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ABSTRACT
In this paper we present a robust and efficient methodol-
ogy for crosstalk-induced delay change analysis for ASIC
design styles. The approach employs optimization methods
to search for worst aggressor alignment, and it computes
crosstalk induced delay change on each stage considering an
impact on downstream logic. Computational efficiency is
achieved using pre-characterized current models for drivers
and compact macromodels for interconnect. The proposed
methodology has been implemented in a commercial noise
analysis tool. Experimental results obtained on industrial
designs demonstate high accuracy and reduced pessimism
of the proposed methodology.

1. INTRODUCTION
Recent advances in process technology scales the aspect

ratio of wires to be taller and thinner to control wire resis-
tance. A side effect of this scaling is that coupling capac-
itance between wires becomes the dominant portion of the
total wire capacitance [1, 2]. At the same time the signal
transition times become faster resulting in stronger aggres-
sors on adjacent victim wires [2]. Another side effect of
process advancement is the faster scaling of cell internal de-
lay than the interconnect delay, making accurate analysis of
interconnect delay important.

Effects of crosstalk on delay grow linearly, if not faster,
with the latest technology advances due to (i) increase in
coupling-to-total capacitance ratio, (ii) decrease in supply
voltage resulting in a reduction of gate overdrive (iii) short-
ening of clock period causing transition waveforms to play a
bigger role, and (iv) tighter margins requiring more accurate
timing analysis and less overestimation of delay.

The problem of delay calculation in the presence of crosstalk
can be formulated as finding the worst-case delay among all
possible alignments and aggressor waveforms. However, the
computation of delay in the presence of noise is a challenging
problem due to the following factors: (i) delay is sensitive to
aggressor/victim alignment, (ii) linear model for a switch-
ing driver and effective capacitance principle may become
inadequate [2], and (iii) waveform becomes irregular in the
presence of noise, making the conventional metric of delay
measurement non-robust.

Due to the high sensitivity of delay on alignment and ag-
gressor timing window constraints, a search for the worst-
case (WC) alignment may be approached using constrained
nonlinear optimization techniques. However, optimization
in a multi-dimensional space of aggressor alignments with
each iteration requiring simulation of a nonlinear circuit can

be prohibitively expensive. The problem is further compli-
cated by the unique waveform response of each receiver of
the victim net to the same input transition, such that a WC
alignment for one receiver may not be the same for another.

Another challenge with crosstalk induced delay calcula-
tion is distortion of transition waveforms. The distorted
waveform often deviates from waveforms used in delay char-
acterization causing inaccuracy in arrival times in the down-
stream logic cone. If the crosstalk is severe, the victim wave-
form may even become non-monotonic (bumpy), the effect
of which is not properly modeled in existing gate delay sys-
tems.

Figure 1 clearly shows the problem associated with ag-
gressor alignment and delay measurement based on a pre-
defined waveform crossing threshold. The waveforms were
computed in Spice using an exhaustive sweep of alignment
parameters on a victim net in a 0.13 micron industrial de-
sign. The worst-case delay pushout when measured at the
Vref = 50% Vdd crossing is 724ps. This happens when
the rising waveform has a falling noise bump that barely
touches the threshold and then rises again. However, this
bump on the waveform causes almost no delay change in the
gate driven by the victim net, where the transition has only a
slight bump at the end. It is evident from the figure that the
Vref crossing of the receiver output waveform occurs prior
to that of the receiver input waveform on which the delay
change is usually measured, causing the aggressor alignment
to be sub-optimal. By monitoring the victim net’s receiver
output response during the aggressor alignment sweep, we
determined that the actual worst-case alignment should be
much earlier, with the resulting delay pushout being 537ps,
which is 35% less pessimistic. Also, we observe that the
receiver output waveform is smoothened owing to the fact
that gates in digital design are low-pass filters.

In certain cases of high coupling/total capacitance ratio of
the victim net, the response on receiver output may become
non-motononic as well. Such cases are similar to amplifica-
tion of propagated noise, and such an event should be caught
and reported to the user as an indication of a potential noise
and, possibly, delay problem.

Recently proposed methodologies for delay calculation in
the presence of crosstalk include using a heuristic-based Miller
factor [3] and analyzing coupled interconnect using linear(ized)
and nonlinear models for drivers [2, 4, 5]. Suggested align-
ment methods for victim and aggressors transitions are based
on the superposition principle along with usage of noise
pulse width and height [2, 4, 5]. The usage of pre-characterized
4-D look-up tables representing alignment as a function of
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Figure 1: Responses on recevier input and output
suggest different alignments and delays on the vic-
tim

nominal slew rate, height and width of a noise glitch on the
victim net and output load of receiving gate has been pro-
posed in [9]. Recent papers [10, 11] describe current-based
models for gates that were successfully used in noiseless de-
lay and noise analysis, respectively.

In this paper we suggest a novel approach to crosstalk de-
lay change analysis which allows for an accurate and robust
accounting of crosstalk effects on stage delay even in the
presence of strong nonlinearity, high coupling/total capaci-
tance ratios and irregular waveforms. The methodology is
based on (i) using an accurate nonlinear current model for
the gate, (ii) a smart partition of linear and nonlinear com-
ponents of the stage allowing efficient search for WC align-
ment using methods of constrained optimization, (iii) alter-
ing the conventional notion of “delay” using ROP (receiver-
output probing) metric, and (iv) using a detailed waveform
(PWL) description instead of a linear saturated ramp.

2. STATEMENT OF THE PROBLEM
The crosstalk delay change calculation described in the

curent paper is a part of the outer timing window iteration
loop which also includes calculation of the noiseless stage
delay and Static Timing Analysis (STA). These iterations
are required for convergence of timing windows on each stage
of a circuit, since they are affected by crosstalk, which in
turn depends on timing windows of the neighboring nets.

In the current work we consider calculation of the delay
change at a given iteration of the outer loop, using timing
windows from the previous iteration.

First, we define a stage as a subcircuit of the design con-
sisting of a victim net, its aggressor nets, and their corre-
sponding drivers (see Figure 2). In the present paper we
define a driver as the last Channel-Connected Component
(CCC) of the driving cell. The practical assumptions used
in industry is that for a multi-CCC cell, effects of crosstalk
on the cell internal delay, defined as a delay from an input
of the cell to an input of the last CCC, can be neglected.
Since the present paper is devoted to computation of delay
change on a stage due to crosstalk, one needs only consider
the last CCC of the driving cell. All single-CCC cells (e.g.
inverter or nand) are drivers by definition.
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Figure 2: A stage includes coupled interconnect and
drivers of the victim and aggressor nets.

It is known that the effect of a switching aggressor on de-
lay on the victim is roughly proportional to the slew rate
of transition on the aggressor. The slew rate on the aggres-
sor, in turn, depends on the strength of drivers holding the
aggressor’s neighbors (second-order aggressors). This neces-
sitates accounting for the second-order aggressor, that are
also included into the stage but assumed to be “quiet” and
therefore grounded using an appropriate resistance.

Here we consider the case when the victim and aggressor
nets each have a single driver. The case of multiple drivers
can be handled similarly.

We denote a vector of voltages on all interface nodes by X
and enumerate them such that X0, X1, ..., XN denote volt-
ages on the victim and aggressor driver outputs, respec-
tively, and XN+1, ..., XN+M - receiver inputs, where N, M
are the number of aggressors and receivers, respectively (see
example on Figure 2).

Let J [V (t)] denote a functional over a space of transi-
tion waveforms used as a transition time metric associat-
ing a number (transition time) to a transition waveform.
The conventional transition time metric, denoted by Jref , is
defined as the time when transition crosses Vref (typically
50%Vdd).

We define a nominal output transition, X̄j+N (t) as a
rising transition occuring on an input of j−th receiver in
the presence of ”quiet” aggressors. Similarly, we define the
noisy output transition, X̃j+N (t) as a transition probed on
the input of the j−th receiver in the presence of switching
aggressors.

We further define the crosstalk delay change on the j−th
stage’s output as the difference in transition times as mea-
sured using some functional J on noisy and nominal tran-
sitions on the stage’s output caused by the same transition
on one of the stage’s inputs:

Dj = J [X̃j+N (t)] − J [X̄j+N (t)]. (1)

We assume that transitions on the victim and aggressor
nets can occur within corresponding switching windows cal-
culated during STA on the previous iteration of the tim-
ing windows loop. Let Wk = [τek, τlk], k = 0, ..., N denote
switching windows (SW) on the victim and aggressor nets,
with τek, τlk the earliest and latest possible transition times
with respect to the victim’s clock. If clocks of an aggres-
sor and the victim net are asynchronous, the aggressor’s
switching window is set to be infinitely wide. We then define
alignment vector τ = {τ1, ..., τN} as the vector of aggressor
transition times.

The problem of calculation of the WC crosstalk delay
change can be formulated as determining the maximal delay
change (either positive or negative) between a given input
and output of the stage in the presence of switching aggres-
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sors, each occuring within the corresponding switching win-
dow: τ ∈ W, where W is an N -dimensional cube spanning
the switching windows.

3. PROPOSED METHODOLOGY
In the next five subsections we describe the major com-

ponents of the proposed methodology of finding the WC
delay change on a stage. First in (3.1) we describe a pre-
characterized current model (CM). Then, in (3.2) we explain
how a non-linear circuit can be partitioned into linear and
non-linear parts in order to efficiently calculate transitions
on the stage output in the presence of crosstalk for multiple
alignments between victim and aggressors. Last three sub-
sections describe the flow and provide details of the proposed
algorithm of finding WC alignment.

3.1 ViVo current model for gate
Each gate in the standard cell library is pre-characterized

for a set of current models, called a ViVo (Voltage in, voltage
out) model, generated for each interface CCC of the gate.

Since the characteristic relaxation time of devices in a
CCC is much smaller than CCC’s input or output transition
slew rates, the current drawn by a gate during switching can
be well represented by a voltage-controlled current source,
which is a function of instantaneous voltages on the input
and output and their time-derivatives:

Id = I(Vi, Vo, ) + Ci(Vi, Vo, )V̇i + Co(Vi, Vo, )V̇o; (2)

The coefficients of the two last terms in (2) describe cur-
rent charging an effective capacitance between input and
output pins (Miller effect), and an effective ground capac-
itance on the output pin, respectively. The correspond-
ing Miller and ground capacitors are related to Ci, Co as
CM = Ci, Cg = Co + Ci.

Although the coefficients Ci, Co are in general nonlinear
functions of Vi, Vo a simplified version of (2) with constant
Ci, Co is mostly useful in practice.

An efficient 2-D lookup table is used to store values of
I(Vi, Vo) in (2).

Since the current table from ViVo is a function of instan-
taneous voltages on input and output and not dependent on
transition history, its generation is done through a series of
DC simulations using Spice. Each such simulation is per-
formed for a pair of constant voltages on input/output pins,
and generates an entry in the 2-D current table.

The capacitaces CM and Cg are found through a series
of transient simulations with voltage transtions applied on
input and output nodes, during which a current through the
output node is measured.

The ViVo CM is created per pair of input and output
pins of the CCC and it models current drawn by the output
pin of the CCC for various voltage values on the input and
output pins.

Sensitization for DC simulations is determined from a
logic function extracted from the CCC using binary-decision
diagrams (BDD).

Generation of a complete set of ViVo CMs for a gate is
very fast, taking less than 1 sec for a cell.

As part of the characterization carried out for multi-CCC
cells, in addition to the ViVo CMs we characterize for the
slew on the input of the last CCC as a function of slews on
the cell’s inputs.

� �� � � �� �

� �
� ��

�

� �
� ��

�

	
	
	
	
	










�
�
�
�
�

�
�
�
�












�
�
�
�

� �
� �
� �
� �

�
�
�
�
�

coupled RC

X
N+1

X1 XN

. . . 

. .
 . 

X
N+M

inV
0

a)

Vin

ViVo

X

X0

H0,j
X0

X
N+1

c)b)

^ (s)
Y(s)

Figure 3: Calculation of nominal (noiseless) delay
on a modified stage: victim driver is replaced with
a current model, aggressor drivers - with holding
resistors, and the linear portion of network - with a
reduced-order macromodel.

3.2 VivoSim: dedicated simulation engine
Here we describe an efficient dedicated simulation engine,

referred to below as VivoSim, for computation of noisy and
noiseless transitions on the outputs of a stage. It is exten-
sively used in the inner optimization loop described in (3.4)
where the WC alignment is determined.

Computational efficiency is achieved via identification of
an alignment-independent component of the solution and its
usage throughout multiple alignment iterations. In addition,
due to a specific form of the circuit model approximating the
original stage, an efficient implementation of the dedicated
simulation engine is possible allowing run times up to two
orders of magnitude faster compared to Spice simulation
with minor loss of accuracy.

We start from the MNA formulation for the stage typi-
cally consisting of large distributed RC-interconnect and a
nonlinear elements (victim driver):

CẊ + GX = BU, (3)

Here C, G are capacitance and conductance matrices, and
the excitation vector U = {Idrv, U1, ..., UN , 0, ..., 0} includes
nonlinear driver current, Idrv, which is a function of volt-
ages on its switching input and output, and voltage sources
from Thevenin models of corresponding aggessor (see 3.3).
We use a ViVo CM described in the previous subsection to
model the current drawn by the victim driver.

The linear part of the circuit, described by the terms
in left-hand side of Eq.(3), is modeled using a reduced-
order macromodel. It is computed from the original RC-
interconnect using a Krylov subspace method resulting in
Yk,0(s), Hj,k(s), k = 0, ..., N, j = 1, ..., M that describe, re-
spectively, admittances and transfer functions. The Krylov
method [6] uses a projection of the original state space onto
a state space of much lower dimension, while matching the
frequency response to that of the original interconnect up to
a frequency limit of 1010Hz.

The reduced macromodel of interconnect enables an effi-
cient and accurate propagation of responses over the linear
portion of the network, and accounts for crosstalk effects of
victim and aggressor wires.

In order to compute a nominal transition on the stage

149



outputs each, aggressor driver is replaced with a holding
resisitance while the second-order aggressors are decoupled
(Figure 3a). As our experiments show, inclusion of wire
resistances as well as modeling finite impedance of the ag-
gressor net drivers is crucial for achieving a good accuracy in
terms of stage delay. At the same time we found that second-
order aggressors have much smaller effect on the nominal
transition, and can be decoupled.

The calculation of nominal transitions on the stage out-
puts is performed in two steps. In the first step a driver
output response, X̄0 is computed using ViVo current model
for the victim driver and a 1-port reduced-order model of
the load, Ŷ (Figure 3b). The corresponing KCL equation
for the driver output node, from which the nominal response
is found using a numerical integration, reads:

I0(t, X0(t)) = L−1{Ŷ L[X0(t)]}. (4)

Here x0(s) = L[X0(t)] and L[·] is the Laplace transform.

The load Ŷ is a Padé approximation of the driving-point
admittance Y0,0.

In the second step, using the voltage substitution thorem
[7] the driver is replaced with a voltage source modeling
the driver output transition (see Figure 3c) and the receiver
responses are found using the transfer functions H0,k as:

XN+k(t) = L−1[Hk,0x0(s)], (5)

The computation of time-domain responses (5) is done using
efficient recursive convolution [8].

Computation of noisy transitions on the stage outputs is
performed on a modified stage circuit shown in Figure 4a.
Using the voltage substitution theorem the aggressor drivers
of the original stage are replaced with the voltage sources
X∗

k(t) that are pre-calculated using nonlinear driver models
(see details in (3.3)).

The noisy transition are computed in the following three
steps. In the first step we compute the alignment-independent
components of the algorithm: current responses and voltage
responses to voltage transitions on each aggressor driver out-
put.

Replacing k−th aggressor driver with corresponding volt-
age source X∗

k(t) and short-circuiting all other drivers we
find

I0,k(t) = L−1{Y0,kL[X∗
k(t)]}, (6)

Vj,k(t) = L−1{Hk,kL[X∗
k(t)]}. (7)

Here I0,k is short-circuit current response at the victim driver
output, and Vj,k is open-circuit voltage response at the j−th
receiver input due to k-th aggressor transition.

In the second and third steps we calculate noisy driver
output and receiver input transitions, respectively, using the
precomputed I0,k, Vj,k. The calculation of noisy transitions
is the alignment-dependent part of the algorithm, and is
done for each alignment vector τ .

The driver output noisy transition is computed from a
circuit shown in Figure 4b which is obained from the original
one using a corresponding ViVo CM for the victim driver and
replacing the linear part with its Norton equivalent circuit.
The Norton equivalent circuit consists of the reduced-order
model of load, Ŷ and appropriately aligned set of current
responses I0,k:
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Figure 4: Calculation of noisy delay on a modi-
fied stage: victim driver is replaced with a current
model, aggressor drivers - with voltage sources, and
the linear portion of network - with a reduced-order
macromodel.

I0(t, X0(t)) − L−1{Ŷ L[X0(t)]} =

N∑

k=1

I0,k(t − τk). (8)

In the third step (see Figure 4c) the noisy transitions at
receivers are calculated using the transfer functions Hj,0 and
the pre-calculated (in stage one) and apppropriately aligned
voltage responses:

XN+j = L−1{Hj,0L[X0]} +
N∑

k=1

Vj,k(t − τk), (9)

As our experiments show, the reduced-order model for the
load, Ŷ , needs to have just a few Padé terms to adequately
approximate the load. In most cases only 1 Padé term is
sufficient for the error to be within 2-3% of Spice. In this
case the load becomes a Π-load. In a few cases where 1 pole
is not sufficient, more Padé terms are preserved (up to 4).

Note that the described algorithm requires that Ik(t), Vj,k(t)
be computed once for a stage. Once they are computed,
calculation of a noisy transition on the stage’s output for a
given alignement vector τ required one integration of a small
set of nonlinear equations and one recursive convolution.

3.3 PWL transitions of aggressors
In order to calculate a delay change on a victim net, fast

transitions on all its aggressor nets have be to known. There-
fore the first step of the proposed flow is calculation of fast
transitions on all nets that can be aggressors. In order to en-
sure conservative results the fast transitions are computed
on each net and propagated to next stages during a ini-
tial breadth-first traversal of a design. On each net several
driver output transitions are computed, one for each input
pin of the last CCC of the driver. The calculation is done
using the same method as described in the previous sec-
tion for computing nominal response on the driver output.
For single-CCC gates stimulus transition is created using
a PWL transition waveform propagated from the previous
stage. For a multi-CCC gates we use a pre-characterized
1-D slew propagation table in order to generate a transition
stimulus on the input of the last CCC.

150



The calculated transition is stored compressed in the form
of a 8-piece PWL wave on each gate output of the design.
An efficient compression scheme allows us to store one such
PWL wave in just 8 bytes.

In the case where slews from commercial STA tool are
used at inputs to each driver and no propagation to the next
stage is done, calculation of fast transitions on all nets is very
fast even for big designs since it requires only two (one for
rising and one for falling transitions) nonlinear simulations
on the simple circuit shown in Figure 3b. For example, for
a 500K-gate design the calculation of fast PWL transitions
completes in less than 10min on a 2GHz Linux machine.

3.4 Delay change calculation
The proposed methodology assumes that the analysis is

done in a topological order and, therefore waveforms on the
inputs of all drivers are known.

Since timing windows on aggressor nets are taken from
previous iteration of the outer STA convergence loop, the
delay change calculation on a given stage can be viewed as
independent on other stages. The delay change, as defined
in Eq.(1) using a transition time metric Jref , can be found
using noisy and nominal transitions calculated on each out-
put of a stage using the method described in detail in (3.2).

As explained in the Introduction, the metric Jref used
today in delay calculators, has its setbacks. In this pa-
per we suggest a different metric, referred to below as ROP
(Receiver-Output Probing) metric, Jrop, which is based on
propagation of the noisy transition to the receiver output:

Jrop[XN+j(t)] ≡ Jref [Zj(t)]. (10)

Here Zj(t) denotes a transition on j−th receiver’s output
caused by a transition on its input, XN+j(t).

The ROP metric has the following advantages over the
conventional metric: (i) it makes the noisy waveform more
regular since the receiver gate is a low-pass filter, and (ii)
it accounts for the impact of actual waveform on delay of
the receiver, and therefore improves the accuracy of delay
change measured on this net.

The computations done on each alignment iteration in-
cludes two numerical simulations of a small nonlinear circuit
(each for victim driver and each of its receivers) and one lin-
ear analytical simulation (propagation of noisy transition
from driver output to receivers).

As explained earlier, application of the conventional tran-
sition time metric Jref to a non-monotonic waveform con-
stitutes a cliff in the conventional methodology, which is not
robust because small variations in parameters of the circuit
(e.g. driver size, supply voltage, etc) or aggressor alignment
is likely to result in a big change in transition times for
downstream stages. The proposed ROP delay metric lacks
such a setback of the traditional methodology. Also, it helps
to uncover “marginal” violations such as a glitch on top of
a transition tail, that are not caught by either conventional
delay or noise analyses.

In addition, search for the WC delay change is done using
techniques of constrained optimization which ensures that
conservative results are found, something that is not guar-
anteed with any heuristic-based alignment methodology.

The described separation of alignment-independent com-
ponents of the problem from those changing inside the align-
ment loop drastically reduces computational complexity of
the proposed methodology. Owing to nested optimization

loops in the proposed methodology, it is critical to employ
an efficient computation framework for the analysis using
fast similation of the circuit comprising the nonlinear cur-
rent souce of the first/last CCC of the gates and their Padé-
approximated loads. Furthermore, efficient computational
techniques for reduced-order modeling of the interconnect
must be employed.

The proposed flow of delay change calculation on a given
stage is summarized in Figure 5. Note that it does not
include the calculation of fast transitions on each aggressor’s
driver output which is done in a separate traversal of the
design.

3.5 Constrained optimization of WC align-
ment

The innermost loop of the presented algorithm iterates
over aggressor alignments in a search of the WC delay change
based on the ROP metric. As noted before, this is done sep-
arately for each receiver, since the type of receiver and its
load affect the WC alignment and delay change.

Since straightforward optimization in the N−dimensional
sub-space of aggressor alignments in the presence of timing
constraints (switching windows) is not feasible, we use the
following greedy algorithm consisting of two steps.

In the first step optimization is performed for a single
variable defined as the average of the peak times ζk of each
aggressor’s voltage response, defined relative to the nominal
transition time on the receiver input: ζ = 1

N

∑N
k=1 ζk.

In each iteration of the optimization loop we first deter-
mine the so-called suggested averaged alignment, ζ̄(i) with
which we try to satisfy timing constraints. If the voltage re-
sponse from an aggressor cannot be peak-aligned with ζ̄(i),
it is positioned as close as possible to it, while satisfying
constraints. This means that the transition on the aggres-
sor occurs on the corresponding boundary of its SW. This
results in the so-called actual averaged alignment ζ(i) which
may be different from the suggested alignment due to timing
constraints.

After a delay change computed on i−th alignment iter-
ation using the method described in the previous section,
a new suggested alignment, ζ̄(i+1), is found by searching
for the maximum of a quadratic function interpolating the
worst 3 actual alignment points and their corresponding de-
lay changes. To begin the process, the first three value of
ζ are chosen heuristically using the nominal transition and
pre-calculated voltage and current responses.

Step 1 of the optimization process stops when one of the
following events occur: (1) the process converges in terms of
delay change, (2) the delay change values are oscillating, (3)
three worst points lie on a straight line, or (4) the maximum
number of iterations is exceeded.

Case 3 indicates a severe delay and noise problem on the
net: the noise glitch induced by aggressors after the vic-
tim has fully transitioned propagates to the receiver output
where it crosses Vref .

If the transition on the receiver output correposonding to
the WC alignment is non-monotonic, a warning is issued as
it might indicate a potential functional failure or a high in-
accuracy of the delay analysis. Consider an example of the
WC alignment search for late rising transition on a victim
net with 4 aggressors. The victim’s noisy transition times
computed using ROP metric and the aggresors’ switching
windows and peak times on each iteration are shown in Fig-

151



1 Compute the reduced-order model of the interconnect

2 Find victim’s driver and receivers, switching win-
dows and waveforms on aggressors and the victim’s
driver inputs

3 For each victim’s driver do:

3.1 Compute Padé-approximated model of load as
seen by the driver

3.2 For each input-output arc compute nominal
transitions on the driver output using CM and
the load

3.3 Choose an arc for delay change calculation
based on nominal delay and/or slack

3.4 Propagate the nominal transition for the chosen
arc to all receiver inputs

3.5 Propagate the nominal transitions to each re-
ceiver output using CM for the receiver and its
Padé-approximated load

3.6 Compute current and voltage responses from
each aggressor, Ik(t), Vj,k(t)

3.7 For each receiver iterate until alignment con-
verges:

3.7.1 Select valid alignment and construct the

combined current, I(t) =
N∑

k=1

Ik(t − τk)

3.7.2 Compute noisy transition on the driver out-
put using CM, I(t) and Padé-approximated
load

3.7.3 Propagate the noisy transition from driver
output to the receiver input and superim-
pose with aligned voltage responses from ag-

gressors Vj(t) =
N∑

k=1

Vj,k(t − τk)

3.7.4 Propagate the noisy transition further to
the receiver output using the receiver’s CM
and Padé-approximated load

3.7.5 Measure the delay change and pass it to the
optimization engine for selection of next
alignment

3.8 Issue a warning if WC noisy transition on the
receiver’s output is non-monotonic

4 Store the delay change on the receiver’s input for
next iteration of STA loop

Figure 5: Methodology of crosstalk delay change cal-
culation on a stage
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Figure 6: Optimization of WC delay change for a
stage with victim and 4 aggressors

ure 6. Dotted vertical lines denote SW’s on aggressors, and
spikes denotes transition times on victim and aggressor nets
during 4 alignment iterations. Numbers next to spikes de-
note the iteration number. In the example, the aggressor A4
can be aligned with the victim transition on all iterations.
In contrast, aggressors A2, A3 can be shifted only on part of
the iterations, while the aggressor A1 has a fixed transition
time throughout the iterations.

In the described alignment method we do not filter aggres-
sors based on a criterion of non-overlapping of its SW with
that of the victim, which is used in other methodologies.
Such filtering can potentially engender a cliff in the analy-
sis, especially when the SW’s of the victim and aggressors
slightly overlap.

In contrast to the mentioned approach, we can include all
the aggressors that can impact the victim’s transition into
the analysis, allowing the simulation to determine the mag-
nitude of each aggressor’s contribution to the delay change.
Aggressors whose switching windows are very far from the
victim’s transition time can be filtered. Note that retaining
most of the aggressors does not increase computational cost
of the analysis significantly, since the current and voltage re-
sponses due to each aggressor transition are computed once
for all alignments.

The second step of the optimization procedure is a refine-
ment of the WC alignment vector determined in the first
step using the average alignment variable. This is achieved
by employing the steepest descent method, where each ag-
gressor’s alignment is varied separately from others in search
of the true WC result. Although the second step can be ex-
pensive, especially for large number of aggressors, it is rarely
used since the ROP-based delay change as a function of ag-
gressor alignment is usually flat near its maximum and the
first step usually suffices.

4. RESULTS
First we demonstrate accuracy of the described fast sim-

ulation method on a simple though realistic circuit consist-
ing of a chain of inverters driving nets with significant cou-
pling capacitance. The worst-case alignments of aggressors
on each of the noisy victim nets are determined using the
described optimization procedure based on the ROP tech-
nique. The resulting worst-case alignment is then used in a
Spice simulation on the same circuit.

152



Figure 7: Waveforms computed in Spice and using
the proposed fast simulator on a simple circuit
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Figure 8: Delay speedup for falling transition com-
puted by fast simuation Spice on a commercial cir-
cuit

The transition waves from VivoSim and Spice are shown
in Figure 7 and are barely distinguishable. Similar com-
parisons made for multi-inputs and multi-CCC gates show
similar correspondence.

Figure 8 demonstrates accuracy of the fast simulator and
the described optimization method on a 14K-cell industrial
design. The worst-case aligment and the corresponding de-
lay change (pushout) are compared to those computed in
Spice simulations using alignment sweep. The sweep step
was chosen to be 5% of the nominal transition slew to en-
sure the worst alignment is determined.

Table 1: Runtime, memory growth and pessimism
reduction for two industrial designs on a 2Ghz
Opteron Linux machine

Design Size Runtime Memory Pessimism reduction
(inst) (sec) growth Average Worst

A 18K 30sec 90Mb 10% 51%
B 150K 240sec 670Mb 14% 37%

We further present analysis results on two commercial de-
signs. Design A is an 18K instance, 0.30 micron cell-based
signal processor. Design B is a 150K instance, 0.13 mi-
cron cell-based network processor. Analysis results for the
two designs are shown in Table 1. Delay change results
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Figure 9: Delay change comparison for late rising
transition

as measured on the receiver output are compared against
the delay change results as measured on the receiver input.
The amount of pessimism reduction is reported in the ”Pes-
simism Reduction” column. Average and worst-case pes-
simism reductions are reported under the ”Average” and
”Worst” sub-columns. Also note that the runtime and mem-
ory growth scales almost linearly with size of design.

Figure 9 shows the scatter plot for delay pushout on De-
sign B. Even though the average pessimism reduction is 14%,
which is quite significant in itself, the large delay pushouts
show even more pessimism reduction. Using the proposed
method of noise-on-delay analysis, the reduction in noise-
on-delay pessimism can be significant on long noisy nets.

Finally we present setup slack data computed on a 130nm
industrial circuit with 500K instances. This circuit took
1068 sec to run on a 2GHz Opteron machine. The slacks
computed using ROP technique and those computed using
the conventional receiver-input probing (RIP) approach are
compared in Fig. 10. Note the shift towards more positive
slack with the ROP technique, and also the most critical
path found via the conventional RIP method is improved
using the ROP technique by 230ps. These results show that
considerable pessimism reduction can be achieved through
the proposed ROP method.

4.1 Conclusions
We have presented a methodology for crosstalk induced

noise-on-delay analysis which is robust and less pessimistic.
Our methodology employs optimization methods with a ded-
icated fast simulator to search for the optimal aggressor
alignment while considering the circuit response of down-
stream logic. We have also described an efficient, accurate
and automated current model characterization scheme. The
accuracy of the current model matches transistor level Spice
simulations to within 2-4 percent. The dedicated fast sim-
ulation engine using pre-characterized current models and
reduced interconnect models have been described and their
effectiveness and performance have been proven on large in-
dustrial designs.

Our noise-on-delay analysis engine has been tested on sev-
eral 130nm industrial designs with good performance. Re-
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Figure 10: rip vs rop

sults obtained on 180K- and 500K-instance industial designs
showed a significant reduction in delay pessimism over exist-
ing aggressor alignment and delay measurment techniques,
and impoved delay accuracy in general.
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