designs (hundreds of millions of
gates). More recent research has exploited both gate-parallelism and stimuli-parallelism, similar to this
proposed problem, to achieve up to 1000X speedup for timing-aware gate-level simulation [3], although
only with 2-value simulation and on a restricted gate set. Many of the techniques described in these prior
research publications may be useful references for accelerating this problem.

The GPU accelerated computing platform has also advanced significantly over the last 5-10 years, enabling
advancements in deep learning by fueling its tremendous demand for computing power. We will make
NVIDIA T4 GPUs [12] available to contestants via cloud GPU instances for development and benchmarking.
These latest Turing-generation GPUs support 8.1 TFLOPS of peak single-precision floating-point
performance with 16 GB of GDDR6 memory and 300 GB/s of memory bandwidth. T4 tensor cores support
a peak of 130 TOPS of 8-bit integer performance and 260 TOPS of 4-bit integer performance, which
contestants may be able to leverage for additional speedups. We also plan to support CUDA 10.0+,

including newer CUDA features [4] such as unified memory, cooperative groups, independent thread
scheduling, CUDA graphs, and more to help enable more flexible and efficient parallelization of existing
code base. Finally, recent progress in deep learning frameworks such as PyTorch can enable programming
GPUs in Python and provide GPU-optimized library functions useful to EDA. For example, DREAMPLace [5]
achieved a 40x speedup on VLSI global placement leveraging a number of optimization functions available
in PyTorch.

In summary, the objective of this contest is to develop a GPU-accelerated, timing-aware, 4 value (0, 1, x,
z) logic simulator for replaying RTL traces on gate-level netlists. In this contest, we will provide industrial-
scale open-source benchmarks to evaluate contestants’ code. We also will provide cloud GPU instances
with NVIDIA T4 GPUs and a rich software stack. We expect contestants to leverage advanced GPU
features to achieve significant speedup over existing CPU based simulators.

Problem Formulation

Figure 1: Flow chart of program requirements and contest participation.

Figure 1 shows a flow chart of program requirements and the contest problem definition. Each benchmark

consists of a gate level Verilog design and one or more corresponding testbenches for that design.

Contestants will have as input files:

1. A gate level netlist description of the design.

2. An SDF file [14] that describes the delays of each gate in the design.

3. The testbench(es) to be simulated, which is stored in an input VCD [6] file. The VCD file contains

waveforms of the primary and pseudo-primary inputs of the design for the duration of the

testbench.

4. A standard cell library .vlib file, which describes the behavior of each standard cell gate in the

design.

From these input files, contestants are asked to write code to participate in the contest that will:

1. Read the gate level netlist .gv, SDF, and .vlib file and translate them into an intermediate

representation format that can be easily acted upon by the ensuing simulator code. This portion

of the code will not be timed for purposes of scoring in the contest.

2. Read, parse and interpret the simulation input stimuli VCD file.

3. Perform a delay-annotated, 4-value (0, 1, x, z) simulation on the design so that the output pin

waveforms of the standard cell gates are calculated (as a hint, sequentials such as registers and

RAMs will not need to be simulated, their waveforms are already given), and

4. Outputs a SAIF file [13] that contains the time nets were of value 0, 1, x, or z (T0, T1, TX, TZ) for

all nets in the design for the duration of the specified timestamps (for example, the benchmark

specification document that will be given may require you to record signal values from

timestamp 5-5000ps) given for the testbench. For simplicity’s sake, we only require the sum of

TX and TZ to be correct.

5. (For your own debugging purposes only). It is highly recommended that your code has an option

to output a VCD file that contains waveforms for all nets in the design for the duration of the

specified timestamps (similarly, the benchmark specification document will give the

timestamps) for the golden given VCD file for the testbench.

The code may be written in any language, for example including, but not limited to, C/C++, CUDA, or

Python. However, keep in mind that the code will be run on the contest-supplied GPU platform for

evaluation. The runtime of the code for each benchmark will be measured as truntime, which includes the

time from step 2 to step 4 described above, but does not include the time for preprocessing in step 1, nor

includes the time to dump the VCD file in step 5. The output SAIF file should include signal values for all

nets in the designs and will be compared using contest supplied saifdiff script to a given golden reference

SAIF file. If saifdiffs do occur, one way to debug may be to output a VCD file which includes waveforms for

all nets in the design and compare using vcddiff [7] to a supplied golden reference VCD file. Saifdiff must

report 0 mismatches (unless waived by the contest organizers for odd corner cases) between the

generated output file and the golden reference file, which signifies a successful logic re-simulation.

Specific timestamps will be given specifying which time durations each output file should record. The

contest output file formats are set up this way to limit the potential burden on file IO time while retaining

proper checkers for correct re-simulation. Contestants are encouraged to debug potential waveform

mismatches using open source waveform viewers such as gtkwave [8]. Finally, the score for each

benchmark is recorded. The contest will supply a tbaseline runtime, which signifies the baseline runtime

needed to run the benchmark using conventional simulator tools. The score is simply the speedup

tbaseline/truntime.

The delays for each gate are stored in the input SDF file for the design. The delays from ‘specify’

statements in the GENERIC_STD_CELL.vlib are only to describe the behavior of the standard cells, and

should not be considered literally if the delay arc occurs in the SDF file. While IEEE Standard Delay Format

(SDF) provides a rich syntax to describe the delays of each gate in a design, the delays we consider and

display in the SDF files for this contest are described using a subset of the full SDF syntax. Specifically,

contest-supplied SDF files will only include the ABSOLUTE and IOPATH keywords for consideration. The

ABSOLUTE keyword simply means the numerical delay values recorded should be interpreted literally,

while the unit for delay is specified in the header section of the SDF file (TIMESCALE keyword). IOPATH

keyword signifies the related timing arc of the standard cell being described. In addition, we simplify the

SDF file by not differentiating between minimum:typical:maximum timing values in the SDF triples. An

example on the process of interpreting SDF files is given in Figure 2. We will not disqualify contestants for

mismatches in simulation arising from ambiguities in interpreting the SDF standard.

File Format Clarifications
Figure 3. provides additional clarification on interpreting the SDF files and how contestants’ code should

process them. In the case where separate input pins change at the same time causing an output pin

transition, the smallest of the valid (all contributing transitions, regardless if the input pin transition results

in a controlling value or not) IOPATH delays is taken during the simulation. In the case where multiple

input pin value changes will result in conflicting output pin values, an ordering of the in-flight output pin

value changes must be done before determining the order of value changes that occur on the output pin.

In some extreme cases, glitches may be ‘eaten’ and not seen on the output waveform at all, as depicted

in Figure 3. Otherwise, no glitch filtering is done. In some cases, some cells will have a delay of 0 in the

SDF file. While this will result in no delay from input to output pin, keep in mind a delta delay exists

between input and output pin, which may affect the ordering/scheduling of transitions.

Figure 4. provides clarification on the required SAIF output file format. Our contest will only require the

recording of T0, T1, TX, and TZ times. For simplicity’s sake, the contest provided saifdiff program will only

require the sum of TX and TZ times to be equal between golden reference and simulated output SAIF to

be considered correct. Though the golden reference SAIF files will also have TC and IG values recorded,

our contest supplied saifdiff does not compare these values, and contestants are encouraged not to dump

them in their generated SAIF file. It is suggested to follow the header format for the SAIF file, especially

recording the TIMESCALE and DURATION keyword value.

Benchmark Suite
Benchmarks are derived from designs of different configurations of the NVDLA open source project [9]

and different configurations of the RISC-V [10] open source project, and open source IWLS2005 designs[11]

(possible hidden benchmark candidates). The purpose of sourcing from several different projects is to

provide a range of small to large designs that also constitute a wide range of different activity factors and

inclusion/exclusion of x/z values during simulation of their testbenches. The contest suggests contestants

use smaller designs and shorter testbenches for code exploration and validation, while larger designs and

longer testbenches should be used for code evaluation. Some benchmarks will be hidden from the

contestants but will be used during the contest’s final evaluation and scoring to encourage contestants to

design a ‘universal’ type simulator capable of handling a fully diverse set of benchmarks, instead of

designing their code to perform well only on the benchmarks given.

Benchmark design gate level netlists are created from open source RTL, and synthesized with a

commercial gate synthesis tool using a generic standard cell library that has no attachment to any real

world technology. Timing targets have been gratuitously relaxed so timing checks do not need to be a part

of this contest problem. Testbench input VCD, as well as golden reference VCD and SAIF files are created

by simulating the provided open source testbenches related to the benchmarks using a commercial Verilog

simulator and dumping the corresponding results into the VCD and SAIF files.

Figure 2. Example interpretation of SDF file and glitch enabled simulation results.

Figure 3. Additional clarifications regarding SDF file interpretation.

Figure 4. Clarification on required SAIF output file format.

For this contest problem, the benchmarks will be made available for download from a Google drive

repository link in[15]. The repository will also provide documentation on the timestamps needed to

correctly produce the output SAIF files, instructions on how to install utility programs such as vcddiff and

gtkwave, tbaseline and other benchmark statistics, the contest python saifdiff program, and instructions on

how to decompress the benchmark files. Submitted code will be evaluated using Amazon EC2 G4 instances,

powered by NVIDIA T4 GPUs. After finishing their contest registrations, competing teams who need

access to GPUs will be provided with an allocation of credits for using Amazon EC2 G4 instances and AWS

Cloud Storage Services to develop and test their code. Competing teams will be responsible for managing

the spend of their credit allocation on compute instances and persistent storage during the contest.

Additional documentation on setting up and configuring Amazon EC2 G4 instances will be provided to the

registered teams before the start of the contest, and can also be found in the repository.

Evaluation
The submitted code must produce output SAIF files across all benchmarks that report 0 mismatches across

all golden reference SAIF files compared. Submission code which contains mismatches when run during

evaluation will unfortunately be disqualified and will not be given a score. If this pre-requisite is met, each

contest submission’s final score will be determined by taking the geometric mean of each individual

benchmark score, as described below. The total benchmark suite will include both released benchmarks

to the contestants and some hidden benchmarks for evaluation only. Submissions that do not utilize GPUs

will not be evaluated.

𝐸𝑎𝑐ℎ 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝑠𝑐𝑜𝑟𝑒 =
𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑡𝑟𝑢𝑛𝑡𝑖𝑚𝑒
, 𝑓𝑖𝑛𝑎𝑙𝑠𝑐𝑜𝑟𝑒 = √ ∏ 𝑠𝑐𝑜𝑟𝑒𝑖

𝑛=𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘𝑠

𝑖

𝑛

The required code submission format is detailed in Figure 5. The preprocessing script for .gv/SDF/.vlib

takes in file names as command line arguments and outputs an intermediate representation to be taken

as input to the simulator code. The simulator code also takes as input the file name for the input waveform

VCD, and command line variables that signify the start and stop times (in picoseconds) for signal

recording/dumping for SAIF files. Only the running of the simulator code (“GPUSimulator.exe” in Figure 5)

will be timed.

Figure 5. Desired code submission format

Contestants may be required to submit code with executables that have different names than the example

naming given in Figure 5. Regardless of which coding language was used to build/compile the code,

submissions of code should be in binary executable format which take the above described variables as

command line variables.

Conclusion
Logic re-simulation is an important industrial task that has potential for speedup through parallelism

exploitation through parallel processing hardware platforms such as GPUs. We hope our ICCAD-2020

contest problem spurs interest in re-thinking this important EDA task, and perhaps sheds light on

accelerating standard RTL and gate level simulations with GPU as well. Finally, we look forward to the

contestants’ creative solutions and thank them for their participation.

Reference
[1] Debapriya Chatterjee, Andrew DeOrio, Valeria Bertacco, “GCS: High-Performance Gate-Level

Simulation with GP-GPU”, DATE, 2009

[2] https://www.deepchip.com/items/0523-04.html

[3] Stefan Holst, Michael E. Imhof, and Hans-Joachim Wunderlich, “High-Throughput Logic Timing

Simulation on GPGPUs”, TODAES, 2015

[4] Stephen Jones, “CUDA New Features and Beyond”, GTC, 2019

[5] Yibo Lin et al., “DREAMPlace: Deep Learning Toolkit Enabled GPU Acceleration for Modern VLSI

Placement”, DAC, 2019

[6] https://en.wikipedia.org/wiki/Value_change_dump

[7] https://github.com/veripool/vcddiff

[8] http://gtkwave.sourceforge.net/

[9] https://github.com/nvdla

[10] https://github.com/riscv

GraphPreprocessing.exe <netlist.gv> <netlist.SDF> <std_cells.vlib>

[intermediate_representation.file]

#Preprocessing script of gate level netlist, SDF, and standard cell .vlib takes

the files for each as input, outputs some compiled intermediate representation.

As an example, code can be in CUDA or Python.

GPUSimulator.exe <intermediate_representation.file> <input.vcd> <dumpon_time>

<dumpoff_time> [SAIF.saif]

#Actual execution of simulator code. Execution of this code will be timed. The

code should dump an output SAIF file.

https://en.wikipedia.org/wiki/Value_change_dump
https://github.com/veripool/vcddiff
http://gtkwave.sourceforge.net/
https://github.com/nvdla
https://github.com/riscv

[11] https://iwls.org/iwls2005/benchmarks.html

[12] https://www.nvidia.com/en-us/data-center/tesla-t4/

[13] IEEE/IEC International Standard - Design and Verification of Low-Power Integrated Circuits," in IEC

61523-4 Edition 1.0 2015-03 (IEEE Std 1801-2013), vol., no., pp. 303-351, 24 March 2015

[14] IEEE Standard for Standard Delay Format (SDF) for the Electronic Design Process," in IEEE Std

1497-2001 , vol., no., pp.1-80, 14 Dec. 2001

[15] https://drive.google.com/drive/u/2/folders/1IrWXkHEED_gVsLPUGrIKNIOAE6BIp0WY

https://www.nvidia.com/en-us/data-center/tesla-t4/
https://drive.google.com/drive/u/2/folders/1IrWXkHEED_gVsLPUGrIKNIOAE6BIp0WY

