A Timing Graph Based Approach to Mode Merging

Subramanyam Sripada
Synopsys Inc.
ssubram@synopsys.com

ABSTRACT

With shrinking technologies and increasing design complex-
ities, it is common to have a large number of modes (func-
tional, scan, test and so on) and corners (PVT device and
interconnect). This leads to an explosion in the number
of scenarios (#modes X #corners) that need to be val-
idated for timing. While multiple tactics are required to
handle this problem, one essential way to address this is by
reducing the number of modes by merging individual modes
into superset modes. However, with the overriding neces-
sity to maintain sign-off accuracy, mode merging with high
merge-factor is very complex. In this paper, we propose
a novel automated timing graph based approach to mode
merging that is designed to meet these requirements. By
construction, there is an inbuilt validation that the merged
constraints correctly model the intent of original constraints.
This technology is tested on large industrial designs and the
results are provided.

1. INTRODUCTION

Modern designs often accommodate multiple functional
blocks with the ability to selectively configure their behav-
ior. For example, a chip may be designed to have a low
power mode that might disable certain functionality to con-
serve power. In addition to these functional modes, it is a
common practice to have several test modes and scan modes.
All these modes are typically represented as different tim-
ing modes captured by their individual sets of timing con-
straints. Having separate constraints for each of these modes
comes with several advantages like parallel development, op-
portunity to reuse and fine grained control over the sign-off
process. However, having a large number of modes would
mean either more time or hardware to perform timing anal-
ysis. With an exploded number of timing scenarios, neither
of these is acceptable.

The performance of static timing analysis can be improved
by using approaches like multi-corner multi-mode analysis
[1], analyzing only dominant corners [2] and performing hi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

DAC’15, June 07 - 11, 2015, San Francisco, CA, USA

Copyright 2015 ACM 978-1-4503-3520-1/15/06 ...$15.00
http://dx.doi.org/10.1145/2744769.2744787.

Murthy Palla
Synopsys India Pvt. Ltd.
murthyp@synopsys.com

erarchical timing analysis [3]. While these methods have
their own merits and de-merits, they can all benefit from a
reduced number of modes achieved by mode merging.

A lot of design teams address the mode merging problem
by manually merging the modes to create superset modes.
However, this process is very tedious and error-prone. In ad-
dition, it is extremely difficult to debug wrong results due to
erroneous constraints. An elegant solution to this problem
is an automated process that ensures that the timing con-
straints of the merged modes are equivalent to the timing
constraints of the individual modes. This paper proposes a
timing graph based approach to automatically reduce modes
into superset modes while assuring sign-off accuracy with the
merged modes.

Despite being a problem of critical importance, mode merg-
ing is not well discussed in literature. To the best of our
knowledge, this is the first paper divulging a detailed ap-
proach to mode merging. An approach to reduce the timing
scenarios in implementation/ECO and sign-off phases is dis-
cussed in [4]. However, this approach is not comprehensive
and cannot handle all the complex constraints and circuitry
possible in today’s designs.

The rest of this paper is organized as follows. section 2
provides the background required to introduce our solution
to this problem. Our methodology to automatic merging of
modes based on timing graph is proposed in section 3. The
results of applying our methodology on multi-million gate
industrial designs are provided in section 4. Finally, section
5 provides concluding remarks.

2. BACKGROUND

In this section, we will set the background required for
the proposal of our mode merging approach by defining a
timing relation and giving examples on timing relationship
propagation and comparison. For definitions of basic termi-
nologies such as timing graph, node, timing arc, startpoint,
endpoint, tag etc., and a detailed explanation on tag prop-
agation, please refer to [5].

Timing Relationship for a set of paths is defined by its

launch clock, capture clock, timing endpoint/startpoint, rise/fall

type, min/max path type and the constraint state (disabled,
false path, multicycle path etc.) of the paths. Any arbitrary
timing constraint in SDC [6] can be configured to have a
constraint state. This is possible because the effect of any
timing constraints can be captured at one or more endpoints
in the form of some “state” which indicates the impact on
the endpoint such as disabled, false path, multicycle path,
constraint case, etc.

Consider the circuit in Figure 1. A minimal set of tim-
ing constraints are shown in Constraint Set 1. The first
constraint create_clock, specifies that clock clkA which has
a period of 10 units defined on port clkl can clock all the
six registers in the example. The second constraint speci-
fies that all timing paths going through the output pin Z of
the inverter invl should require two clock cycles to propa-
gate the data. There are two paths going through invl/Z:
(i) rA/Q — invl/Z — rX/D and (ii) TA/Q — invl/Z —
andl/Z — inv2/Z — rY/D. D, @ and CP are the data
input pin, data output pin and clock input pin of the reg-
isters, respectively. The third constraint specifies that all
timing paths going through the output pin Z of the AND
gate andl need to be considered false. There are two paths
that go through andl/Z: (ii) rA/Q — invl/Z — andl/Z —
mw2/Z — rY/D and (iii) rB/Q — andl/Z — inv2/Z —
rY/D. Note that path (ii) has both the false-path and the
multicycle-path constraints applied to it. Tools generally
define a set of precedence rules for such overlaps. In this
scenario, false-path overrides the multicycle-path.

in1-] —[>= - outt
rA inv1 rX
> —p
mux1
clk1 in2 l'>‘- I-out2
clk2 B and1 inv2 rY
> P
sell
12 in3 - I-out3
sel or1 rC and2 rZ
> inv3 —>

Figure 1: Example circuit

create_clock -name clk A -period 10 [get_ports clk1]
setmulticycle_path 2 -through [get_pins invl/Z]
set_false_path -through [andl/Z]

Constraint Set 1: Constraints for demonstration timing rela-
tionship propagation

Start End Launch Capture State
point point clock clock
* rX/D clkA clkA MCP(2)
* rY /D clkA clkA FP
* rZ/D clkA clkA -

Table 1: Timing relationships

If we bundle all paths reaching every endpoint, we get the
timing relationships in Table 1. The first, second and third
rows show the timing relationships for all the paths that end
at rX/D, rY/D and rZ/D, respectively. This example also
shows how constraints with different precedence can be mod-
eled with this approach. Even though the multicycle-path
constraint (MCP) affects some of the paths that reach rY/D,
since the false-path constraint (FP) overrides the MCP, it
doesn’t figure in the timing relationships table for the end-
point rY/D. Constraint Set 1 does not have any constraints
that affect rZ/D. So, no timing relation exists at this end-
point.

The timing relationships representation removes any de-
pendency on how a timing constraint is specified and only

models how it finally gets applied and affects the timing
paths in the design.
Two sets of constraints are equivalent if and only if:
e Every timing relationship of the design obtained by
applying the first constraint set is present by applying
the second constraint set AND

e Every timing relationship of the design obtained by ap-
plying the second constraint set is present by applying
the first constraint set

This is a powerful definition as it compares the effect of
timing constraints on the design without comparing the con-
straints themselves. For example, if a multicycle path con-
straint described in previous section is rewritten so that it is
specified on timing startpoints instead of timing endpoints,
the effect of the constraints on the design might be the same
although a simple comparison of constraints cannot deter-
mine the two constraint sets to be equivalent.

3. PROPOSED METHODOLOGY

The proposed methodology to mode merging is split into
two steps. The first step, which we call preliminary mode
merging, is designed to generate super set of Timing Re-
lationships in the merged mode. With preliminary mode
merging, we ensure that if a path is timed in any individual
mode, the path is timed in its corresponding merged mode.
The second step called mode refinement refines the Timing
Relationships in the merged mode to ensure that the merged
mode does not time any path unless it is timed by at least
one individual mode. Because of this, there is an in-built,
correct by construction validation step that ensures merged
mode accurately represents the timing of individual modes.

To identify mergeable modes, we perform a mock run
of preliminary mode merging through which we figure out
modes that cannot be merged. For example, if two modes
have clocks, which if merged will result in blocking of one
or other clock, we mark them as non-mergeable. Similarly,
if the constraints of two modes have incompatible values,
these modes are also marked non-mergeable. To identify the
sets of individual modes that can be merged into super-set
modes, we create a mergeability graph as shown in Figure 2.
The vertices of the mergeability graph represent the modes
of the problem and an edge is added between two modes if
they are mergeable. The maximal sets of mergeable indi-
vidual modes are identified by finding cliques of this graph.
This is done by using greedy algorithm as the number of
modes is small. In Figure 2, the mergeable modes are high-
lighted by cliques M1, M2 and M3.

Figure 2: Mergeability graph

Due to space restrictions, we are unable to provide full
details of this mergeability determination process. We only
discuss the problem of reducing N mergeable modes into 1
superset mode.

We use the example circuit in Figure 1 to explain the
proposed methodology. Wherever required in the rest of
this paper, we define a new set of constraints for this circuit
to demonstrate the concepts.

3.1 Preliminary mode merging

Through preliminary mode merging, we create prelimi-
nary versions of the superset or merged modes in the below
steps.

3.1.1 Creating union of clocks

To create the union of clocks, we iterate through all the
clocks of each of the individual modes and add each non-
duplicate clock to the merged mode. A clock is treated as
duplicate if there already exists a clock in the merged mode
that has the same source(s) and waveform. During this pro-
cess, we create a two way map between the individual mode
clocks and the merged mode clocks. These maps are used to
identify the matching between other clock based individual
and merged mode constraints.

Consider the constrains of Constraint Set 2. Mode A has
two clocks and mode B has three clocks. A comparison of
the clock waveforms and sources indicates that clock clkB of
mode A and clock clkC of mode B are identical, and all the
other clocks are unique. Hence, the superset mode A + B
is created with four clocks that are the union of the clocks
from modes A and B. If the modes have conflicting clock
names, we make the merged mode clock names unique by
adding unique suffixes. For example, clock clkB of mode B
is renamed as clock clkB_1 in the superset mode A + B.

Mode A:

CLK1: create_clock -name clkA -period 10 -waveform {0 8} [get_port clk1]
CLK2: create_clock -name clkB -period 20 [get_port clk2]

CSTRI: set_clock latency 3 [get_clock clkA]

CSTR2: set_clock_latency -rise -min 1.1 [get_clock clk B]

CSTR3: set_clock_latency -rise -mazx 1.3 [get_clock clk B]

Mode B:

CLK1: create_clock -name clk A -period 10

CLK2: create_clock -name clk B -period 16 -waveform {0 8} [get-port clk1]
CLK3: create_clock -name clkC -period 20 -waveform {0 10} [get_port clk2]
CSTRI1: set_clock latency 1.5 [get_clock clk A]

CSTR2: set_clock_latency 2 [get_clock clkB]

CSTRS3: set_clocklatency -rise -min 1.11 [get_clock clkC]

CSTRA4: set_clock_latency -rise -max 1.31 [get_clock clkC]

Mode A 4 B:

CLK1: create_clock -name clkA -period 10 -waveform {0 8} [get_port clk1]
CLK2: create_clock -name clkB -period 20 -waveform {0 10} [get_port clk2]
CLK3: create_clock -name clkA_1 -period 10

CLK4: create_clock -name clk B_1 -period 16 [get_port clk1] -add

CSTR1: set_clock_latency 3 [get_clock clkA]

CSTR2: set_clock_latency -rise -min 1.1 [get_clock clk B]

CSTR3: set_clock_latency -rise -mazx 1.31 [get_clock clk B]

CSTRA4: set_clocklatency 1.5 [get_clock clk A_1]

CSTRS: set_clock_latency 2 [get_clock clkB_1]

Constraint Set 2: Constraints for demonstration of preliminary
mode merging of clocks and clock based constraints

3.1.2 Merging clock based constraints

Once the union of all clocks is created, the next step
is to add clock based constraints like set_clock_transition,
set_clock_latency, set_clock_uncertainty, set_propagated_clock
etc., to the merged mode. For this purpose, we check whether
the clock constraints across different modes are common and
are within a certain tolerance limit. In case the constraint
values are within the tolerance limit, but not identical, we
pick the minimum of min values and maximum of max val-
ues to be added to the merged mode.

Consider the constraints of the Constraint Set 2. The
clock latency constraints CSTR2 of mode A and CSTR3 of
mode B correspond the clock B of the merged mode A + B
and have a slight deviation in their values. As these are min
constraints, we add constraint CSTR2 to mode A + B with
a value that is the minimum of values from modes A and B.

3.1.3 Create union of external delay constraints

To merge the set_input_delay and set_output_delay con-
straints, we iterate through these constraints of each individ-
ual mode and add all the unique constraints to the merged
mode.

3.1.4 Creating intersection of case_analysis constraints

To merge the case_analysis constraints, we iterate through
these constraints of each individual mode and check if they
are present in all the individual modes with non-conflicting
values. If so, we add these constraints directly to the merged
mode. If not, we check if it is possible to translate the
case_analysis statement to a false path constraint and then
add it. If this is not possible, we drop the particular case
statements from the merged mode. This might temporarily
result in additional valid paths in the preliminary merged
mode. However, in the merged mode refinement process de-
scribed in section 3.2, we add additional false paths to the
merged mode to precisely disable any unwanted paths from
the preliminary merged mode.

3.1.5 Creating intersection of disable_timing constraints

To merge the disable_timing constraints, we iterate through
these constraints of each individual mode to ensure that they
are present in all the individual modes, and then add them
to the merged mode.

3.1.6 Merging drive and load constraints

Similar to other constraints, to merge the drive and load
constraints (such as set_input_transition, set_driving resistance,
set_load etc.) we iterate through the individual modes to
ensure that these constraints are same across all the indi-
vidual modes with all the values within the tolerance limit,
and then add them to the merged mode.

3.1.7 Determining clock exclusivity

With the creation of a union of clocks from all the in-
dividual modes in the merged mode, it is not possible to
directly take the clock exclusivity constraints from the in-
dividual modes. To identify clock exclusivity rules, we first
iterate through all the individual modes and collect pairs of
clocks that can co-exist within at least one individual mode.
We then iterate through all the merged mode clocks and add
clock exclusivity constraints between all the pairs of clocks
that cannot co-exist in at least one individual mode.

3.1.8 Clock Refinement

Clock refinement is done to ensure that the merged mode
does not have any extra clocks propagated through the clock
network than the individual modes. For this purpose, we
perform a breadth first traversal through each node/arc in
the clock network and compare the clocks present in the
merged mode to the clocks on the individual modes that are
propagating through this node/arc. If any clock is found
on a given node/arc in the merged mode, but not on any
of the individual modes, we add a constraint to the merged

mode that stops the propagation of the clock from that point
onwards.

Consider the constraints from Constraint Set 3 written for
the example circuit of Figure 1. It can be observed that the
case statement for the inputs sell and sel2 have conflicting
values between the two individual modes. So, we drop these
case statements from the merged mode while performing
the preliminary mode merging. During the clock network
refinement, we observe that these inputs never change in any
of the individual modes and add disable timing constraints
CSTR1 and CSTR2 of the merged mode A + B. Further,
due to the case statements, the ‘select’ input of muxl is
always fixed at 1. So, the merged mode clock clkA does not
propagate through muz1. To take this into account, we add
constraint CSTR3 to the merged mode A + B.

Mode A:

CLK1: create_clock -period 10 -name clkA [get_port clk1]
CLK2: create_clock -period 20 -name clkB [get_port clk2]
CSTRI1: set_case_analysis 0 sell

CSTR2: set_case_analysis 1 sel2

Mode B:

CLK1: create_clock -period 10 -name clkA [get_port clk1]
CLK2: create_clock -period 20 -name clkB [get_port clk2]
CSTR1: set_case_analysis 1 sell

CSTR2: set_case_analysis 0 sel2

Mode A 4+ B

CLK1: create_clock -name clkA -period 10 -add [get_ports clk1]
CLK2: create_clock -name clkB -period 20 -add [get_ports clk2]
CSTR1: set_disable_timing [get_ports sell]

CSTR2: set_disable_timing [get_ports sel2]

CSTRS3: set_clock_sense -stop_propagation -clock [get_clocks clkA] [get_pins muz1/Z]

Constraint Set 3: Constraints for demonstration of clock refine-
ment and inference of disable_timing constraints

3.1.9 Creating intersection of exceptions

To merge exceptions like set_false_path, set_multicycle_path,

set_min_delay and set_max_delay, we iterate through the ex-
ceptions of all the individual modes and if the exceptions
are found in all the modes, then we add them directly to
the merged mode. If any exception is found only in a few
modes, then we try to uniquify the exception by making it
unique to just the modes in which it is present by the way
of restricting the exception to a few clocks as explained in
section 3.1.10.

The false path exceptions that cannot be uniquified are
dropped from the merged mode. This might temporarily
result in additional valid paths in the preliminary merged
mode. However, in the merged mode refinement process de-
scribed in section 3.2, we add additional false paths to the
merged mode to precisely disable any unwanted paths from
the preliminary merged mode.

3.1.10 Exception uniquification

Most of the times, it is possible to write the same ex-
ception in different forms. In cases where exceptions are
present only in some, but not all the modes being merged,
we may not be able to add the exceptions “as is” to the
merged mode because the exceptions can potentially dis-
able any paths that are otherwise valid in some individual
modes. To overcome this, we use a technique called ezcep-
tion uniquification where we add additional information like
from or to clocks to the exception that makes it unique to
the particular mode in which it is present.

We demonstrate exception uniquification with an example
using the circuit in Figure 1. Consider the constraints of the

Constraint Set 4. The multicycle path constraint MCP1 of
mode A does not have an equivalent constraint in mode B. If
it is added “as is” to the merged mode, it will set multicycle
path also on the paths from rA/CP that are clocked by
clock clkB of the merged mode, which does not even exist
in mode A.

Mode A:

CLK1: create_clock -name clk A

CSTR1: set_case_analysis 0 [muxzl/S]

MCP1: setmulticycle_path 2 -from [rA/CP]

Mode B:

CLK1: create_clock -name clkB

CSTR1: set_case_analysis 1 [muwxl/S]

Mode A’:

CLK1: create_clock -name clk A

CSTRI1: set_case_analysis 0 [muz1/S]

MCP1: setmulticycle_path 2 -from [get_clocks clk A] -through [rA/C P]
Mode A’ + B:

CLK1: create_clock -name clk A

CSTR1: create_clock -name clk B

MCP1: set_multicycle_path 2 -from [get_clocks clk A] -through [rA/C P]

Constraint Set 4: Constraints for demonstration of exception
uniquification

By modifying MCP1 of mode A to MCP1 of mode A’,
which does not change the behavior of the constraint, we
make mode A’ mergeable with mode B as the modified
MCP1 of A’ does not affect any valid paths of mode B.
So, we can create the merged mode A’ + B as listed in the
Constraint Set 4.

3.2 Refinement of preliminary merged mode

The preliminary merged mode can potentially have ex-
tra paths that are not valid in any of the individual modes
that can skew the results when directly used. To make the
merged mode exactly identical in behavior to that of the
individual modes, we employ the timing graph based equiv-
alency checking to perform data refinement explained in this
section.

Data refinement is done in two steps. In the first step, we
traverse through the data network of the circuit to ensure
that the clocks at any node/arc in the preliminary merged
mode are present on that node/arc in at least one individual
mode. If any extra clock is found, we add a constraint to
the merged mode to stop the propagation of that clock from
that particular node/arc onwards.

Consider the constraints from Constraint Set 5 written
for the example circuit of Figure 1. The merged mode clock
clkB exists only in mode B where the pin rB/Q is set to
constant 0. Because of this, the merged mode clock clkB
does not propagate beyond the pins rB/Q and andl/Z. To
this effect, we add constraint CSTR6 to the merged mode
A+ B.

As the second step of data refinement we perform 3-pass
comparison of timing relationships at startpoints and/or
endpoints of the circuit to identify any extra timing paths
and disable them by adding appropriate constraints to the
merged mode. The 3-pass algorithm described in this section
forms the basis for the relation comparison used to refine the
data paths of the preliminary merged mode. It is used to
check the equivalency of two different sets of constraints by
the way of propagating their constraints through the timing
graph and comparing the timing relations at the endpoints
and/or startpoints.

To compare individual mode constraints and the prelimi-
nary merged mode constraints comprehensively, we need to

Mode A:

CLK1: create_clock -name CIkA -period 2 [get_port clk1]

CSTRI1: setinput_delay 2.0 -clock ClkA [get_port in1]

CSTR2: setoutput_delay 2.0 -clock ClkA [get_port out1]

Mode B:

CLK1: create_clock -name CIkB -period 1 [get_port clk1]

CSTR1: set_input_delay 2.0 -clock CIkB [get_port inl1]

CSTR2: setoutput_delay 2.0 -clock CIkB [get_ports outl]

CSTRS3: setcase_analysis 0 TB/Q

Mode A + B

CLK1: create_clock -name ClkA -period 2 -add [get_ports clk1]

CLK2: create_clock -name CIkB -period 1 -waveform -add [get_ports clk1]

CSTRI1: setinput_delay 2 -clock [get_clocks ClkA] [get_ports ini]

CSTR2: set_input_delay 2 -clock [get_clocks CIkB] -add_delay [get_ports inl]

CSTR3: set_output_delay 2 -clock [get_clocks ClkA] [get_ports outl]

CSTR4: set_output_delay 2 -clock [get_clocks ClkB] -add_delay [get_ports outl]

CSTRS5: set_clock_groups -physically_exclusive -name CIkA_1 -group [get_clocks
ClkA] -group [get_clocks ClkB]

CSTR6: set_false_path -from [get_clocks CIkB] -through [get_pins rB/Q and1/Z]

Constraint Set 5: Constraints for demonstration of data refine-
ment by stopping clock propagation

essentially determine timing relationship of every path in
the design with both the sets of constraints and compare
them. Doing this by brute force on each path can be very
expensive. The 3-pass algorithm addresses this problem by
performing comparison on sets of timing paths and refining
the path selection only if necessary.

We use the constraint from Constraint Set 6 written for
the circuit in Figure 1 to demonstrate the 3-pass algorithm.
It can be observed that no false path constraints of modes
A and B are in common. So, it is not possible to add any
false paths to the merged mode at the time of creating the
preliminary merged mode.

Mode A:

CLK1: create_clock -p 10 -name clkA [get_port clk1]

CSTRI1: setfalse_path -to TX/D

CSTR2: set_false_path -to rY/D

CSTR3: set_false_path -through inv3/7Z

Mode B:

CLK1: create_clock -p 10 -name clkA [get_port clk1]

CSTRI1: setfalse_path -from TA/CP

CSTR2: set_false_path -to rZ/D

Preliminary Merged Mode

CLK1: create_clock -name clkA -period 10 -add [get_ports clk1]

Mode A + B

CLK1: create_clock -name clkA -period 10 -add [get_ports clki]

CSTRI1: set_false_path -to [get_pins rX/D]

CSTR2: set_false_path -from [get_pins rA/CP] -to [get_pins rY/D]

CSTRS3: set_false_path -from [get_pins rC/CP] -through [get_pin inv3/A] -to
[get_pins rZ/D]

Constraint Set 6: Constraints for demonstration of data refine-
ment using the 3-pass algorithm

The path selection and refinement are performed in the
following three passes.

Pass 1

In this pass, we determine the timing relationships at all
timing endpoints of the design. These timing relationships
model the timing constraints affecting all the paths that end
at a particular endpoint. This is done on one side by prop-
agating the timing relationships of all the individual modes
and on the other side by propagating the timing relation-
ships of their corresponding merged mode from all start-
points of the circuit to all the endpoints.

Table 2 shows the timing relationships for the Constraint
Set 6 being compared in pass 1. The first column in Table
2 indicates that all the paths ending at »X/D and having
clkA as both launch and capture clock are false in both the

Start End Launch Cap- Individual Merged Passl
point point clock ture mode mode result
clock state state
* rX/D clkA clkA FP v X
* rY/D clkA clkA FP,V FP,V A
* rZ/D clkA clkA FP,V FP,V A

Table 2: Timing relationship comparison table for pass 1 [F'P:
False Path, V: Valid, M: Match, X: Mismatch, A: Ambiguous]

individual modes, but valid in the merged mode indicating
a timing relationship mismatch. To address the mismatch,
we add the constraint CSTR1 to the merged mode A + B
in Constraint Set 6. For the second and third columns rep-
resenting all the paths ending at rY/D and rZ/D, respec-
tively, we can observe that there is an ambiguity due to the
presence of multiple timing relationships at these endpoints.

Ambiguity in pass 1 indicates that the paths ending with
a specific endpoint are not guided by the same set of con-
straints and hence it is required to identify which startpoints
these timing relations are propagating from to gain more
clarity. To perform this, all the endpoints with ambiguity in
timing relationship comparison are forwarded to pass 2 for
a mode detailed analysis.

Pass 2

In pass 2, we compare timing relationships to determine
matches/mismatches for all paths between a start point and
an endpoint. The timing relationships in pass 2 model the
timing constraints affecting all the paths that start at a par-
ticular startpoint and end at a specific endpoint. Pass 2
analysis is done only on selective endpoints that are found
to have an ambiguous timing relationship comparison in pass
1. In pass 2, the timing relations of all the selected endpoints
are back propagated towards the startpoints and the timing
relations that reach the startpoints are compared.

Start End Launch Capture| IndividuplMerged Pass2
point point clock clock mode mode result
state state
rA/CP | rY/D clkA clkA FP \% X
rB/CP | rY/D clkA clkA \% \% M
rC/CP rZ/D clkA clkA FP,V FP,V A

Table 3: Timing relationship comparison table for pass 2 [FP:
False Path, V: Valid, M: Match, X: Mismatch, A: Ambiguous]

Table 3 shows the timing relationships for the sample con-
straints being compared in pass 2. The first column indicates
that all the paths starting at 7A/C'P and ending at rY/D
and having clk A as both launch and capture clock have mis-
match in timing relationship. We add constraint CSTR2 of
mode A+ B in Constraint Set 6 to fix the mismatch. The sec-
ond column indicates that all the paths starting at rB/CP
and ending at rY/D and having clkA as both launch and
capture clock are valid in both the individual and merged
modes. The third column of the table indicates that the
paths starting at C/CP and ending at rZ/D and having
clkA as both launch and capture clock have an ambiguous
timing relationship comparison and hence it cannot be con-
clusively determined whether there is a match or mismatch
at this stage.

Ambiguity in pass 2 indicates that the paths starting at
a specific startpoint and ending at a specific endpoint are
not guided by the same set of constraints and hence it is re-

quired to identify which reconvergence points these timing
relations are propagating through to gain more clarity. To
perform this, all the startpoint-endpoint pairs with ambigu-
ity in timing relationship comparison are forwarded to pass
3 for a mode detailed analysis.

Pass 3

Finally, in pass 3, we identify all the re-convergent points
between the given startpoint-endpoint pairs and compare
timing relationships to determine matches/mismatches at
these points. No ambiguity is expected at this phase as
this is the finest level of comparison that can be made at
path level. For any missing false paths encountered in the
merged mode, we add the required false path constraint to
the merged mode to resolve the mismatch.

Table 4 shows the timing relationships for the sample con-
straints being compared in pass 3. It can be observed that
there is a mismatch in timing relationships for the path from
rC/CP through inv3/A to rZ/D. To address this, we add
the constraint CSTR3 to the merged mode A + B in the
Constraint Set 6.

Start Thro- End Lau- Capt- Indiv. Merged Pass3
point ugh point nch ure mode mode re-
clock clock state state sult
rC/CP| and2/A| rZ/D clk A clkA \4 \4 M
rCc/CP| inv3/A| rzZ/D clkA clkA FP \% X

Table 4: Timing relationship comparison table for pass 3 [FP:
False Path, V: Valid, M: Match, X: Mismatch, A: Ambiguous]

4. RESULTS

The proposed approach has been implemented with a multi-
threaded engine in C++ and tested in an industrial environ-
ment. Although the merged modes can be used in various
design phases such as place & route, we present results on
using our merged modes to perform STA.

Table 5 shows the results on mode reduction and the
mode merging runtime on various industrial designs. Table 6
shows the STA runtime for these designs with the individual
modes versus the merged modes and provides the runtime
improvement and QoR conformity. The mode merging and
STA on all the designs were run on a single machine with 4
cores. The delay calculations in STA were performed using
wire load model approach. The number of modes of these
designs have reduced by an average of 67.5% and with this
reduction a runtime improvement of 62.52% was observed
for performing STA. Note that the mode merging runtime
adds as a one-time overhead, but the significant reduction
in STA runtime overweighs this as it is often required to
perform STA multiple times in a design cycle, for example
in an ECO flow.

The benefit of mode merging is shown here in terms of
runtime reduction. In a parallel environment, this can be
translated into resource saving by the way of reducing the
number of machines required to perform STA.

The quality of results of the merged modes is validated by
comparing the worst slacks on all the endpoints on the de-
signs obtained using the merged modes versus the individual
modes. As shown in Table 6, it is observed that an average
of 99.82% endpoint slacks have a deviation of within 1%
of the capture clock period from the worst individual mode
slacks.

. . of Modes % Mergin
Design | Size Indijjédual Merged | Reductior] Runtgimi
A 0.2 95 16 83.1 6205
B 0.2 3 1 66.6 85
C 0.3 12 1 75.0 890
D 1.4 3 1 66.6 450
E 1.6 5 1 80.0 459
F 2.8 3 2 33.3 1424
Average 67.5

Table 5: Mode reduction and runtime on industrial designs
[Units: Size — Millions of cells, Time — Seconds |

Design Overall STA Runtime % . Conformity
Individual Merged | Reduction

A 5584 875 84.3 99.89
B 339 140 58.7 100.00
C 820 398 51.5 99.91
D 1003 419 58.2 99.18
E 846 329 61.1 99.93
F 2593 1004 61.3 100.00

Average 62.52 99.82

Table 6: Reduction in overall STA runtime and QoR of merged
modes [Units: Time — Seconds; Conformity: % of EndPoints
that have slack deviation within 1% of capture clock period]

5. CONCLUSION

In this paper, we have presented a novel technique to per-
form mode merging using timing relationship comparison on
timing graph. With the behavior comparison we perform be-
tween the individual and merged constraints, we guarantee
that the modes merged with this technique will be of sign-off
accuracy. With an exhaustive validation of our approach on
several industrial designs, we prove that our method is very
practical and can be applied on complex real world designs
to gain significant runtime and resource advantages.

6. REFERENCES

[1] Jing-Jia Nian; Shih-Heng Tsai; Shao-Lun Huang, "A
unified Multi-Corner Multi-Mode static timing analysis
engine,” ASP-DAC, 2010

[2] Onaissi, S.; Taraporevala, F.; Jinfeng Liu; Najm, F., "A
fast approach for static timing analysis covering all
PVT corners,” DAC, 2011

[3] Rajagopal, K.A.; Sivakumar, R.; Arvind, N.V;
Sreeram, C.; Visvanathan, V.; Dhuri, S.; Chander, R.;
Fortner, P.; Sripada, S.; Qiuyang Wu, "A
comprehensive solution for true hierarchical timing and
crosstalk delay signoff,” VLSI Design, 2006.

[4] Subrangshu K. Das; Ajay J. Daga; Aishwarya Singh;
Vikas Sachdeva, "The Automatic Generation of
Merged-Mode Design Constraints”, DAC, 2009 User
Track

[6] Shuo Zhou; Bo Yao; Hongyu Chen; Yi Zhu;
Chung-Kuan Cheng; Hutton, M.; Collins, T.;
Srinivasan, S.; Chou, N.; Suaris, P., "Improving the
efficiency of static timing analysis with false paths,”
ICCAD-2005.

[6] "Using the Synopsys Design Constraints Format”,
Application Note, Version 2.0, 2013, Synopsys Inc.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150415144019
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Left
 7.2000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 25.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 25.2000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 16.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 16.2000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

