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Abst rac t  

Since the first papers on asymptotic waveform 
evaluation (AWE), Padi-based reduced order models 
have become standard for improving coupled circuit- 
interconnect simulation efficiency. Such models can 
be accurately computed using bi-orthogonalization al- 
gorithms like P a d i  via Lanczos (PVL),  but the re- 
sulting Pad6 approximates can still be unstable even 
when generated from stable R L C  circuits. For certain 
classes of RC circuits it has been shown that congru- 
ence transforms, like the Arnoldi algorithm, can gen- 
erate guaranteed stable and passive reduced-order mod- 
els. In this paper we present a computationally effi- 
cient model-order reduction technique, the coordinate- 
transformed Arnoldi algorithm, and show that this 
method generates arbitrarily accurate and guaranteed 
stable reduced-order models for RLC circuits. Exam- 
ples are presented which demonstrates the enhanced 
stability and efficiency of the new method. 

1 Introduction 

The dense three-dimensional packaging used in 
compact electronic systems often produce magnetic 
interactions which interfere with system performance. 
Such effects are difficult to simulate because they oc- 
cur only as a result of an interaction between the field 
distribution in a complicated geometry of conductors, 
and the circuitry connected to those conductors. For 
structures small compared to a wavelength, electro- 
magnetic interactions between conductors can be rep- 
resented arbitrarily accurately using a densely coupled 
resistor, inductor, and capacitor (RLC) network [l]. 
Although it is possible to simulate coupled circuit- 
interconnect problems by including this densely cou- 

pled RLC network with the transistor models in a cir- 
cuit simulator, this can be a very inefficient approach. 

A standard way to improve the efficiency of coupled 
circuit-interconnect simulation is to use Padd-based 
reduced order models [2, 3, 4, 5, 61. Accurate com- 
putation of such models can be accomplished using 
bi-orthogonalization algorithms like Pad6 via Lanczos 
(PVL) [7], but the resulting Pad6 approximates can 
still be unstable even when generated from stable RLC 
circuits. It has been shown that, for certain classes of 
RC circuits, congruence transforms, like the Arnoldi 
algorithm, can generate guaranteed stable and passive 
reduced-order models [8]. In this paper we present a 
computationally efficient model-order reduction tech- 
nique, the coordinate-transformed Arnoldi algorithm, 
and use a congruence argument similar to the one in [8] 
to show that our method generates arbitrarily accu- 
rate and guaranteed stable reduced-order models for 
general RLC circuits. 

In the next section we briefly describe background 
on RLC circuit formulation, model-order reduction, 
Pad6 approximation, and Arnoldi methods. Then 
in Section 3, we present a guaranteed stability the- 
ory comprising two steps: a coordinate transforma- 
tion requiring the computation of a matrix square 
root and an Arnoldi iteration. In Section 4, we show 
that the matrix square-root coordinate transformation 
can be performed implicitly as part of a coordinate- 
transformed Arnoldi algorithm, and that therefore it 
is not necessary to compute the matrix square-root. 
The results presented in section 5 include several ex- 
amples. A simple RC circuit is examined to  show that 
the generated Pad6 approximate is unstable but the 
coordinate-transformed Arnoldi algorithm produces a 
stable reduced-order model. Then, results are pre- 
sented comparing the accuracy of the model-order 
reduction methods on a low-noise amplifier and an 

*Now with the Department of VLSI CAD and Verification, equivalent circuit for a three-dimensional electromag- 
netic problem modeled via PEEC [l]. Finally, in sec- IBM T. J. Watson Research Center, Yorktown, NY. 

1063-6757/96 $5.00 0 1996 IEEE 
288 

Authorized licensed use limited to: Synopsys. Downloaded on September 24, 2009 at 18:23 from IEEE Xplore.  Restrictions apply. 



tion 6, we present conclusions and acknowledgments. 

2 Background 

2.1 Formulation 
If the modified nodal analysis approach is used to 

generate a system of equations for a network consist- 
ing of coupled inductors, capacitors, and resistors, the 
resulting N-node system has the form 

C O  [ 0 L ]  [:,I = - [  -GBT ;][U].[ * .  ' b . 1  
(1) 

where v E RN is the vector of N node voltages; 
i E RM is the vector of M inductor currents, i, E RN 
is the vector of source currents, C, G E R N x N  are the 
symmetric nodal capacitance and conductor matrices, 
respectively, L E R M x M  is the symmetric branch in- 
ductance matrix, and B E R N x M  is the incidence 
matrix associated with the inductor currents. 

For the SISO (single transfer impedance) case, we 
can simplify the above system using the notation 

(2) 
L :  = - ' ~ x + e j u  

y = ekTX. 

Here, ej, eh, E RN+M are the j- th and k-th unit vec- 
tors associated with computing the transfer imped- 
ance z j k  from the j-th branch to the k-th node, and 

Below we will use the more general notation 

A $  = x + b u  
y = cdc .  T (4) 

where in our case A = - 7 E - l t  E Rnxn, b = 
-R-'ej ,  c = ek and n = N + M. 

From (4), the transfer impedance is given by 

where s is the Laplace transform variable. 
A reduced-order model for (4) is the SISO system 

(6) A,  3".! = z , +  bgu 
Y = C q Z ,  

T 

where x p ,  b,, c, E IR,, A, E and q is presum- 
ably much smaller than n. The model-order reduc- 
tion problem is then finding the smallest A,, b, and 

c, such that 

.., 
Zjk(S) = - = -cqT ( I  - sA,)-l b, (7) 4.1 

approximates zjk = ~ with sufficient accuracy. % 
2.2 Pad6 Approximations 

The reason for the popularity of Pad6 approximates 
in circuit simulation is that it provides a systematic 
method for enforcing successively more accurate rep- 
resentations of the approach to steady-state. More for- 
mally, if the transfer impedance Zjk (5) is expanded 
in a McLaurin series, 

03 

Zjk(S) = -cT ( I -  SA)-' b = - C m k s k .  (8) 
k=O 

where 
mk = cTAkb (9) 

is the k t h  moment of the transfer function, then a 
(diagonal) PadC approximation of qth order is defined 
as the rational function 

whose coefficients are selected to  match the first 2q 
moments of the transfer function ( 5 ) .  

Low order Padk approximates can be computed us- 
ing direct evaluation of the moments, followed by a 
moment-matching procedure [9, 21. In order to accu- 
rately compute higher order Pad6 approximates, it is 
necessary to use successive bi-orthogonalization com- 
bined with lookahead, as in the recent nonsymmetric 
Lanczos algorithms [lo, 111. Although nonsymmetric 
Lanczos methods plus lookahead can be used to  gener- 
ate PadC approximates of arbitrarily high order, there 
is no guarantee that a given approximate will be stci- 
ble. It is therefore essential to postprocess the PadC 
approximate before using it in a circuit simulation pro- 
gram. 

2.3 Arnoldi-based Model Order Reduc- 
tion 

Pad6 approximates are in one sense optimal: they 
match as many moments as there are free coefficients 
in the reduced-order transfer function. It is possible 
to trade some of this optimality to gain guaranteed 
stability, at least for the case of RLC circuits with 
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positive elements, using a model-order reduction algo- 
rithm based on the Arnoldi process. The Arnoldi ap- 
proach is similar to Lanczos-style algorithms in that it 
creates an orthonormal basis for the Krylov subspace 
Kk(A,b) = span{b,Ab,A2b,...,Ak-1b}. And just 
like the Lanczos process, the Arnoldi algorithm is a 
better conditioned process than direct evaluation of 
the moments because it generates an orthogonal set 
of vectors which span Akb, k = 0 , .  . . , 2q - 1. 

After q steps, the Arnoldi algorithm returns a set 
of Q orthonormal vectors, as the columns of the matrix 
V, E RnXq, and a Q x p upper Hessenberg (tridiagonal 
plug upper triangular) matrix H, whose entries are 
the scalars hi,j generated by the Arnoldi algorithm. 
These two matrices satisfy the following relationship: 

A V, = V, Hq + hq+i,, vq+i e: (11) 

where e, is the qth unit vector in Rq. From ( l l ) ,  it can 
easily be seen that after q steps of an Arnoldi process, 
for k < q,  

(12) 

With this relation, the moments (9) can be related to 

Ak b = llb112 Ak V, el = llbll2 V, H i  el. 

Hq by 

t n k  = cT Ak b = llbllz cT V, H i  el 

c: A: bg 

(13) 
-v- 

and so, by analogy with (9), the qth order Arnoldi- 
based approximation to Zij can be written as 

corresponding to  the state-space realization A, = H, , 
b, = el, and c, = Ilbll2 T c. 

3 Guaranteed Stability Theorems 

In this section we use a matrix congruence argu- 
ment similar to  that in [8],  where it was applied to RC 
circuits, to yield a result which guarantees the stabil- 
ity of the Arnoldi-generated reduced-order models for 
RLC circuits. The stability result given below requires 
that the Arnoldi algorithm be applied to a coordinate- 
transformed version of (1) using the square roots of 
the L and C matrices. In the next section we will 
show that the coordinate-transformation can be eE- 
ciently "folded" into the Arnoldi algorithm and that 
no matrix square-roots need be computed. We first 
give some basic lemmas, then prove the main theorem 
in a general setting, and finally we show that the the- 
orem applies to  systems generated from RLC circuits. 

3.1 Definitions and Basic Lemmas. 

Throughout this section it is assumed that A E 
RnXn and that the Arnoldi process has been used to 
construct an Hessenberg matrix H ,  E RQxq such that 

= H,, (15) 

where the matrix V, E Rnxq has q orthonormal 
columns. 

We will use the following definitions: 

Definition 1 T h e  real m a t r i x  A is said t o  be negative 
semidef ini te  i f  

xTAx 5 0 

for a n y  non-zero vector  x .  

Note that our definition does not make the typical 
assumption [12] that A is symmetric. 

Definition 2 T h e  real m a t r i x  A i s  said t o  be 
(strictly) stable i f  all i t s  eigenvalues have (negative) 
nonposit ive real parts.  

Since we have not assumed symmetry in Definition 1, 
the next lemma is not entirely obvious. 

Lemma 3 If t he  real m a t r i x  A is negative semidefi-  
n i l e  t h e n  A is stable. Moreover,  i f  B is a n y  s y m m e t r i c  
ma t r i x ,  t h e n  BAB i s  negative semidefinite.  Final ly ,  
if the  real ma t r i x  A is nonsingular negative semidefi-  
n i t e  t h e n  so is its inverse  A-'. 

For a proof of the above lemma, see [13]. 

3.2 Main Result 

Using the above definitions and lemmas, 

Theorem 4 If t h e  real m a t r i x  A i s  negative semi -  
definite t h e n  the  m a t r i x  H ,  generated by  t h e  Arno ld i  
process is stable. 

Proof.  Let x be an arbitrary non-zero vector in Rq. 
. 

Then we have 

x T H q x  = aTV:AV,a = ( 4 ~ ) ~  A(V,a) 5 0, 

where the first equality results from the definition 
of H ,  (see Equation 15) and the inequality results 
from the fact that A is assumed negative semidefi- 
nite. Lemma 3 allows us to conclude that since H ,  is 

0 negative semidefinite, it is stable. 
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Given the result in Theorem (4), we can insure that 
the Arnoldi algorithm will produce a stable reduced- 
order model if the associated system matrix A is neg- 
ative semidefinite. Although the matrices C and 7;t, 
generated by modified nodal analysis of an RLC cir- 
cuit with positive elements, are in general positive 
semidefinite, the matrix A = -7Z-'C is not necessar- 
ily negative semidefinite. It is well known, however, 
that the property of negative or positive definiteness 
of a matrix depends on the basis chosen for the state 
space R". A natural question then is whether there is 
a change of coordinates in the state space such that 
the resulting system matrix is negative definite. 

The answer to the above question is indeed affirma- 
tive. Consider the change of variable 

(16) 
I 5 = L a x  

where Ci is the unique symmetric, positive definite 
square root of the symmetric, positive definite matrix 
C. From this it follows that (2) can be written as 

- (LiR-lL') f =  5 - C*7Z-'eju (17) 

and that the output equation becomes 

The modified system matrix is now given by 

;i = -CiR-1Ci (19) 

while the input and output vectors are given by 

6 = -L ib  = -Liz-' ej ET- - c  C a = e k C  - &  2 .  

As can be easily verified, moments are invariant under 
a change of coordinates in the state space. Therefore, 
a reduced order model that matches the moments of 
(19) and (20) will also match the moments of the orig- 
inal system. 

The coordinate change leads us to the main circuit- 
specific result. 

Theorem 5 If the matriz -C*R-' t f  is gener- 
ated from modified nodal analysis of an RLG circuit 
with positive elements, then the Hq generated b y  the 
Arnoldi process applied t o  

(20) 

and & is stable. 

Proof. As a consequence of the result of Theorem 
4, it is only necessary to show that -CfR-lCL a is 
negative semidefinite. To prove this result, we begin 

'Fkom now on, we assume that both 'R and L are 
nonsingular. 

by demonstrating that -7Z is negative semidefinite. 
Using RR's definition in (3), 

Carrying out the matrix multiplication reveals 

- aT7Za = - v ~ G u  5 0 (22) 

because the G matrix is positive definite, or more in- 
tuitively, the power dissipated by a network of positive 
resistors is always positive. 

Combining (22) with Lemma 3 implies that -7Z-' 
is negative semidefinite. It then also follows from 
Lemma 3 that -Ci7Z-'CL a is negative semidefinite, 
proving the theorem. 0 

Theorem 5 holds only for a reduced-order matrix 
Hq obtained using the Arnoldi procedure. We will 
show in Section 5 that the Lanczos algorithm can in- 
deed produce an unstable reduced-order model even 
for a circuit which generates a symmetric negative def- 
inite matrix. 

4 Coordinate-Transformed Arnoldi 
Algorithm 

In order to obtain the stable transfer function cor- 
responding to the system in (19) and (20)) the Arnoldi 
algorithm must be applied to the matrix -Li?Z-'Ci 
and the input vector -C*R-'ej .  This might lead to 
the belief that the computation of Ci ,  potentially a 
costly operation, is needed. Such computation can 
be altogether avoided by using a modified Arnoldi al- 
gorithm which generates the Hq associated with the 
transformed system matrix and input vector, but does 
not require explicit computation of Ca. 

This modified Arnoldi algorithm uses a "hiding the 
square-root" trick commonly used when precondition- 
ing Conjugate-Gradient schemes [14]. The key idea is 
that most of the operations involve inner products of 
the form 

I 

(cfu>T Ci, (23) 

If C is symmetric, which is the case for RLC cir- 
cuits, then (23) can be rewritten as uTCy, which no 
longer requires the square root. The presence of the 
matrix C can be construed as endowing Iw" with an 
induced dot product, ( z , y ) ~  = yTt;c ,  thus lead- 
ing to what we term a modified C-orthogonal ver- 
sion of the Arnoldi Algorithm. It can be shown [13] 
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that the state-space representation and the transfer- 
function of the reduced-order model can be entirely 
determined from the outputs of this modified t- 
orthogonal Arnoldi algorithm on the Krylov subspace 
K , ( - ' R - l t ,  - 'R-lb) ,  whose matrix and input vector 
correspond to those of the original system in Eqn. (2). 
Furthermore, the algorithm can be adapted to have as 
inputs the matrices C and 'R, thus avoiding explicit 
computation of 72-l [13]. This algorithm is shown as 
Algorithm 1 below, where the vector r is used as an 
arbitrary input vector. For instance in (2), we have 
r = e j .  

Algorithm 1 (Modified t-orthogonal Arnoldi) 

arnold i ( input  t, 'R, r ,  q ;  output 
v,, V q + l r  Hq, h,+l, ,)  

I n i t i a l i z e :  
{ 

Solve : RUO = -r 
zo = Cuo 
ho,o = 
r1= ro/ho,o 
U 1  = uo/ho,o 

for ( j = l ;  j < = q ;  j + + >  { 
Solve 'Rw = -zj 

for ( i  = 1 ;  i <= j 

I 
U ,  = [ U l . .  . U q ]  

H ,  = (ha, j ) ,  i , j  = l , . . * , q  

1 ;  i + + >  { 

In Algorithm 1, it is only necessary to be able to 
multiply C by a vector, and then solve a system with 
the matrix R. For general problems this implies that 
the 72 must be factored, typically using sparse matrix 
techniques. For interconnect problems with a near- 
tree like structure, faster algorithms have been pre- 
sented [15]. 

The computational cost of Algorithm 1 is that of 
executing one sparse LU factorization for 'R, q + 1 

matrix-vector products for computing the rj vectors, 
and q + 1 back substitutions for computing U,-, and 
the w vectors. It has therefore about the same com- 
putational cost as PVL, one back substitution being 
roughly equivalent to one matrix-vector product. 

Finally, note that H,  has a special structure if both 
the C and 72 matrices are symmetric. This would be 
the case for either RL or RC circuits, but not generally 
for RLC circuits. In this symmetric case, the output 
matrix H ,  of the modified t-orthogonal Arnoldi algo- 
rithm is tridiagonal with negative coefficients on the 
diagonal and positive coefficients on the subdiagonals. 
In addition, the back orthogonalization can be trun- 
cated to only two steps. 

5 Experimental Results 

In this section we present several examples. A sim- 
ple RC circuit is examined to show that the gener- 
ated Pad6 approximate is unstable but the coordinate- 
transformed Arnoldi algorithm produces a stable 
reduced-order model. Then, results are presented 
comparing the accuracy of the model-order reduction 
methods for the RLC circuit of a low-noise amplifier. 
Finally, results are shown of a lumped-equivalent cir- 
cuit for a three dimensional electromagnetic problem 
modeled via PEEC. 

5.1 Simple RC Example 
Consider the RC circuit in Fig. 1. Assuming all the 

capacitors are one Farad, appropriately choosing the 
resistors, and using nodal analysis, the system matrix 
for model-order reduction is 

The matrix - R is symmetric and negative definite. 
However, the 3'd order Pad6 approximate computed 
using the input vector r = [l r T~ r3JT and 
the output vector c = -[0 - 1 - r - r2IT is 
unstable. This is shown in Table 1, which displays 
the poles obtained from the Pad6 approximate (com- 
puted using the PVL algorithm) and the Arnoldi al- 
gorithms (Here r = 0.4907783849587564). As is also 
clear from the table, the Arnoldi-based model is sta- 
ble, which is guaranteed by Theorem 5. Furthermore, 
the Arnoldi model is also quite accurate. In fairness to 
the Pad6 approach using Lanczos, it is always possi- 
ble to increase the order of the approximate and then 
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R1 R2 R3 R4 

Figure 1: RC-circuit that shows that the Lanczos al- 
gorithm can produce an unstable model even if the 
system is described by a symmetric positive definite 
matrix. 

Pad6 poles [ Arnoldi poles I Exact poles I 

-2.6055111711 

Table 1: Comparison of poles obtained from Pad6 and 
Arnoldi reduced-order models of 3'd order to the exact 
poles of the system resulting from the circuit in Fig 1. 

postprocess the reduced-order model to eliminate the 
unstable modes. 

5.2 Low-Noise AmpIifier Example 
This example illustrates the relative accuracies of 

the Pad6 and the coordinate-transformed Arnoldi al- 
gorithms. It also gives results for the block general- 
ization of the Arnoldi algorithm, though its detailed 
description will be done in a forthcoming publication. 
The circuit used for this example is a low-noise am- 
plifier designed for radio-frequency applications. The 
circuit and its extracted netlist were introduced in 1161, 
and we applied our algorithms to the matrices that de- 
scribe the resulting linear circuit. The amplifier is a 
two-port network and is therefore modeled as a two- 
inputltwo-output system. 

The 2 x 2 matrix transfer-function that fully char- 
acterises the circuit was approximated using both the 
Padd-via-Lancsos algorithm, the Arnoldi algorithm 
and the block Arnoldi algorithm. Figures 2 plots the 
magnitude of the amplifier gain. As is clear from the 
frequency response plots, the Arnoldi and Pad6 ap- 
proximations are of similar accuracy. 

5.3 PEEC Example 
The following example was introduced in [7]. The 

network is the lumped-element equivalent circuit for 
a three-dimensional problem modeled via PEEC. The 
circuit consists of 2100 capacitors, 172 inductors and 
6990 inductive couplings, resulting in a 304 x 304 dense 

Lav-misa AmpYiigah 

*l 

Y 
Figure 2: Low-noise amplifier voltage gain approxi- 
mations. Shown in the figure are the following ap- 
proximants: 40th order Pad&, 45th order Arnoldi, 30th 
and 40th order block Arnoldi. The 40th order block 
Arnoldi results are indistinguishable from the exact 
gain. 

MNA matrix. In [7] it was shown that a 60* order 
approximation computed with PVL was able to re- 
produce the exact transfer function of the equivalent 
circuit, However, it was also reported, that some of 
the poles obtained with the PVL algorithm had pos- 
itive real parts, albeit small. If the approximation is 
intended to be used within a circuit simulator, post- 
processing is required to eliminate such poles, which 
can be done if their residues are very small. The ap- 
proximation obtained with the modified L-orthogonal 
Arnoldi algorithm, shown for comparison in Figure 3, 
can be seen to be of comparable accuracy, and is guar- 
anteed stable. In fact the converged poles in this ap- 
proximation all have nonpositive real parts. I t  can 
therefore be used in a circuit simulator unmodified. 

6 Conclusions 

In this paper we presented a solution of the stability 
problem of reduced-order models within the paradigm 
of model-order reduction by moment matching. Our 
solution is a two-step process, including a state-space 
transformation step and an Arnoldi iteration step ap- 
plied to the transformed state-space matrix and input 
vector. Our solution, which provably guarantees the 
stability of reduced-order model, is general in that it 
applies to RLC circuits and computationally elegant 
in that the two steps can be seamlessly combined in 
one single algorithm that does not require the explicit 
computation of the state-space transformation. In the 
special cases of RC or RL problems, the coordinate- 
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P 
5 v 
3 

Frequency (W 

Figure 3: Circuit for 3-D problem modeled via PEECi 
Shown in the figure are the exact solution, and the 
60th order PVL and Modified Arnoldi approximations. 
Both are able to reproduce the transfer function with 
high accuracy. 

transformed Arnoldi algorithm produces a symmetric 
tridiagonal reduced-order system matrix. We have ex- 
hibited a small example which shows that simple RC 
circuits can lead to Pad6 approximates that are unsta- 
ble but for which the coordinate-transformed Arnoldi 
algorithm is stable. The numerical examples that we 
have presented include a low-noise amplifier and a 
large RLC PEEC model, both of which could be mod- 
eled with reduced-order models that have the merit of 
being not only accurate but also stable at any reduc- 
tion order. 

The authors would like to thank Eli Chiprout, Pe- 
ter Feldmann, Roland Freund, Eric Grimme, Chandu 
Visweswaraiah, and Andrew Yang for many valuable 
discussions. 
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