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Preface

The Low Power Methodology Manual is the outcome of a decade-long collaboration
between ARM and Synopsys commercially and the two of us personally. In 1997
ARM and Synopsys worked together to develop a synthesizable ARM7 core. Dave
was the ARM lead on the project; Mike’s team executed the Synopsys side of the
project. This led to a similar project on the ARMO.

Shortly after these projects, the two of us embarked on a series of technology demon-
stration projects. We both felt that we needed to use our products as our customers do
in order to understand how to make these products better. So we developed a test chip
that combined ARM and Synopsys IP and took it through to silicon. We did the RTL
design and verification personally, and borrowed resources to do the implementation.
The experience was incredibly illuminating, and we hope it contributed to improving
the IP and tools from both companies.

We quickly realized that low power was one of the key concerns of our customers,
and SoC designers in general. So we followed our initial project with several low
power technology demonstration projects. The final project was the SALT (Synopsys
ARM Low-power Technology demonstrator) project, for which we received working
silicon late last year. These projects explored clock gating, multi-voltage, dynamic
voltage scaling, and power gating. In all these projects we found that there is no sub-
stitute for direct first-hand experience doing low-power IP-based designs. We learned,
in the most concrete way possible, exactly what our customers go through on an SoC
design.

For years we have been talking about writing a book on low power design. With our
experience on the SALT project, our work with customers on low power designs, and
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our participation in developing the UPF low-power standard, we feel that we are
finally in a position to publish our insights and perspectives.

In doing so, we have enlisted the aid of our co-authors. The two of us are primarily
front-end engineers, with a background in system architecture and RTL design.
Kaijian and Rob bring a great depth of technical expertise in the physical and circuit
design aspects of low power. Alan has developed low power flows for the ARM pro-
cessors and did the implementation of SALT. As a result, he brings a unique perspec-
tive on the implementation issues in low power design.

We cannot overstate the contribution of our co-authors. Without their insights and
expertise - as well as the material they contributed directly - this book could not have
been written.

Like all our joint projects, this book was partly a formal joint project of the two com-
panies and partly (perhaps mostly) driven by the personal commitment of the authors,
aided and abetted by many others. We got considerable help from many people for
whom this was not part of their job description. These kind souls took time out of
their busy schedules, including evenings and weekends, to help us at every step of our
journey, from the first joint chip development to the completion of this book. They
helped in the architecture, design and tape out of test chips, the building and debug-
ging of boards, and the review and editing of the final manuscript.

It is impossible to list them all, but we list some of the many who contributed to this
effort: Anwar Awad, John Biggs, Pin-Hung Chen, Sachin Rai, David Howard, and
Sachin Idgunji.

We would also like to thank the staffs of TSMC and UMC for fabricating the technol-
ogy demonstrators and enabling us to derive the results referenced in the worked
examples.

Dave Flynn Mike Keating
Cambridge, UK Palo Alto, CA



CHAPTER 1 ] ntr OdMCﬁOn

1.1 Overview

The design of complex chips has undergone a series of revolutions during the last
twenty years. In the 1980s there was the introduction of language-based design and
synthesis. In the 1990s, there was the adoption of design reuse and IP as a mainstream
design practice. In the last few years, design for low power has started to change
again how designers approach complex SoC designs.

Each of these revolutions has been a response to the challenges posed by evolving
semiconductor technology. The exponential increase in chip density drove the adop-
tion of language-based design and synthesis, providing a dramatic increase in
designer productivity. This approach held Moore’s law at bay for a decade or so, but
in the era of million gate designs, engineers discovered that there was a limit to how
much new RTL could be written for a new chip project. The result was that IP and
design reuse became accepted as the only practical way to design large chips with rel-
atively small design teams. Today every SoC design employs substantial IP in order
to take advantage of the ever increasing density offered by sub-micron technology.

Deep submicron technology, from 130nm on, poses a new set of design problems. We
can now implement tens of millions of gates on a reasonably small die, leading to a
power density and total power dissipation that is at the limits of what packaging, cool-
ing, and other infrastructure can support. As technology has shrunk to 90nm and
below, the leakage current is increasing dramatically, to the point where, in some
65nm designs, leakage current is nearly as large as dynamic current.

These changes are having a significant effect on how chips are designed. The power
density of the highest performance chips has grown to the point where it is no longer
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possible to increase clock speed as technology shrinks. As a result, designers are
designing multi-processor chips instead of chips with a single, ultra-high speed pro-
Cessor.

For battery-powered devices, which comprise one of the fastest growing segments of
the electronics market, the leakage of deep submicron processes is a major problem.
To combat this problem, designers are using aggressive approaches at every step
of the design process, from software to architecture to implementation. These
approaches include power gating, where blocks are powered down when not in use,
and multi-threshold libraries that can trade-off leakage current for speed.

For all applications, the total power consumption of complex SoCs presents a chal-
lenge. To address this challenge, designers are moving from a monolithic approach
for power the chip—where a single supply voltage is used for all the non-IO gates of
the design—to a multiple supply architecture, where different blocks are run at differ-
ent voltages, depending on their individual requirements. And in some cases, design-
ers are using voltage scaling techniques to change the supply voltage (and clock
frequency) to a critical block depending on its workload and hence required perfor-
mance.

This book describes a number of the techniques designers can use to reduce the power
consumption of complex SoC designs. Our approach is practical, rather than theoreti-
cal. We draw heavily upon the experience we have gained in doing a series of technol-
ogy demonstrator chips over the last several years. We believe the techniques we
describe can be used today by chip designers to improve significantly the chips they
design.

1.2 Scope of the Problem

Today some of the most powerful microprocessor chips can dissipate 100-150 Watts,
for an average power density of 50-75 Watts per square centimeter. Local hot spots on
the die can be several times higher than this number.

This power density not only presents packaging and cooling challenges; it also can
pose problems for reliability, since the mean time to failure decreases exponentially
with temperature. In addition, timing degrades with temperature and leakage
increases with temperature.

Historically, the power in the highest performance chips has increased with each new
technology node. But because of the issues posed by the power density, the Interna-
tional Technology Roadmap for Semiconductors (ITRS) predicts that the power for
these chips will reach a maximum of 198 Watts in 2008; after that, power will remain
constant.
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Already, the total power consumption of microprocessor chips presents a significant
problem for server farms. For these server farms, infrastructure costs (power, cooling)
can equal the cost of the computers themselves.

For battery-powered, hand-held devices, the numbers are smaller but the problem just
as serious. According to ITRS, battery life for these devices peaked in 2004. Since
then, battery life has declined as features have been added faster than power (per fea-
ture) has been reduced.

For virtually all applications, reducing the power consumed by SoCs is essential in
order to continue to add performance and features and grow these businesses.

Until recently, power has been a second order concern in chip design, following first
order issues such as cost, area, and timing. Today, for most SoC designs, the power
budget is one of the most important design goals of the project. Exceeding the power
budget can be fatal to a project, whether it means moving from a cheap plastic pack-
age to an expensive ceramic one, or causing an unacceptably poor reliability due to
excessive power density, or failing to meeting the required battery life.

These problems are all expected to get worse as we move to the next technology
nodes. The ITRS makes the following predictions:

Table 1-1
Node 90nm 65nm 45nm
Dynamic Power per cm2 1X 1.4X 2X
Static Power per cm2 1X 2.5X 6.5X
Total Power per cm2 1X 2X 4X

Needless to say, many design teams are working very hard to reduce the growth in
power below these forecast numbers, since even at 90nm many designs are at the
limit of what their customers will accept.

1.3 Power vs. Energy

For battery operated devices, the distinction between power and energy is critical.
Figure 1-1 on page 4 illustrates the difference. Power is the instantaneous power in
the device. Energy is the area under the curve—the integral of power over time. The
power used by a cell phone, for example, varies depending on the what it is doing—
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whether it is in standby with the cover closed, or open and the display is powered up,
or downloading from the web. The height of the graph in Figure 1-1 shows the power,
but it is energy—the area under the curve—that determines battery life.

Power is height of the curve

4 Lower power could just be slower
wn
= 7 Approach1
2
— I Approach 2
’ .
time

Energy is area under the curve

A
P ‘/ | Two approaches require the same Energy
= Approach 1
s * N
[ I Approach 2
>
time

Figure 1-1 Power vs. Energy

1.4 Dynamic Power

The total power for an SoC design consists of dynamic power and static power.
Dynamic power is the power consumed when the device is active—that is, when sig-
nals are changing values. Static power is the power consumed when the device is
powered up but no signals are changing value. In CMOS devices, static power con-
sumption is due to leakage.

The first and primary source of dynamic power consumption is switching power—the
power required to charge and discharge the output capacitance on a gate. Figure 1-2
on page 5 illustrates switching power.
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Figure 1-2 Dynamic Power
The energy per transition is given by:
Energy | transition = C; oV j

Where Cj is the load capacitance and V', is the supply voltage. We can then describe
the dynamic power as:

Py, = Energy/ transitione f =C @ Vi P, s ® foiock

Where f is the frequency of transitions, P, is the probability of an output transi-
tion, and f ;.. 18 the frequency of the system clock. If we define

Cq)ﬁ’ = Ptrans s CL

We can also describe the dynamic power with the more familiar expression:

_ 2
den — Veff .Vdd ® Jclock

Note that switching power is not a function of transistor size, but rather a function of
switching activity and load capacitance. Thus, it is data dependent.

In addition to switching power, internal power also contributes to dynamic power.
Figure 1-3 on page 6 shows internal switching currents. Internal power consists of the
short circuit currents that occur when both the NMOS and PMOS transistors are on,
as well as the current required to charge the internal capacitance of the cell.
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Figure 1-3 Crowbar Current

If we add the expression for internal power to our equation, we can describe the
dynamic power as:

Py = (Cq[f Vit ® frtock )+ (tsc *Via ® 1L peak ® fetock )

Where £, is the time duration of the short circuit current, and /,. is the total internal
switching current (short circuit current plus the current required to charge the internal
capacitance).

As long as the ramp time of the input signal is kept short, the short circuit current
occurs for only a short time during each transition, and the overall dynamic power is
dominated by the switching power. For this reason, we often simplify the use the
switching power formula

_ 2
den — “eff .Vdd ® Jclock

But there are occasions when the short circuit current (often called crowbar current) is
of interest. In particular, we will discuss ways of preventing excess crowbar current
when we talk about how to deal with the floating outputs of a power gated block.

There are a number of techniques at the architectural, logic design, and circuit design
that can reduce the power for a particular function implemented in a given technol-
ogy. These techniques focus on the voltage and frequency components of the equa-
tion, as well as reducing the data-dependent switching activity.

There are a variety of architectural and logic design techniques for minimizing
switching activity, which effectively lowers switching activity for the gates involved.
An interesting example is [1], which describes how engineers have used micro-archi-
tecture modifications to reduce power significantly in Intel processors.
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Because of the quadratic dependence of power on voltage, decreasing the supply volt-
age is a highly leveraged way to reduce dynamic power. But because the speed of a
gate decreases with decreases in supply voltage, this approach needs to be done care-
fully. SoC designers can take advantage of this approach in several ways:

e For blocks that do not need to run particularly fast, such as peripherals, we can use
a lower voltage supply than other, more speed-critical blocks. This approach is
knows as multi-voltage.

e For processors, we can provide a variable supply voltage; during tasks that require
peak performance, we can provide a high supply voltage and correspondingly high
clock frequency. For tasks that require lower performance, we can provide a lower
voltage and slower clock. This approach is known as voltage scaling.

Another approach for lowering dynamic power is clock gating. Driving the frequency
to zero drives the power to zero. Some form of clock gating is used on many SoC
designs.

1.5 The Conflict Between Dynamic and Static Power

The most effective way to reduce dynamic power is to reduce the supply voltage.
Over the last fifteen years, as semiconductor technology has scaled, Vpp has been
lowered from 5V to 3.3V to 2.5V to 1.2V. The ITRS road map predicts that for 2008
and 2009 high performance devices will use 1.0V and low power devices will use
0.8V.

The trouble with lowering Vpp is that it tends to lower Iyg, the on or drive current of
the transistor, resulting in slower speeds. If we ignore velocity saturation and some of
the other subtle effects that occur below 90nm, the Ig for a MOSFET can be approx-
imated by:

W Ves—Vr)’
I DS lucox L 2
Where u is the carrier mobility, C,, is the gate capacitance, V7 is the threshold voltage
and Vg is the gate-source voltage. From this it is clear that, to maintain good perfor-
mance, we need to lower V1 as we lower Vpp (and hence Vg). However, lowering
the threshold voltage (V) results in an exponential increase in the sub-threshold leak-
age current (Igyp), as we show in the following sections.

Thus there is a conflict. To lower dynamic power we lower Vpp; to maintain perfor-
mance we lower V; but the result is that we raise leakage current. Until now, this was
a reasonable process, since static power from leakage current was so much lower than
dynamic power. But with 90nm technology, we are getting to the point where static
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power can be as big a problem as dynamic power, and we need to examine this con-
flict more carefully.

1.6 Static Power

There are four main sources of leakage currents in a CMOS gate (Figure 1-4)
e Sub-threshold Leakage (Igypg): the current which flows from the drain to the
source current of a transistor operating in the weak inversion region.

e QGate Leakage (IgaTg): the current which flows directly from the gate through the
oxide to the substrate due to gate oxide tunneling and hot carrier injection.

e Gate Induced Drain Leakage (Igpr): the current which flows from the drain to the
substrate induced by a high field effect in the MOSFET drain caused by a high

Vbe
e Reverse Bias Junction Leakage (Iggy): caused by minority carrier drift and gener-
ation of electron/hole pairs in the depletion regions.

—
Vout

l l Drain junction
Ty L *w ___~ leakage

= \_. Sub-threshold current

Figure 1-4 Leakage Currents

Gate leakage

Sub-threshold leakage occurs when a CMOS gate is not turned completely off. To a
good approximation, its value is given by

Vos=Vr
nvy,

[SUB = /ucothizl T'e

Where W and L are the dimensions of the transistor, and V};, is the thermal voltage
kT/q (25.9mV at room temperature). The parameter # is a function of the device fab-
rication process and ranges from 1.0 to 2.5.
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This equation tells us that sub-threshold leakage depends exponentially on the differ-
ence between Vg and V1. So as we scale Vpp and V1 down (to limit dynamic
power) we make leakage power exponentially worse.

Gate leakage occurs as a result of tunneling current through the gate oxide. The gate
oxide thickness (Tpx) is only a few atoms thick in 90nm gates—this is so thin that
tunneling current can become substantial. In previous technology nodes, leakage cur-
rent has been dominated by sub-threshold leakage. But starting with 90nm, gate leak-
age can be nearly 1/3 as much as sub-threshold leakage. In 65nm it can equal sub-
threshold leakage in some cases. At future nodes, high-k dielectric materials will be
required to keep gate leakage in check. This appears to be the only effective way of
reducing gate leakage.

Sub-threshold leakage current increases exponentially with temperature. This greatly
complicates the problem of designing low power systems. Even if the leakage at room
temperature is acceptable, at worst case temperature it can exceed the design goals of
the chip.

There are several approaches to minimizing leakage current.

One technique is known as Multi-V: using high Vp cells wherever performance
goals allow and low V1 cells where necessary to meet timing.

A second technique is to shut down the power supply to a block of logic when it is not
active. This approach is known as power gating.

These two approaches are discussed in more detail in later chapters. For now, though,
we mention three other techniques:

VTCMOS

Variable Threshold CMOS (VTCMOS) is another very effective way of miti-
gating standby leakage power. By applying a reverse bias voltage to the sub-
strate, it is possible to reduce the value of the term (Vgg-Vr), effectively
increasing Vr. This approach can reduce the standby leakage by up to three
orders of magnitude. However, VTCMOS adds complexity to the library and
requires two additional power networks to separately control the voltage
applied to the wells. Unfortunately, the effectiveness of reverse body bias has
been shown to be decreasing with scaling technology [2].

Stack Effect
The Stack Effect, or self reverse bias, can help to reduce sub-threshold leakage
when more than one transistor in the stack is turned off. This is primarily
because the small amount of sub-threshold leakage causes the intermediate
nodes between the stacked transistors to float away from the power/ground
rail. The reduced body-source potential results in a slightly negative gate-
source drain voltage. Thus, it reduces the value of the term (Vg-Vr), effec-
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tively increasing V and reducing the sub-threshold leakage. The leakage of a
two transistor stack has been shown to be an order of magnitude less than that
of a single transistor [3]. This stacking effect makes the leakage of a logic gate
highly dependent on its inputs. There is a minimum leakage state for any
multi-input circuit; in theory this state applied just prior to halting the clocks to
minimize leakage. In practice, applying this state is not feasible in most
designs.

Long Channel Devices

From the equation for sub-threshold current, it is clear that using non-mini-
mum length channels will reduce leakage. Unfortunately, long channel
devices have lower dynamic current, degrading performance. They are also
larger and therefore have greater gate capacitance, which has an adverse effect
on dynamic power consumption and further degrades performance. There may
not be a reduction in total power dissipation unless the switching activity of
the long channel devices is low. Therefore, switching activity and perfor-
mance goals must be taken in to account when using long channel devices.

1.7 Purpose of This Book

The purpose of the Low Power Methodology Manual is to describe the most effective
new techniques for managing dynamic and static power in SoC designs. We describe
the decisions that engineers need to make in designing low power chips, and provide
the information they need to make good decisions. Based on our experience with real
chip designs and a set of silicon technology demonstrators, we provide a set of recom-
mendations and describe common pitfalls in doing low power design.

The process of designing a complex chip is itself very complex, involving many
stakeholders and participants: systems engineers, RTL designers, IP designers, physi-
cal implementation engineers, verification engineers, and library developers. Com-
munication between these disparate players is always a challenge. Each group has its
own area of focus, its own priorities, and often its own language. One goal of this
book is to give these groups a common language for discussing low power design and
a common understanding of the issues involved in implementing a low power strat-

cgy.

The first low power decision an SoC design team must make, of course, is what
power strategy to pursue—what techniques to use, when and where and on what sec-
tion of the chip. This fundamental issue drives the structure of the book.
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e Chapter 1 (this chapter) gives and over view of the challenges and basic approach
to low power design.

e Chapter 2 discusses clock gating methods, Multi-V designs, logic-level power
reduction techniques, and multi-voltage design.

e Chapter 3 gives a more detailed description of multi-voltage design, focusing on
architecture and design issues.

e Chapter 4 gives an overview of power gating

e Chapter 5 addresses design aspects of power gating at the RTL level

e Chapter 6 provides an example of a power gated chip design at the RTL level

e Chapter 7 discusses architectural issues in power gating.

e Chapter 8 discusses issues in IP design for power gating, including an example.

e Chapter 9 discusses architectural and RTL level design issues in dynamic voltage
and frequency scaling.

e Chapter 10 discusses some examples of voltage and frequency scaling

e Chapter 11 discusses implementation issues in low power design: synthesis, place
and route, timing analysis and power analysis

e Chapter 12 discusses standard cell library and memory requirements for power
gating.

e Chapter 13 discusses retention register design and data retention in memories

e Chapter 14 discusses the design of the power switching network

® Appendix A provides some additional information on the circuit design of sleep
transistors and power switch networks.

® Appendix B provides detailed descriptions of the UPF commands used in the text.

Throughout the book, we will make reference to several low power technology dem-
onstration projects that the authors have used to explore low power techniques. These
projects include:

The SALT project (Synopsys ARM Low power Technology demonstrator) is a 90nm
design consisting of an ARM processor and numerous Synopsys peripheral and 1O IP.
This project focused primarily on power gating techniques. Both the processor and
the USB OTG core are power gated.
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CHAPTER 2 Standard Low Power
Methods

There are a number of power reduction methods that have been used for some time,
and which are mature technologies. This chapter describes some of these approaches
to low power design.:

® (Clock Gating

e QGate Level Power Optimization
e Multi-Vpp

e Multi-Vp

2.1 Clock Gating

A significant fraction of the dynamic power in a chip is in the distribution network of
the clock. Up to 50% or even more of the dynamic power can be spent in the clock
buffers. This result makes intuitive sense since these buffers have the highest toggle
rate in the system, there are lots of them, and they often have a high drive strength to
minimize clock delay. In addition, the flops receiving the clock dissipate some
dynamic power even if the input and output remain the same.

The most common way to reduce this power is to turn clocks off when they are not
required. This approach is known as clock gating.

Modern design tools support automatic clock gating: they can identify circuits where
clock gating can be inserted without changing the function of the logic. Figure 2-1
shows how this works.
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Figure 2-1 Clock Gating

In the original RTL, the register is updated or not depending on a variable (EN). The
same result can be achieve by gating the clock based on the same variable.

If the registers involved are single bits, then a small savings occurs. If they are, say,
32 bit registers, then one clock gating cell can gate the clock to all 32 registers (and
any buffers in their clock trees). This can result in considerable power savings.

In the early days of RTL design, engineers would code clock gating circuits explicitly
in the RTL. This approach is error prone — it is very easy to create a clock gating cir-
cuit that glitches during gating, producing functional errors. Today, most libraries
include specific clock gating cells that are recognized by the synthesis tool. The com-
bination of explicit clock gating cells and automatic insertion makes clock gating a
simple and reliable way of reducing power. No change to the RTL is required to
implement this style of clock gating.

Results
In a recent paper [1], Pokhrel reports on a unique opportunity his team recently had to

compare a (nearly) identical chip implemented both with and without clock gating.
As a power reduction project, an existing 180nm chip without clock gating was re-
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implemented in the same technology with clock gating. Only minor changes in the
logic were implemented (some small blocks were removed and replaced by other
blocks, for a small net increase in functionality).

Pokhrel reports an area reduction of 20% and a power savings of 34% to 43%,
depending on the operating mode. (This savings was realized on the clock gated part
of the chip; the processor was a hard macro and not clock gated. Power measurements
were made on the whole chip when the processor was in IDLE mode; that is, the pro-
cessor was turned off.) The power measurements are from actual silicon.

The area savings is due to the fact that a single clock gating cell takes the place of
multiple muxes.

Pokhrel makes a couple of interesting observations:

e After some analysis and experiments, the team decided to use clock gating only on
registers with a bit-width of at least three. They found that clock gating on one-bit
registers was not power or area efficient.

® Much of the power savings was due to the fact that the clock gating cells were
placed early in the clock path. Approximately 60% of the clock buffers came after
the clock gating cell, and so had their activity reduce to zero during gating.

2.2 Gate Level Power Optimization

High Activity
Net

1 P
= ]

High Activity High Power Input Low Activity Net
4

Net ~a_ Y A
Low ~ High
Activity Net / Activity Net

Low Power Input

Figure 2-2 Examples of Gate Level Optimizations
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In addition to clock gating, there are a number of logic optimizations that the tools
can perform to minimize dynamic power. Figure 2-2 shows two of these optimiza-
tions.

At the top of the figure, an AND gate output has a particularly high activity. Because
it is followed by a NOR gate, it is possible to re-map the two gates to an AND-OR
gate plus an inverter, so the high activity net becomes internal to the cell. Now the
high activity node (the output of the AND gate) is driving a much smaller capaci-
tance, reducing dynamic power.

At the bottom of the figure, an AND gate has been initially mapped so that a high
activity net is connected to a high power input pin, and a low activity net has been
mapped to a low power pin. For multiple input gates there can be a significant differ-
ence in the input capacitance - and hence the power - for different pins. By remapping
the inputs so the high activity net is connected to the low power input, the optimiza-
tion tool can reduce dynamic power.

Other examples of gate level power optimization include cell sizing and buffer inser-
tion. In cell sizing, the tool can selectively increase and decrease cell drive strength
throughout the critical path to achieve timing and then reduce dynamic power to a
minimum.

In buffer insertion, the tool can insert buffers rather than increasing the drive strength
of the gate itself. If done in the right situations, this can result in lower power.

Like clock gating, gate level power optimization is performed by the implementation
tools, and is transparent to the RTL designer.

2.3 Multi Vpp

Since dynamic power is proportional to VDDZ, lowering Vpp on selected blocks helps
reduce power significantly. Unfortunately, lowering the voltage also increases the
delay of the gates in the design.

Consider the example in Figure 2-3. Here the cache RAMS are run at the highest volt-
age because they are on the critical timing path. The CPU is run at a high voltage
because its performance determines system performance. But it can be run at a
slightly lower voltage than the cache and still have the overall CPU subsystem perfor-
mance determined by the cache speed. The rest of the chip can run at a lower voltage
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still without impacting overall system performance. Often the rest of the chip is run-
ning at a much lower frequency than the CPU as well.

CACHE RAMS
1.2V

@ SOC

0.9v
CPU @

1.0V

Figure 2-3 Multi-Voltage Architecture

Thus, each major component of the system is running at the lowest voltage consistent
with meeting system timing. This approach can provide significant savings in power.

Mixing blocks at different Vp supplies adds some complexity to the design — not
only do we need to add 1O pins to supply the different power rails, but we also need a
more complex power grid and level shifters on signals running between blocks. These
issues are described in more detail later in the book.

2.4 Multi-Threshold Logic

As geometries have shrunk to 130nm, 90nm, and below, using libraries with multiple
V1 has become a common way of reducing leakage current.

Figure 2-4 shows the relationship between delay and leakage for a 90nm process.
Figure 2-5 shows some representative curves for leakage vs. delay for a multi-Vp
library. As explained earlier, sub-threshold leakage depends exponentially on V.
Delay has a much weaker dependence on V.

Many libraries today offer two or three versions of their cells: Low Vr, Standard V,
and High V1. The implementation tools can take advantage of these libraries to opti-
mize timing and power simultaneously.
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Figure 2-5 Leakage vs. Delay for a 90nm Library

It is now quite common to use a “Dual V” flow during synthesis. The goal of this
approach is to minimize the total number of fast, leaky low V transistors by deploy-
ing them only when required to meet timing. This usually involves an initial synthesis
targeting a primary library followed by an optimization step targeting one (or more)
additional libraries with differing thresholds.

Usually there is a minimum performance which must be met before optimizing
power. In practice this usually means synthesizing with the high performance, high
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leakage library first and then relaxing back any cells not on the critical path by swap-
ping them for their lower performing, lower leakage equivalents.

If minimizing leakage is more important than achieving a minimum performance then
this process can be done the other way around: we can target the low leakage library
first and then swap in higher performing, high leakage equivalents in speed critical
areas.

2.5 Summary of the Impact of Standard Low Power
Techniques

Table 2-1 provides a brief summary of the cost/benefit of the techniques described in
this chapter.

Table 2-1
Tech- Power |Timing |Area Impact: |Impact: |Impact: |Impact:
nique Benefit |Penalty |Penalty |Architec-|Design |Verifica- [Place &
ture tion Route

Multi Vt |[Medium |Little Little Low Low None Low
Clock

Gating Medium |Little Little Low Low None Low
Multi ] . . '
Voltage Large Some Little High Medium |Low Medium
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CHAPTER 3 Multi-Voltage Design

The techniques discussed in the previous chapter are mature; engineers have been
using them for some time, and design tools have supported them for years. With this
chapter, we begin discussing more recent and aggressive approaches to reducing
power: power gating and adaptive voltage scaling.

Both of these techniques rely on moving away from the traditional approach of using
a single, fixed supply rail for all of the (internal) gates in a design. (IO cells have had
a separate power supply in most chips for many years).

The most basic form of this new approach is to partition the internal logic of the chip
into multiple voltage regions or power domains, each with its own supply. This
approach is called Multi-Voltage design. It is based on the realization that in a modern
SoC design, different blocks have different performance objectives and constraints. A
processor, for instance, may need to run as fast as the semiconductor technology will
allow. In this case, a relatively high supply voltage is required. A USB block, on the
other hand, may run at a fixed, relatively low frequency dictated more by the protocol
than the underlying technology. In this case, a lower supply rail may be sufficient for
the block to meet its timing constraints — and a lower supply rail means that its
dynamic and static power will be lower.

Once we have crossed the conceptual barrier of having separate supplies, there are
more complex power strategies we can contemplate: we can provide different volt-
ages to our processor, for example, depending on its workload. Or we can provide dif-
ferent voltages to a RAM - a low voltage to maintain memory contents when the
memory is not being accessed, and a higher voltage that supports reads and writes.
We can even consider dropping the supply voltage to zero — that is, power gating.

For the sake of discussion we provide the following categorization of multi-voltage
strategies:
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Static Voltage Scaling (SVS): different blocks or subsystems are given different,
fixed supply voltages.

Multi-level Voltage Scaling (MVS): an extension of the static voltage scaling case
where a block or subsystem is switched between two or more voltage levels. Only
a few, fixed, discrete levels are supported for different operating modes.

Dynamic Voltage and Frequency Scaling (DVFS): an extension of MVS where a
larger number of voltage levels are dynamically switched to follow changing
workloads.

Adaptive Voltage Scaling (AVS): an extension of DVFS where a control loop is
used to adjust the voltage.

3.1 Challenges in Multi-Voltage Designs

Even the simplest multi-voltage design presents the designer with some basic chal-
lenges:

Level shifters. Signals that go between blocks that use different power rails often
require level shifters — buffers that translate the signal from one voltage swing to
another.

Characterization and STA. With a single supply for the entire chip, timing analysis
can be done at a single performance point. The libraries are characterized for this
point, and the tools perform the analysis in a straight-forward manner. With multi-
ple blocks running at different voltages, and with libraries that may not be charac-
terized at the exact voltage we are using, timing analysis becomes much more
complex.

Floor planning, power planning, grids. Multiple power domains require more
careful and detailed floorplanning. The power grids become more complex.
Board level issues. Multi-voltage designs require additional resources on the
board — additional regulators to provide the additional supplies.

Power up and power down sequencing. There may be a required sequence for
powering up the design in order to avoid deadlock.

3.2 Voltage Scaling Interfaces — Level Shifters

When driving signals between power domains with radically different power rails, the
need for level shifters is clear. Driving a signal from a 1V domain to a 5V domain is a
problem — the 1V swing may not even reach threshold in the 5V domain. But the
internal voltages in today’s chips are tightly clustered around 1V. Why would we need
level shifters on signals going from a 0.9V domain to a 1.2V domain?
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One fundamental reason is that a 0.9V signal driving a 1.2V gate will turn on both the
NMOS and PMOS networks, causing crowbar currents.This issue is discussed later in
this chapter.

In addition, standard cell libraries are characterized for — and operate best with — a
clean, fast input that goes rail to rail. Failure to meet this requirement may result in
signals exhibiting significant rise- or fall-time degradation between the driver cell in
one domain and the receiver in another voltage domain. This in turn can lead to tim-
ing closure problems and even excessive crowbar switching currents.

The best solution is to make sure each domain gets the voltage swings (and rise- and
fall-times) that it expects. We do this by providing level shifters between any domains
that use different voltages. This approach limits any voltage swing and timing charac-
terization issues to the boundary of voltage domains, and leaves the internal timing of
the domain unaffected. This kind of clean interfacing makes timing closure — and
reuse — much easier.

3.2.1 Unidirectional Level Shifters

The design of a level shifter to provide an effective voltage swing between one differ-
ent voltage rails is an analog design problem. And for analog design reasons, these
cells are typically only designed to shift one direction - either from a higher voltage to
a lower one, or from a lower voltage to a higher one. Later in this chapter we provide
some example designs that show the difference between the two types of cells.

For static voltage scaling, this limitation on level shifters is not a problem. But for the
other forms of multi-voltage, where supply voltages can change during operation, it
does pose a challenge. The designer must architect and partition the design such that
voltage domains have a defined relation to neighboring domains — such as “always
higher”, “always lower”, or “always the same.” With this restriction, it then becomes
straightforward to implement the interface with the appropriate level shifting compo-

nents.

Designing interfaces that can operate in both directions may appear attractive from a
system perspective but requires non-standard implementation components and tool-

ing.

3.2.2 Level Shifters — High to Low Voltage Translation

On the face of it, simply overdriving a CMOS input from an output buffer on a higher
voltage rail does not appear to be a problem — there are no latch-up or breakdown
issues, simply a “better”, faster edge compared to normal CMOS logic high or low
level switching levels.
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However for safe timing closure one does need some specially identified “down-
shift” cells characterized specifically for this purpose.

If specialized high-to-low level shifter cells were not provided in the library then the
entire library would have to be re-characterized to allow accurate static timing analy-
sis. Each gate would have to be characterized for an arbitrary input voltage swing.

As shown in Figure 3-1, high to low level shifters can be quite simple, essentially two
inverters in series. Level shifter design is described in more detail in a later chapter,
but for now we just observe that require only a single power rail, which is the one
from the lower or destination power domain.

As implied by the drawing, a high-to-low level shifter only introduces a buffer delay,
so its impact on timing is small.

VDDL

VDDL-|-
INH T> OUTL INH >°OUTL

vss|_ . vss

Figure 3-1 High to Low Level Shifters

3.2.3 Level Shifters — Low-to-High Voltage

Driving logic signals from a low supply rail to a cell on a higher voltage rail is a more
critical problem. An under-driven signal degrades the rise and fall times at the receiv-
ing inputs. This in turn can lead to higher switching currents and reduced noise mar-
gins. A slow transition time means that the signal spends more time near Vr, causing
the short circuit (crowbar) current to last longer than necessary.

For clock tree buffering this becomes particularly important. Clock tree buffering is
always a challenge, and any degradation in rise and fall times across voltage region
boundaries can increase clock skew.

Specially designed level shifter cells solve this problem. They provide fast, full-rail
signals to the higher voltage domain. They can be correctly modeled with the design
tools to achieve accurate timing.
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There are a number of design techniques — but a simple straight-forward design is
shown in Figure 3-2. This design takes a buffered and an inverted form of the lower
voltage signal and uses this to drive a cross-coupled transistor structure running at the
higher voltage.

VDDH
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Figure 3-2 Low to High Level Shifters

Such “up-shifting” level converters require two supply rails — and typically share a
common ground. The well structures cannot be joined together but must be associated
with the supplies independently.

These specialized low to high level shifter cells are characterized over an extended
voltage range to match the operating points of both the high side and low side voltage
domains. This enables accurate static timing analysis between different voltages and
operating conditions.

Low-to-high level shifters introduce a significant delay compared to the simple buffer
delays of high-to-low level shifters. In the case of wide interfaces between timing
critical blocks — for example, between a CPU and cache memory on different voltage
supplies - the designer must take account of the interface delays and any physical
routing constraints imposed across the voltage boundary.

3.2.4 Level Shifter Placement

Multi-voltage designs present significant challenges in placement. Figure 3-3 shows
an example of two voltage domains embedded in a third voltage domain.
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Figure 3-3 Level Shifter in the Destination Domain

Because it uses the voltage rail from the lower voltage domain, the high-to-low level
shifter is usually placed in the lower voltage domain. If the distance between the 1.2V
domain and the 0.9V domain is small enough, and the library has a strong enough
buffer, then the driving buffer can be placed in the 1.2V domain. No additional buffer-
ing is required.

Adding additional buffers in the 1.1V domain clearly presents problems — what sup-
ply do the buffers use?

VDDH VDDLT

D Q 1 & OUTL
l/
CLK
—P D
vss|_
0.9V Domain
1.2V Domain

1.1V Domain

Figure 3-4 Buffering and Level Shifters
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Figure 3-4 shows one possible solution. Here the buffer uses the power rail of the
1.2V domain. But this means that the 1.2V rail must be routed — probably as a signal
wire —in the 1.1V domain. This kind of complex power routing is one of the key chal-
lenges in automating the implementation of multi-voltage designs.

Figure 3-5 shows the case of a signal from the 0.9V domain going to the 1.2V
domain. In this case, power routing will be a challenge no matter where the level
shifter is placed. Because it requires both rails, at least one of the rails will have to be
routed from another domain. Since the output driver requires more current than the
input stage, we place the level shifter in the 1.2V domain.

As with down-shifters, if the distance between the 1.2V domain and the 0.9V domain
is small enough, and the library has a strong enough buffer, then the driving buffer
can be placed in the 0.9V domain. No additional buffering is required. Otherwise,
additional buffers need to be placed in the 1.1V domain, causing the power routing
problems mentioned above.

VDDE[ -|-VDDH
D Q % | ourn.

CLK
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0.9V Domain 1.2V Domain

1.1V Domain

Figure 3-5 Placement of Low to High Level Shifter

3.2.5 Automation and Level Shifters

Level shifters do not affect the functionality of the design; from a logical perspective
they are just buffers. For this reason, modern implementation tools can automatically
insert level shifters where they are needed. No change to the RTL is required.

Many tools now allow the designer to specify a level shifter placement strategy — to
place the low-to-high level shifters in the lower domain, the higher domain, or
between them. Note that the output driver has the higher supply current requirements;
the low voltage supply only has to power the weaker devices to control the cell. For
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this reason we recommend placing the level shifters in the destination domain, as
shown in Figure 3-3 and Figure 3-5.

As part of defining a level shifter strategy, the designer specifies rules for when level
shifters are inserted. The designer can specify explicitly which blocks require level
shifters, or the designer can specify a minimum voltage difference that requires level
shifter insertion.

High-to-low level shifters should be inserted based on timing considerations. Using
standard gates rather than level shifters at the interface of two different voltage
regions causes an error in delay calculation, as mentioned above. If the voltage differ-
ence between the two domains is large enough then this timing error becomes unac-
ceptable. In this case, level shifters are required. The exact voltage difference then
depends on the library and the design objectives.

Low-to-high level shifters should be inserted based on power as well as timing con-
siderations. If the voltage difference between two domains is large enough, the input
stage of a standard gate in the higher domain will not turn all the way off, leading to
excessive crowbar current.

Specifically, if the voltage difference is larger than the threshold voltage of the
receiving PMOS transistor, the transistor will not completely turn off. In order to pro-
vide a reasonable noise margin, we should pad this number by 10% of the VDDH (the
higher supply voltage). Thus, if

VDDH —VDDL > Vypy 05 — (0.1% VDDH)

Then a level shifter should be used in order to shut off the receiving PMOS input tran-
sistor stage.

(Here Vrppmos is the threshold voltage of the PMOS transistor, and VDDH and
VDDL are the VDD supplies for the higher and lower domains respectively).

3.2.6 Level Shifter Recommendations and Pitfalls

Recommendations:
¢ Place the level shifters in the receiving domain — in the lower domain for High-to-
Low shifters, in the higher domain for Low-to-High shifters.

e Low-to-High level shifters have significant delays that need to be understood and
thoughtfully factored into RTL design partitioning for timing critical blocks.

¢ Ensure there is a defined relationship between different voltage domains such that
the operating conditions make it clear whether an up- or down-shifter is required.
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Pitfalls:

e Interfaces between domains that may both be higher or lower voltage with respect
to each other will require specialized level shifter components and make the setup
and hold timing verification across such interfaces very complex.

3.3 Timing Issues in Multi-Voltage Designs

3.3.1 Clocks

Routing clocks across different power domains means that they have to go through
level shifters. This clearly complicates automation — the clock tree synthesis tools
need to understand level shifters and automatically insert them in the appropriate
places.

With multiple level voltage scaling, clock distribution gets even more complex. Con-
sider Figure 3-6. The clock buffers in the multi-level domain will sometimes be pow-
ered at 0.9V and sometime at 1.1V. Under which conditions do we attempt to
minimize clock skew relative to the clock in the 1.2V domain?

The solution is that optimization and timing analysis must be done simultaneously for
both situations, to assure that timing will be met for both conditions.

0.9V, 1.1V
Domain
D Q Q
> %
CLK S b CLK N b
1.2V Domain
‘[ 1.1V Domain *

Clock
Gen

Figure 3-6 Clock Distribution and Multi-Voltage



30 Low Power Methodology Manual

3.3.2 Static Timing Analysis

In the case of static voltage scaling, timing analysis is not too much more complex
than for a single voltage design. It merely requires a library that is characterized for
the different voltages begin used. Then the implementation and analysis tools can
execute using the appropriate timing information. In the early days of multi-voltage
design this was a problem; most tools and libraries assumed a fixed, constant supply
voltage for the entire design. But today, this problem has been solved, and static volt-
age scaling poses little problem for static timing analysis.

Multi-level voltage scaling presents a greater challenge. Again consider Figure 3-6; at
which voltage do you do synthesis, place and route, and STA for the multi level
block?

The solution is that the timing constraints must be specified for each operating point
or supply voltage level. In our example, we must provide two sets of timing con-
straints for the multi level block, one for 0.9V and one for 1.1V. They may be differ-
ent because there may be two different operation modes, one for each voltage level,
which may have different performance objectives or different clock speeds.

The tools must then perform implementation simultaneously at both 0.9V and 1.1V
using these two sets of timing constraints. The implementation is complete only when
it meets both sets of requirements with the same implementation.

3.4 Power Planning for Multi-Voltage Design

Just getting power to the different power domains can be a challenge for designs
which use multiple supplies. Every voltage scaled region requires an independent
local power supply grid, and a low impedance power connection to supply pads.

For flip-chip designs, this problem is mitigated somewhat because power can be
delivered locally by a pad located in the power domain. For traditional chips, where
the power has to come from the chip periphery, the system designer may need to
restrict the number of voltage regions to those that provide significant dynamic power
and energy savings.

Power planning for multi-voltage designs is discusses in more detail in Chapter 11.
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3.5 System Design Issues with Multi-Voltage Designs

For static voltage scaling, the major implementation issues have to do with level
shifters, as discussed above.

The main system level issue is that of power sequencing. In most cases, it will not be
practical to bring up all the different power supplies at precisely the same time. Thus,
it may be useful to plan an explicit power sequence, so that the different power
domains come up in a well-defined order that assures correct function. And in fact,
some IP may require a specific power up sequence.

In particular, we need to make sure all power domains are completely powered up
before issuing reset. Also, the CPU(s) may need to wait until the rest of the chip is
powered up before booting.

Power-on is a particularly complex case because crystal oscillators and Phase-
Locked-Loops require technology-dependent stabilization and lock times. These sta-
bilization times only begin once the 10 and SOC power supplies are settled.

A power-on-reset Schmitt circuit is one way to guarantee the initial power-up to the
SOC is complete. Then some form of timer can be used to determine when the PLL
and clocks are stable. Finally, an explicit handshake protocol can be enabled to man-
age more complex DVFS power management.

Multi-level voltage scaling designs have the additional constraint that ramp times
must be carefully controlled to avoid voltage overshoot or undershoot. Since voltages
are often changed while the system is running, the system may malfunction or lock up
if the voltage is raised above the target voltage or falls significantly below it. This
ramp control is best achieved by using a signaling interface to sequence both initial
turn-on and subsequent ramping of the voltage regulator.

Finally, the power controller is often controlled by a CPU, which means that power
control software must be integrated with the other system software running on the
CPU.



CHAPTER 4 Power Gating Overview

Leakage power dissipation grows with every generation of CMOS process technol-
ogy. This leakage power is not only a serious challenge to battery powered or portable
products but increasingly an issue that has to be addressed in tethered equipment such
as servers, routers, and set-top boxes.

To reduce the overall leakage power of the chip, it is highly desirable to add mecha-
nisms to turn off blocks that are not being used. This technique is known as power
gating.

Section two describes power gating from an RTL design perspective. This chapter
provides an overview of power gating. The following chapters continue with descrip-
tions of how to implement power gating at the RTL level, the power gating strategies
used on the SALT chip, and the architectural implications of power gating. Our focus
is how RTL designers can design power gating implementations in as technology-
independent and portable a manner as possible.

4.1 Dynamic and Leakage Power Profiles

The basic strategy of power gating is to provide two power modes: a low power mode
and an active mode. The goal is to switch between these modes at the appropriate
time and in the appropriate manner to maximize power savings while minimizing the
impact to performance.

The power reduction techniques described in chapter 2 do not affect the functionality
of the design and do not require changes to the RTL. They can be handled fairly trans-



34 Low Power Methodology Manual

parently from a design and implementation and perspective; power gating is more
invasive than clock-gating in that it affects inter-block interface communication and
adds significant time delays to safely enter and exit power gated modes.

Shutting down power to a block of logic may be scheduled explicitly by control soft-
ware as part of device drivers or operating system idle tasks. Alternatively it may be
initiated in hardware by timers or system level power management controllers. In any
event, we are faced with architectural trade-offs between

e the amount of leakage power savings that is possible

o the entry and exit time penalties incurred

e the energy dissipated entering and leaving such leakage saving modes

o the activity profile (proportion and frequency of times asleep or active)
First, we introduce some terminology for the entry and exit from power modes:
SLEEP events initiate entry to the low power mode

WAKE events initiate return to active mode

Figure 4-1 shows an example activity profile for a sub-system using clock gating
to reduce power.
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Figure 4-1 Activity Profile with No Power Gating

Figure 4-2 shows an example activity profile for the same sub-system with basic
power gating implemented. The response time between the WAKE event and having
clocks running may be significant and cannot be ignored at the system design level:
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Figure 4-2  Activity Profile with Power Gating

Figure 4-3 shows that the leakage power savings are not perfect and instantaneous;
the full leakage power savings take some time to reach target levels. This is due partly
to the (hotter) thermal profile of the preceding activity and partly to the non-ideal
nature of the power-gating technology. Therefore the achievable savings are compro-
mised to some extent:
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4.2 Impact of Power Gating on Classes of Sub-Systems

A cached CPU subsystem can typically be dormant or inactive for long periods, mak-
ing power gating attractive. But there are some trade-offs that must be considered:

e Power gating the entire CPU provides very good leakage power reduction.

e But wake-up-time response to an interrupt has significant system level design
implications (may even require deeper FIFO’s or scheduled time-slots).

e [f the cache contents are lost every time the CPU is powered down then there is
likely to be a significant time and energy cost in all the bus activity to refill the
cache when it is powered up.

e The net energy savings depend on the sleep/wake activity profile as to how much
energy was saved when power gated versus the energy spent in reloading state.

A peripheral subsystem may have a much better defined profile than a CPU. It is
under control of a device driver which can be profiled and operating system power
management scheme which can be optimized. But there are still some trade-offs. In
particular, it may be necessary to restore state quickly on wake-up to maximize power
savings:

® The device driver may be required to explicitly load/restore key state or initiate
hardware sequencer control as part of the sleep/wakeup sequence, but this places a
significant burden on software.

® A better approach may be for the peripheral to store key state internally during
sleep mode, but this requires special circuitry and additional control.

Finally, consider a more complex, multi-processor CPU cluster where one or more
processors may be power gated off completely. In this case we assume that a proces-
sor is powered down only when it has completed a task and is idle, waiting for
another task to be assigned. In this case:

e Power gating individual CPUs provides very good leakage power reduction.

e Because the CPU has completed its task, the fact that the local cache contents are
lost when it is power gated is not a problem. The CPU is awoken clean and reset
ready to execute and cache the next task it is given.

e Optimized energy savings may well require adaptive shutdown algorithms that
vary the number of CPU cores power gated and active with varying workload.

In all these cases, power gating can provide significant leakage reduction in the
design.
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4.3 Principles of Power Gating Design

Power gating consists of selectively powering down certain blocks in the chip while
keeping other blocks powered up. The goal of power gating is to minimize leakage
current by temporarily switching power off to blocks that are not required in the cur-
rent operating mode.

The most basic form of power gating control, and the one with the lowest long-term
leakage power, is an externally switched power supply. Consider this example: an on-
chip CPU has a dedicated off-chip power supply; that is, the supply provides power
only to the CPU. We can then shut down this power supply and reduce the leakage in
the CPU to essentially zero. This approach, though, also takes the longest time and
requires the most energy to restore power to a gated block.

Internal power gating, where internal switches are used to control power to selected
blocks, can be a better solution when powering down blocks for a short time.

Figure 4-4 shows a simplified view of an SoC that uses internal power gating.

Unlike a block that is always powered on, the power-gated block receives its power
through a power-switching network. This network switches either Vpp or Vgg to the
power gated block. In this example, Vpp is switched; Vgg is provided directly to the
entire chip. The switching fabric typically consists of a large number of CMOS
switches distributed around or within the power gated block.
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.................... >

Figure 4-4 Block Diagram of an SoC with Power Gating
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The power gating controller controls the CMOS switches that provide power to the
gated block.

One challenge for power gating designs is that the outputs of the power gated block
may ramp off very slowly. The result could be that these outputs spend a significant
amount of time at threshold voltage, causing large crowbar currents in the always
powered on block.

To prevent these crowbar currents, isolation cells (the “Isol” block in the figure) are
placed between the outputs of the power gated block and the inputs of the always on
block. These isolation cells are designed so that they do not experience crowbar cur-
rent when one of the inputs is at threshold, as long as the control input is off. The
power gating controller provides this isolation control signal.

For some power-gated blocks, it is highly desirable to retain the internal state of the
block during power down, and to restore this state during power up. Such a retention
strategy can save significant amounts of time and power during power up. One way of
implementing such a retention strategy is to use retention registers in place of ordi-
nary flip-flops.

Retention registers typically have an auxiliary or shadow register that is slower than
the main register but which has much less leakage current. The shadow register is
always powered up, and stores the contents of the main register during power gating.
These retention registers need to be told when to store the current contents of the main
register into the shadow register and when to restore the value back to the main regis-
ter. This control is provided by the power gating controller.

4.3.1 Power Switching — Fine Grain vs. Coarse Grain

A critical decision in power gating is how to switch power. In general, there are two
approaches: fine grain power gating and coarse grain power gating.

In fine grain power gating the switch is placed locally inside each standard cell in the
library. Since this switch must supply the worst case current required by the cell, it
has to be quite large in order not to impact performance. The area overhead of each
cell is significant (often 2x-4x the size of the original cell). Figure 4-5 shows an
example of a fine grain AND gate.
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Figure 4-5 Fine Grain AND Gate with Pull-Up

The key advantage of fine grain power gating is that the timing impact of the IR drop
across the switch and the behavior of the clamp are easy to characterize as they are
contained within the cell. This means that it is still possible to use a traditional design
flow to deploy fine grain power gating.

In coarse grain power gating, a block of gates has its power switched by a collection
of switch cells. (Figure 4-4 on page 37). The sizing of a coarse grain switch network
is more difficult than a fine grain switch as the exact switching activity of the logic it
supplies is not known and can only be estimated. But coarse grain gating designs have
significantly less area penalty than fine grain.

Over the last few years, there has been a strong convergence towards coarse grain
power gating as the preferred method. The area penalty for fine grain power gating
has just not proven worth the savings in design effort. Today, virtually all power gated
designs use coarse grain power gating. For that reason, we focus exclusively on
coarse grain power gating for the rest of this book. (The only exception is the chapter
on libraries, where we will give a more detailed analysis of the fine-grain vs. coarse
grain trade-offs.

One of the key challenges in any power gating design is managing the in-rush current
when the power is reconnected. This in-rush current must be carefully controlled in
order to avoid excessive IR drop in the power network; otherwise, the function and
state of powered-on blocks could be corrupted as the power gated block goes through
its sleep/wakeup sequence.

4.3.2 The Challenges of Power Gating

Implementing power gating presents certain challenges to the designer. These
include:

® Design of the power switching fabric

® Design of the power gating controller

e Selection and use of retention registers and isolation cells
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e Minimizing the impact of power gating on timing and area.

e The functional control of clocks and resets

e Interface isolation

e Developing the correct constraints for implementation and analysis

e Performing state-dependent verification for each supported power state

e Performing power state transition verification to ensure all legal state entry and
exit arcs are simulated and verified

e Developing a strategy for manufacturing and production test

These topics are discussed in the following chapters.



CHAPTER 5 Designing Power Gating

This chapter describes power gating design from a front-end, RTL perspective.
Figure 5-1 shows the critical components of such a design.
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Figure 5-1 SoC with Power Gating



42 Low Power Methodology Manual

The critical issues in power gating include the design of the switching network and
the power gating controller. We also need to determine when and where to insert
retention flops and isolation cells.

5.1 Switching Fabric Design

The detailed transistor structures for power gating are highly technology specific and
are described in detail in Appendix A. But we will consider here some of the architec-
tural aspects of the switching fabric design.

The first architectural issue is whether to switch VDD (with a “header” switch) or to
switch VSS (with a “footer” switch) or both.

A number of academic papers have been published on this subject. Some authors
advocate both P-channel “Header” switches gating the VDD supply and N-channel
“Footer” switches gating the VSS ground. However, two such high-V; power
switches in series with the gate cause a more significant IR voltage drop in the supply
as seen by the gate. This drop in turn causes increased delays for the gates in the
design.

In many practical designs this performance loss cannot be tolerated, and only one of
the rails is switched.

Basic Header-Switch structure: Basic Footer-Switch structure:
VDD SUPPLY GATED VSS
“TURN QEEd’ I: “TURN ON” | I:

GATED| VDD VSS GROUND

With a header-style switch fabric, the internal nodes and outputs of a power gated
block collapse down towards the ground rail when the switch is turned off. With a
footer-style switch fabric the internal nodes and outputs all charge towards the supply
rail when the switch is turned off.

Note that here is no guarantee that the power gated nodes will ever fully discharge to
ground or fully charge to the supply. Instead, an equilibrium is reached when the leak-
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age current through the switches is balanced by the sub-threshold leakage of the
switched cells. This is one of the reasons why isolation cells are required on outputs
of power gated blocks, as discussed later in this chapter.

From a functional perspective, there are several arguments for using header cells:

External power gating (switching a power supply external to the chip) is only practi-
cal for switching VDD. VSS is usually common on the board for a variety of reasons,
including providing a conduction path for ESD. If external and internal power gating
are both used on the same chip, then switching VDD on chip will result in similar
behavior under both power gated conditions; this simplifies functional verification,
timing closure, and power analysis.

In SoC designs, the use of multiple power supplies is becoming increasingly com-
mon. These designs require level shifters on signals between blocks operating at dif-
ferent voltages. Level shifters are typically designed with a common ground and two
different supply voltages. In chips using this design approach, switching the ground
on power gated blocks can be a problem.

Finally, designers think in terms of “off” meaning signals are pulled to ground. It is
just easier to think through all the system design issues when power, not ground, is
switched.

The arguments in favor of the footer cell approach — that is, switching VSS — are
based in the electrical characteristics of the switches themselves. This is discussed in
Chapter 14.

Recommendations:
e Switch the supply rail or ground, rather than both, in order to minimize the IR
drop.

® Decide early on in the design phase whether header or footer switches most natu-
rally fit with the system design.

e Header switches may be the most appropriate choice for switches if external
power gating will also be used on the chip.

e Header switches may be the most appropriate choice for switches if multiple
power rails and/or voltage scaling will be used on the chip.

Pitfalls:

e Beware of mixing “footer” power-gating with externally switched power rails or
multiple power supplies. This complicates functional, timing, and power analysis
as well as placing more complex demands on the standard cell library.
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5.1.1 Controlling the Switching Fabric

A key concern in controlling the switching fabric is to limit the in-rush current when
power to the block is switched on. Excessive in-rush current can cause voltage spikes
on the supply, possibly corrupting registers in the always-on blocks, as well as reten-
tion registers in the power gated block.

Various methods for controlling this in-rush current are described in Chapter 14. One
representative approach is to daisy-chain the control signal to the switches. Each
switching fabric typically will have hundreds (or more) switches acting in parallel;
the control signal from the power controller is connected to the first switch, and it
buffers (with an appropriate delay) the signal and sends it on to the next switch.

The result of this daisy chaining is that it takes some time from the assertion of a
“power up” signal until the block is powered up. For this reason, switching fabrics
will often provide an acknowledge signal indicating that the fabric is completely pow-
ered up. This signal can simply be the final buffered version of the “power up” control
signal.

A more aggressive approach to turning on the switching fabric is to use several
power-up control signals in sequence. The first control signal may turn on a set of
weak or “trickle” switches, which initiate the power up but limit the in-rush current.
The second control signal may then turn on the main set of power switches.

Regardless of the specific control method, during the power up sequence, it is impor-
tant to wait until the switching fabric is completely powered up before enabling the
power gated block to resume normal operation. The timing of this power up sequence
is the responsibility of the power controller.

Note that the control signals for the power switching fabric — the whole daisy chain of
power on/off and acknowledge — must be buffered by always on buffers, not by power
gated buffers. This adds some level of complexity to the power routing of the power
gated region.

5.1.2 Recommendations and Pitfalls for Power Gating Control

Recommendations:
® The power controller needs to be designed for the technology-specific power gat-
ing fabric used.

e Assertions should be provided for the power gating control ports, to match the
chosen switch technology to ensure function verification and coverage in the RTL
design environment.

® Power gating control signals must be made controllable during test.
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Pitfalls:

e Combining external power gating (switching the external rail) with internal power
gating (switching power on-chip) can be tricky. A supply that is “always on” dur-
ing internal power gating may not be “always on” during external power gating.
Careful design and verification is required in this case.

5.2 Signal Isolation

Once we have addressed the design and control of the switch fabric, the next problem
is to determine the isolation strategy.

Every interface of a power gated region needs to be managed. We need to be sure that
powering down the region will not result in crowbar current in any inputs of powered-
up blocks. Also we need to be sure than none of the floating outputs of the power-
down block will result in spurious behavior in the power-up blocks.

The outputs of the power gated block are the primary concern, since they can cause
electrical or functional problems in other blocks. The inputs to the power gated blocks
usually are not an issue — they can be driven to valid logic values by powered up
blocks without creating electrical (or functional) problems in the powered down
block.

5.2.1 Signal Isolation Techniques

The basic approach to controlling the outputs of powered down blocks is to use an
isolation cell to clamp the output to a specific, legal value.

There are three basic types of isolation cell: those that clamp the signal to “0”, those
that clamp it to “1”, and those that latch it to the most recent value.

In most cases, it is sufficient to clamp the output to an inactive state. When using
active high logic, the most common approach is to clamp the value to “0”. An AND-
gate function accomplishes this. With active low logic, an OR-gate function parks the
output at logic “1”.

Clamp library cells are designed to avoid crowbar currents and leakage paths when
signal input floats, as long as the control input is in the appropriate (“isolate”) state. In
addition, their synthesis models typically have extra attributes to ensure these cells
never get optimized away, buffered incorrectly or inverted as part of logic optimiza-
tion.
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The left side of Figure 5-2 shows a conceptual view of an AND-style isolation clamp-
low. When the active low isolate signal “ISOLN” is high, the signal passes to the out-
put; when “ISOLN” is low, the output is clamped low:

X CLAMPED CLAMPED
(LOW) (HIGH)

“ISOLN” ISOLATED ISOLATED
SIGNAL SIGNAL

Figure 5-2 Basic Isolation Cells

The right side of Figure 5-2 shows a conceptual view of an OR-style isolation clamp-
high. When the active high isolation control signal “ISOL” is high, the output is
clamped high; when low the signal passes to the output:

These clamp gates add delay to the signals they are isolating. For some critical paths
this added delay may not be acceptable — for example on cache memory interfaces.

An alternative isolation technique that does not add full gate delays is to use a pull-up
or pull-down transistor. However this approach introduces multiple drivers on the
power gated net, requiring careful sequencing to avoid contention. Even if the pull-up
or pull-down transistors are relatively weak devices, the total number can be large
enough that excess current from bus contention could cause problems. The sequenc-
ing to avoid contention is done by the power controller.

The left side of Figure 5-3 shows a conceptual view of a pull-down style clamp-low;
when “ISOL” is high, the output is clamped low; when low the signal passes to the
output:

(CLAMPED) SIGNAL VDD
ISOL I: ISOLN :| I:
VSS

(CLAMPED) SIGNAL

Figure 5-3 Pull-Down and Pull-Up Isolation Transistors
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The right side of Figure 5-3 shows a conceptual view of a pull-up style clamp-high;
when “ISOLN” is high, the signal passes to the output; when low the output is
clamped high:

To avoid output glitches, it is important to isolate outputs during power up, and to
keep them isolated until power has stabilized. This sequencing is straight-forward
with the clamp cells but can be quite challenging with pull-up/pull-down transistors,
since they would fight the output values whenever these powered back up in an active
state.

Note that transistor-type clamps can cause metal migration and reliability problems
when even a small amount of continuous current flows through them. They also cre-
ate a big problem for test — any time there are multiple drivers on a net, testability
becomes very difficult.

Therefore pull-up and pull-down clamps are not recommended for portable RTL
design despite the lower area and timing cost. Instead, the “gate-style” cell styles are
recommended, and described in the rest of this section. However, the pull transistor
approach is useful in specialized situations where timing is critical, the signaling pro-
tocols are understood, and contention can be eliminated (and verified to be elimi-
nated) by design.

5.2.2  Output or Input Isolation

As described above, it is necessary to isolate the outputs of a power gated block in
order to avoid the electrical problem of floating outputs driving inputs of powered-up
blocks. Logically, it makes no difference whether we clamp these signals at their
source — that is, inside the power gated block — or at their destination — that is, in the
powered-up blocks.

But there are important practical considerations that affect this choice.

It is likely that at least some of the outputs of the power gated block go to more than
one powered-up block. If the outputs are isolated at the receiving blocks, more than
one isolation cell may be required for each output. Therefore it is more area-efficient
to isolate the outputs inside the power gated block.

Isolating outputs inside the power gating block also makes analysis easier. Once we
have determined that all outputs are correctly isolated, we are done. If these signals
are instead isolated in the receiving blocks, then each fan-out of the output signal
must be checked to assure that there is an isolation cell on it. If the power gated block
is reused in different applications, this analysis must be performed again in each situ-
ation.
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Isolating outputs at their source does present some constraints for place and route,
however. Unlike the other gates in the power gated block, the isolation cells must
remain powered during power-down. Thus, the power domain containing the power
gated block must now provide both switched power and always-on power. This some-
what complicates power routing of the chip, but modern EDA tools are capable of
solving this problem.

Regardless of whether outputs are isolated at their source or their destination, the
EDA tools must respect the unique character of isolation cells. If isolation is at the
source, then the tools must not buffer the output of the isolation cell with power-gated
buffers. If isolation is at the destination, then the tools must not buffer the (pre-isola-
tion) signal with buffers that are always on. The control signal to the isolation cells
must be buffered only by always on cells.

Also, optimization during place and route must not replace the isolation cell with a
non-isolation cell.

For the reasons outlined above, we strongly recommend that reusable IP be designed
with isolation cells within the IP, so that the complications of isolation are hidden
from the SOC-level integration.

5.2.3 Interface Protocols and Isolation

In designing an interface of a power gated block there two goals: to minimize leakage
and to avoid unnecessary or incorrect behavior.

Consider the case of a power-gated block that has outputs that go to an always on
block. When the power gated block is powered down, the clamped signal values are
received by the powered block. If these signals are active high, and they are clamped
high, the destination may interpret these signals as commands, and act incorrectly.
Clamping the signals to their inactive state is the best strategy for avoiding this prob-
lem. For most designs, this means clamping the outputs to “0”.

The one possible exception to this guideline is reset. Typically, resets are active low,
so that clamping it low signals a reset state on the interface. And in fact, this may be
the most appropriate value to drive reset during power down. This assures that reset
will be asserted during power up. (This is what we did on the SALT chip.) In any
case, it is worthwhile to consider the effects of clamping interface signals to the active
or inactive state during power down.

Consider now the case of a power-gated block that has outputs that go to another
(independently) power-gated block. Because the blocks are independently power
gated, their outputs must be isolated. But in some cases, the source block will be pow-
ered down and the destination block will also be powered down. In this case, clamp-
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ing signals to the wrong level may increase leakage current. For example, if VDD is
switched (for the destination block), and outputs (of the source block) are clamped to
“1”, then there may be sneak current paths from the clamped output to ground. This
could cause unnecessary leakage.

VDD SUPPLY

LOW to POWER GATE OFFCI I:

GATED| VDD

4 N

OUTPUTS
JES—— DRIVEN

IN PUT% Power-Gated “Low”

Region
—_— (INACTIVE)
WHEN
ISOLATED

- ] _/

LOW to ISOLATE OUTPUTS

Figure 5-4 Output Isolation

Thus, for header-switched designs, the base-line recommendations are straight-for-
ward: use active high signals and active low reset, and clamp all signals to “0”.

For footer-switched power-gated regions we recommend active high signals and
active low reset, and clamp all signals to “0”, in general. There is one possible excep-
tion to this rule: if transmission gates are used at the inputs of the receiving block. If
transmission gates are used, we may need to clamp to “1” to avoid sneak path leak-
age. This situation is discussed in detail in Chapter 12. In this case, it may be neces-
sary to use active high signaling to avoid functional problems. Since most existing
protocols use active high signals, this may present a design challenge.

Note: We have a general bias towards active high signals and active low reset for two
reasons: this is the most commonly used design approach, and this is also leads to
simple, easy-to-debug RTL.

A final note: for complex protocols, it may be necessary to use a more complex isola-
tion strategy: clamping signals to their last value. This approach allows re-starting the
protocol in process, instead of starting up in the reset state. This strategy requires a
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latched isolation cell, which is not available in all libraries, and so it should be used
only if absolutely necessary.

5.2.4 Recommendations and Pitfalls for Isolation

Recommendations:

e [solate the outputs of power gated blocks.

e Use isolation cells rather than pull-up or pull-down style clamps unless using very
specialized interface protocols (where the “multiple-driver” challenges may be
worth the implementation complications).

e Ensure that stuck-at-0 and stuck-at-1 faults can be detected during test on the iso-
lation control signals. This facilitates verifying during manufacturing test that iso-
lation works.

Pitfalls:

e Make sure the isolation cells really are always powered on.

e [solation clamps on clocks can considerably complicate clock tree synthesis and
timing closure. Clock tree balancing in particular can become difficult. If possible,
avoid clocks that are generated in a power gated block and used externally to the
block.

5.3 State Retention and Restoration Methods

Given a power switching fabric and an isolation strategy, it is possible to power gate a
block of logic. But unless a retention strategy is employed, all state information is lost
when the block is powered down. To resume its operation on power up, the block
must either have its state restored from an external source or build up its state from
the reset condition. In either case, the time and power required can be significant.

In many cases, an explicit retention strategy for saving and restoring state quickly and
efficiently can provide a much faster and power-efficient method of getting the block
fully functional after power up.

How essential a retention strategy is depends on the subsystem characteristics. A Dig-
ital Signal Processing unit that is primarily data-flow driven may be able to start from
reset if it is supplied with new input data. However a peripheral or cached processor
typically has enough residual state that the amount of bus traffic required to reload
this state is excessive.
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There are several methods for saving and restoring the internal state of a power gated
block:

® A software approach based on reading and writing registers
® A scan-based approach based on using scan chains to store state off chip

e A register-based approach that uses retention registers

With the software approach, a processor in an always on block reads the registers of
the power gated block during the power shutdown sequence. This state information is
stored in the processor’s memory. During the power up sequence, the processor reads
its memory and writes the state back into the power gated block. This method has sev-
eral drawbacks:

® The bus traffic considerably slows the power down and power up sequences.

® Bus conflicts can make the save/restore times non-deterministic, making it harder
to decide when it is worthwhile shutting down the block.

e Software must be written and integrated into the system’s software for handling
power down and power up. This makes the software much less reusable and
requires a much more extensive knowledge of the hardware on the part of the
engineers writing the software.

For these reasons, we will focus on the other two approaches to retention, which make
the power sequencing much more transparent to the rest of the system.

5.3.1 State Retention Using Scan Chains

Scan chains that are implemented for manufacturing test can be re-used to perform
state retention with almost no incremental area overhead.

In this approach, a dedicated set of scan chains is used for the power gated block.
During the power down sequence, the scan registers are shifted as in scan testing, but
the outputs are routed to a memory. This memory can be on chip or off chip, but if on
chip it needs to be always powered on. During the power up sequence the scan chains
are loaded from the memory.

Note that once state is scanned out to memory, the entire subsystem can be power
gated off. There is no need to keep an always on power region for retention registers.

From an RTL design perspective there are of course challenges. The most basic chal-
lenge is that scan flops are not inserted and connected up until synthesis — yet it is
necessary to code and debug the controller at the RTL level, before synthesis.

Even the number of registers and the length of the scan chains are only known after
initial implementation. Therefore the control sequencer needs to be parameterized to
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manage implementation-dependent counter values. It must also provide explicit con-
trol of scan enable and scan chains; these are later hooked up with the net-list.

To achieve the fastest save and restore times, we would like to write the retention data
to the memory using the full width of the memory data bus. That implies that we
should make the number of scan chains equal to the width of the memory data bus. In
practice, this may be too many scan chains to be practical for manufacturing test. But
typically we will use at least 8 scan chains, and potentially a multiple of 8.

If more that one chain is used then it is necessary to balance the scan chains — that is,
they must all be the same length. This balancing is necessary because the controller
generates a single shift enable signal that is shared by all the chains and is also used to
gate data into and out of memory. To achieve this balance, we can add extra registers
to the short chains.

Note that the retention memory must be large enough to hold the number of scanned
bits. Also, there is a real-time delay cost in both saving and restoring state. This grows
with the size of the block to be scanned out and back in, and is a function of how
many scan chains are used.

There is also an energy cost in shifting the register state out and back in. If an external
memory is used, then the IO switching power can be significant. Even using internal
memory, there can be large dynamic power required just to shift the data through the
scan chain. The patterns shifted are highly state dependent; in the pathological worst
case, every flop in the block is toggling on every clock. This is much more toggling
(and power) than the typical case, and can create an IR voltage drop that is unaccept-
able.

Modern test and implementation tools already need to deal with the fact that, during
scan, toggle activity can be much higher than during normal operation. These tools
can analyze the actual IR drop and allow the engineer to adjust the number of chains
and the clocking sequence to keep the IR drop to an acceptable level. But care needs
to be taken to avoid excessive IR drop that can corrupt data.

In spite of these challenges, scan-based retention can be useful in some situations. For
long term sleep, the leakage savings achieved by completely shutting down an entire
subsystem, especially by shutting down the external power supply, can be significant.
This savings is even more significant if state can be restored through the scan chains
rather than having start from the reset state after power up.

Figure 5-5 shows of scan-based save and restore, simplified to 4-bits to keep the
drawing small. Note that one of the scan chains is shorter than the rest, so a flop is
added to balance the chains. Once the scan chains are balanced the state can be saved
to memory (“SCAN-OUT & SAVE STATE DATA”) and later restored from memory
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(“SCAN-IN & RESTORE STATE DATA”) such that every register has the original
state.
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Figure 5-5 Scan Based Retention

Functional testing and simulation at the RTL level before netlist implementation (and
scan insertion) is a challenge, but not insurmountable.

One approach is to add some conditional code into the RTL design which is only
compiled when emulating scan-based retention. This code models the behavior of the
shift registers and can be included in simple test sequences to verify that the controller
is functioning correctly and the data is written to and read from memory correctly.

Below is an example of an RTL model of a dummy scan-chain for a CPU to be imple-
mented with 16 scan chains for retention support. Note that dummy data is used for
the scan chain.

“define CPU_SCAN LEN 257 /* set to implementation
length once known */

“ifdef RTL SLEEP EMULATE

parameter scan reg length = “CPU SCAN LEN;
reg [15:0] scanword [0O:scan reg length-1];
integer i;

/* initialize the scan chain to count pattern, or more
draconian X */
initial
begin
for (i=0; 1 < scan reg length; i=i+1)
begin
scanword[il<=1i; // or 16’'hXXXX;
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end
end

/* emulate scan shift CPUSI -> CPUSO */
alwayse@ (posedge CLK) begin

if (CPUSE == 1'bl) /* when SCAN ENABLE is active */
begin
for (i=1; 1 < scan reg length; i=i+1)
begin
scanword [1i] <=scanword [i-1] ;
end
scanword [0] <= CPUSI[15:0];
end
end
assign CPUSO [15:0] = scanword[scan reg length-1];
“endif

At a later stage a gate level netlist simulation should be performed to ensure that the
implementation-specific scan chains and control signals really are wired up correctly
and that the correct length scan chain has been implemented and balanced.

5.3.2 Retention Registers

Another approach to providing state retention while power gating is to replace a stan-
dard register with a retention register. A retention register contains a “shadow” regis-
ter that can preserve the registers state during power down and restore it at power up.
Unlike the main register, the shadow register is always powered on.

Figure 5-6 shows two retention registers. In each case, the main register — the master
and slave latches of the flop — is powered by the switched power rail “VDD_SW.”
The CLK, D, and RESETN pins all operate on the main register, which drives the Q
output.

In addition, there is a shadow register “RET” which is used to save and restore state to
the main register. The shadow register is powered by the always on rail “VDD.”

With the register shown on the left side Figure 5-6, when SAVE is asserted, the state
of the main register is loaded into the shadow register. When RESTORE is asserted,
the state of the shadow register is loaded back into the main register. SAVE and
RESTORE are level-sensitive signals.

With the register shown on the right side of Figure 5-6, when RETAIN goes high, the
state of the main register is loaded into the shadow register. When RETAIN goes low,
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the state of the shadow register is loaded back into the main register. RETAIN is an
edge-sensitive signal.
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“SAVE®
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Figure 5-6 Retention Registers

The detailed design of retention registers is discussed in Chapter 13. We will just
make a few comments about them here.

Real-world retention registers all have some area overhead, typically 20% or more.
Some retention registers incorporate guard bands to isolate the retention state as
robustly as possible from power gating transients. In this case the area overhead can
be as large as 50% or more. In a design with a large number of registers this area
impact can be significant.

Unfortunately, this overhead is unavoidable if an on-chip retention strategy is to be
used. Consider the alternative. We could constrain the implementation to use only low
leakage, high V1 registers, and connect these to the un-switched power rail. We then
would simply power gate all the leaky (Low- or Mixed-V) combinatorial logic
between register stages. However in any reasonable sized block the reset and clock
networks typically have to be implemented with high-leakage low-Vt buffer trees to
meet timing. These buffer trees contribute a significant portion of the leakage for the
block, so they must be power gated. But as soon as these nets are power gated, the
clocks and resets float and corrupt the registers.

In addition to the area penalty, the use of retention registers requires a more complex
power controller.
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5.3.3 Power Controller Design for Retention

The controller must manage the explicit sequencing of the save and restore signaling
as part of the power management control state machine.

The shadow register may be quite slow compared to the main register, yet we need to
make sure that the value in the main register is stable throughout the save operation.
For this reason, most designers stop the clock before performing save. Of course, the
save operation must be complete before power is shut down.

The restore cannot be performed until power is restored and the power gating tran-
sients have subsided. The restore operation must be completed before new values can
be loaded into the main registers. For this reason, most designers do not re-start the
clock until the restore operation is complete.

Although the power gating controller requires some care in design, the actual substi-
tution of retention registers for standard flip-flops can be done automatically during
implementation. Similarly, the connection of the save/restore control signals can be
automatically connected to the retention registers. These control signals need to be
implemented as always-on networks to avoid state corruption during power gating but
otherwise can be treated transparently to the RTL design.

One of the advantages of the retention-register approach is that it allows the retention
strategy to be largely transparent to the RTL designer. In this sense it closely follows
the model of automatic scan insertion and hookup. To keep retention transparent to
the RTL design, neither the clock nor reset can be active during retention. Otherwise,
the RTL design would have to deal explicitly with conflicts between save/restore
behavior and clock/reset behavior.

To minimize leakage, the clock and reset trees are likely to be off during power down.
To keep these floating (X in simulation) signals from corrupting the retention register,
retention must have priority over clock and reset. In designing the power gating con-
troller, it is important to understand the behavior of the available cells in the power
gating library to ensure that the shadow register is not corrupted due to floating clocks
and resets.

5.3.4 Partial vs. Full State Retention

One of the key architectural decisions in power gating is how much state to retain dur-
ing power down. Retaining the full state of the block — that is, replacing all registers
with retention registers — provides the most robust, easily verified, and most transpar-
ent form of power gating.
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In some designs, however, the area penalty for full state retention justifies considering
partial state retention - retaining only some of the internal state of the block. But par-
tial state retention poses some significant challenges.

In partial state retention, only the “architecturally visible” state is saved and restored.
The challenge is to assure that all non-retained registers power up in legal, safe and
verifiable states.

Example candidates for non-retained registers are FIFOs, memories, and counters.
Converting these devices to retention registers can be quite expensive. In some
designs, it may be appropriate just to make sure that they power up to a known state.
For FIFOs, this would mean resetting the FIFO controller to indicate that the FIFO is
empty. For the memories, we could reset the memory controller so that it considers
the memory uninitialized. We could reset the counters to zero.

The concept of deep and shallow state might be useful in determining candidates for
non-retained registers. Shallow state refers to the registers that directly control the
logic of the design — that is, the part of the design that could be drawn as a state
machine diagram. Deep state refers to registers that are used by the state machine but
which contain large amounts of auxiliary data — like memory, counters and FIFOs. We
would not normally draw these registers as part of a state machine diagram.

For partial retention, a reasonable strategy may be to save and restore shallow state,
and to have a separate strategy for dealing with deep state. Resetting the controllers of
the deep state registers is one possible strategy.

The problem then becomes how to verify that on power up, the combination of
retained and non-retained state allows the block to restart correctly. During simula-
tion, we set the outputs of all the registers (both deep and shallow state) to X. That is,
we corrupt all registers except the shadow registers in the retention flops.

The key to verifying correct start-up after power gating is to assure that the X’s are
not propagated. That is, after the power up sequence is complete, there should be no
X’s in the circuit except the contents of memory. And the X’s in memory should not
be able to propagate and affect the function of the circuit.

The careful and selective use of resets can solve this problem. But we need to make
sure that we only reset non-retained registers, so that we do not interfere with the
restore function of the retention registers.

Thus, it becomes important to have separate reset signals for retention and non-reten-
tion storage. We can then architect the power up sequence after power gating to
restore retained state and initialize all the non retention registers.
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The power controller for partial retention must therefore drive independent (named)
resets to the appropriate portions of the subsystem. Some rigorous functional testing
is required to ensure that there are no illegal combinations of states that might cause
deadlock.

5.3.5 System Level Issues and Retention

A more subtle complication arises from a potential interaction with clock gating,
which is implemented further down the design flow. All the state bits that make up be
enable terms for clock gating need to be carefully managed: either retained or be re-
initialized to a safe and restart-able condition. In this way, the contents of the trans-
parent latch in the clock gating cells can cleanly be regenerated — without the require-
ment to add retention to the clock gating cells.

Similarly, using both edges of the clock can be a real problem. In the power down
sequence, the clock is stopped in the “0” state. This leaves the clock gating latch
transparent; when power and state are restored, the terms that form the clock gating
control propagate through the latch, restoring the correct value to the inputs of the
clock gated registers.

If both positive-edge-clocked flops and negative-edge-clocked flops are used in the
same design, then there is no value that we can park the clock that will leave all the
clock gating latches transparent. Thus, we will not be able to restore all the data cor-
rectly.

Retention also makes scan testing somewhat more complicated. In order to perform
scan testing, we need to force the retention flops into their normal operating mode.
Thus, when we enter scan mode (for the power gated block) we need to set the power
controller so that save and restore are both de-asserted. When we enter scan mode for
the power controller itself, we need to relax this constraint, so that scan can be used to
test the generation of the save and restore signals.

5.3.6 Recommendations and Pitfalls for state retention

Recommendations:

e If partial retention is implemented then provide separate resets for the retained and
the non-retained storage portions of the design. This allows clean verification of
power on reset and restore/re-initialize operation.
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When implementing partial retention ensure that state machines and sequencers
have no dependencies on non-retained state, in order to avoid state-dependent
deadlock or invalid state conditions. (The state space to verify can be enormous if
many retention state values must be tested with non-retained state).

Where the area impact of specialized retention registers is too high then reusing
the manufacturing scan chains is an option. Although this requires some care to
map cleanly onto the netlist implementation after test structures have been gener-
ated, this can be managed relatively cleanly in RTL-coded control state machines.

Retention controls must be made controllable and observable during scan test.

Pitfalls:

Poor in-rush current management or retention power supply noise has the poten-
tial to corrupt retention registers resulting in unsafe/invalid state on restart. Great
care must be taken in the RTL power control (and in physical implementation) to
ensure power is reapplied safely.

Partial retention requires much more rigorous reset and restore validation to
ensure there are never deadlock conditions between retained/restored state and re-
initialized non-retained state.

Clock gating enable terms that affect retention state need to have retention regis-
ters on their entire fan-in state in order to ensure that “next state” sequencing
behaves correctly.

A scan-based save and restore approach is likely to use the system bus to transfer
data to/from memory. This bus typically can have wait states; thus, care needs to
be taken to ensure the scan save/restore controller can support wait-states without
any data loss.

During manufacturing test, failure to test that retention registers actually retain
data can lead to failures in the field.

5.4 Power Gating Control

Given a power switching fabric, and isolation strategy, and a retention strategy, we
can now design the power controller that controls the power down and power up
sequencing.
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5.4.1 Power Control Sequencing

From the discussions above, we extract the following requirements for power gating a
block without retention.

To power gate a region without retention:

e Flush through any bus or external operations in progress

e Stop the clocks, in the appropriate phase to minimize leakage into the power-gated
region

Assert the isolation control signal to park all outputs in a safe condition

e Assert reset to the block, so that it powers up in the reset condition

Assert the power gating control signal to power down the block

To restore power:

De-assert the power gating control signal to power back up the block

Optionally sequence multiple control signals for phased power-up depending on
the current in-rush management approach and technology

De-assert reset to ensure clean initialization following the gated power-up

De-assert the isolation control signal to restore all outputs

Restart the clocks, without glitches and without violating minimum pulse width
design constraints

Figure 5-7 shows the power control sequencing for a power gated block without
retention.

N_ISOLATE |

N_RESET | % |

N_PWRON |_ % J

Figure 5-7 Power Control Sequencing Without Retention

For a block with retention, we must add the save and restore signaling to the power
gating sequence.
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To

power gate a region with retention:

Flush through any bus or external operations in progress

Stop the clocks, in the appropriate phase to minimize leakage into the power-gated
region

Assert the isolation control signal to park all outputs in a safe condition

Assert the state retention save condition (pulse or edge-triggered depending on the
technology)

Assert reset to the non-retained registers in the block, so that they power up in the
reset condition

Assert the power gating control signal to power down the block

restore power and retained state:

De-assert the power gating control signal to power back up the block

Optionally sequence multiple control signals for phased power-up depending on
the current in-rush management approach and technology

De-assert reset to ensure clean initialization following the gated power-up

Assert the state retention restore condition (pulse or edge-triggered is technology
dependent)

De-assert the isolation control signal to restore all outputs

Restart the clocks, without glitches or violating minimum pulse width design con-
straints

o T / il

N_ISOLATE | % |
SAVE |_| %

N_RESET |_ % J
N_PWRON |_ % J
RESTORE % |_|

Figure 5-8 Power Control Sequencing With Retention

5.4.2 Handshake Protocols

Power gating takes time. The power gating switch fabric must be designed to limit
voltage spikes that might corrupt retention registers or other powered-up logic. Most
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designs achieve this by limiting the current during power up, and thus limiting the
rate at which the voltage rises to its final value.

The power controller must accommodate this process. In particular, it must wait until
power up is complete before issuing restore. That is, it must insert a delay between
power on and restore.

The simplest way to do this is to build a fixed delay into the controller sequencing.
Counters can add in enough clock cycles to meet the power up or power down times.
However embedding such time constants in the RTL ties the RTL to the timing of a
particular switch fabric implementation. The result is that the IP is significantly less
portable or reusable. Even migrating a working product onto a next generation tech-
nology node, where the power gating timing would be different, would require
changes to the RTL.

For this reason, we recommend using a request-acknowledge handshake to control the
power switching fabric.

Figure 5-9 shows an example of this protocol. The power controller issues a
N_PWR_REQ to turn the power switching fabric off. It is the responsibility of the
switching fabric to return N PWR _ACK when power is completely switched off. On
power up, the controller de-asserts N PWR_REQ to turn the switching fabric on.
When the fabric is completely on and it is safe to proceed, the switching fabric de-
asserts N PWR_ACK. When the controller sees the acknowledge, it proceeds to
assert restore and continue through the power up sequence.

Chapter 14 provides more detail on how the switching fabric can be designed to pro-
vide the acknowledge signal.

|
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Figure 5-9 Power Switching With Acknowledge

N_ISOLATE |

N_RESET
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In many applications, the power acknowledge signal is asynchronous — its timing
depends on the switching fabric design. For this reason, the power controller needs to
synchronize the acknowledge to its own clock before using it.

5.4.3 Recommendations and Pitfalls for power gating controllers

Recommendations:

e Design the control sequencers with request and acknowledge handshakes for the
power gating control.

¢ Build in interlocks and synchronization to ensure a safe wake-up sequence.

Pitfalls:

e One critical case is when the controller tries to power the block up immediately
after power down, and when in fact the power down is not complete. That is, the
power up sequence starts while the power gating fabric is only partially powered
down. Designers need to consider this case carefully in designing the power con-
troller. Remember that the power down time is dependent on semiconductor pro-
cess and temperature.

5.5 Power gating design verification — RTL simulation

We next consider the issue of verifying a power gated circuit at the RTL level. This is
a challenge because Hardware Description Languages (HDLs) do not provide a
mechanism for describing power connections at the RTL level. To simulate power
gating we need to extend Verilog — either by modifying the code or by using a sepa-
rate set of commands to describe power connections and power switching.

The Unified Power Format (UPF) defines both a language format and simulation
semantics for power gating. Much of the UPF standard addresses the implementation
of power strategies; this aspect is discussed in Chapter 11: Implementing Power Gat-
ing. Here we will limit our discussion the issue of simulating power gating.

EDA companies are moving rapidly to implement UPF and to provide the ability to
simulate power gating automatically. For those who are using simulators that do not
yet support UPF, it is possible to implement much of the UPF simulation semantics
by adding special code to the RTL, either manually or by means of a script.

(Note: The script-based approach we describe here assumes a rigorous RTL coding
style, such as that described in the Reuse Methodology Manual. 1t also depends on
using a consistent naming scheme for clocks and resets.)
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The key capabilities needed to simulate power gating at the RTL level include:

e functional modeling of power gating (including forcing outputs to X when power
gated)

¢ functional modeling of isolation
e functional modeling of save and restore
e functional modeling of the precedence of power gating/retention/reset

In addition to simulation, assertions and functional coverage should be added in order
to validate the correct sequencing and polarity of the control networks.

5.5.1 Inferring Power Gating Behavior in RTL

The first step is to simulate the effects of powering down a block.

UPF provides a mechanism (a set of tcl commands) for defining a power domain (a
set of Verilog modules) and a set power supplies (power and ground supply nets) to
the power domain.

Figure 5-10 on page 65 shows the power connections for the design we want to simu-
late. The Verilog module my_module (instance Ul) has a header switch that controls
power to all the logic in the module. The power gating controller de-asserts pwr_req
to power down the module and asserts pwr_req to power the module up. The signal
pwr_ack is the acknowledge signal that indicates that the switch has completed its
power up/power down. At the RTL level it is a just a buffered version of pwr_req. In
the gate level netlist, it will have real delays.
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pad_VDD_SOC pad_VSS_SOC
VSS_SOC
—p my_power_domain

VDD SOC ’J_‘ my_switch
Power pwr_req »
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Controller
| pwr_ack T
U1 my_module()
top
Figure 5-10

The UPF for such a design might look like this:

create power domain top -include_scope
create power domain top power domain -include scope

create supply net VDD SOC -domain top power domain
connect supply net VDD SOC -ports {pad VDD SOC}

create supply net VSS SOC -domain top_ power domain
connect supply net VSS SOC -ports {pad VSS SOC}

set scope Ul
create power domain my power domain -include scope

create supply net sw_vdd -domain my power domain
set domain_ supply net my power domain

-primary power net sw_vdd
-primary ground net /top/VSS_SOC


HX00790
高亮
UPF demo


66

Low Power Methodology Manual

create power switch my power switch
-domain my power domain
-input supply port {my sw input port /top/VDD SOC}
-output supply port {my_sw_output_port sw_vdd}
-control port {my sw control port /top/pwr req}
-ack_port {my ack port /top/pwr_ack}
-on_state {pwr on state my input port
{my sw control port ==1 })}
-off state {pwr off state
{my sw control port == 0}}

If we include this UPF code when we simulate, then the following will happen:

When pwr_req goes low (requesting a power down), then the switch turns power
off to all the elements in Ul. That is, all the registers have their outputs set to X
and all the output ports of Ul are set to X. All processes become inactive. At the
same time, pwr_ack is set low, informing the power controller that the power is
completely turned off. UPF supports assigning a delay for the acknowledge signal,
but for RTL simulation we use the default of zero delay.

When pwr_req goes high (requesting power to be restored), then the switch turns
power on to all the elements in Ul. That is, all the registers resume their normal
operation and all the continuous assignment and combinational processes resume.
At the same time, pwr_ack is set high, informing the power controller that the
power is completely turned on.

If we are using a simulator that does not support UPF, we can accomplish similar
behavior by modifying the RTL directly.

To do this we need a consistent asynchronous reset (or set) and synchronous clocking
style to all sequential statements in the RTL. It is then possible to script a conditional
set of power gating and behaviors that allow rigorous simulation modeling:

Force “X” on all register outputs when power-gated

Ensure that internal state is set to “X” when power gated to verify that reset actu-
ally resets state after power gating

Model correctly the priorities of power gating/reset/clocking to ensure correct
sequencing

For example, consider the following code:
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always @ (posedge clk or negedge nrst) begin
if (!nrst)
current state <= 4'b0101;
else
current_state <= next_state;
end

This can be automatically converted to code of the form:

“ifdef RTL PG EMULATE

wire sw_vdd;

assign sw_vdd = pwr req & pwr_ack;
“endif

always @ (posedge clk or negedge nrst
“ifdef RTL PG EMULATE
or negedge sw_vdd
“endif
) begin
“ifdef RTL PG EMULATE
if (!sw_vdd)
current state <= 4'bXXXX;
else
“endif
if (!nrst)
current state <= 4'b0101;
else
current state <= next state;
end
end

When simulating with RTL PG _EMULATE defined, the power gating signal sw_vdd
is added to the sensitivity list of the process. It is the highest priority term in the
sequential process description and forces current state to X whenever power is
removed.

Thus, we can write a script to modify every sequential process in my_module to have
the power gating behavior coded above. Note that additional code must be added at
the top level to connect pwr_req and pwr_ack to the power gating controller.
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Also note that the behavior simulated here is not identical to the UPF semantics —
only the register outputs are set to X, not the output ports of the module. So if any out-
put is purely a combinational function of inputs, then that output will not be set to X
by the modifications outlined above. Additional scripting is required to set such an
output to X.

5.5.2 Inferring Power Gating and Retention Behavior in RTL

For designs that use retention, the next step is to modify the RTL to model the reten-
tion behavior:

e Initialize the retention state variable to “X” to capture invalid RESTORE before
SAVE operation

e Sample register state to an extra inferred retention state variable for “SAVE” oper-
ation

e Force “X” on all register outputs when power-gated
® Re-initialize state from the retention state variable on “RESTORE” operation

® Model correctly the priorities of power gating/retention/reset/clocking to ensure
correct sequencing

Again, we can do this either by adding to our UPF code or by writing a script to mod-
ify the RTL directly.

UPF provides commands to specify the “always on” power net for the retention regis-
ters and the save and restore control signals. By default, the set_refention command
will convert all registers in the power domain to retention registers.

set retention my retention strategy
-domain my power domain
-retention power net VDD SOC

set retention control my retention strategy
-domain my power domain
-save_signal {SAVE posedge}
-restore signal {NRESTORE negedge}
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UPF specifies the following semantics for these commands. We start with the same
example as before:

always @ (posedge clk or negedge nrst) begin
if (!nrst)
current state <= 4'b0101;
else
current_state <= next_state;
end

With the added UPF code, the simulator will behave as if we had added the following
two processes to the RTL:

reg [3:0] save current state;

always @ (posedge SAVE) begin
save_current state <= current state;

end

always @ (negedge NRESTORE) begin
current state <= save_current state;

end

Note that this approach implies that NRESTORE, clk and nrst must be mutually exclu-
sive; only one can be active at any time. Otherwise a conflict can arise between the
different processes driving current state. The power gating controller must be
designed to comply with this requirement. We can use assertions to check during sim-
ulation that this requirement is not violated.

If we are not using a simulator that supports UPF, we can write a script that makes
these same modifications to the RTL.

The resulting code would be added to the RTL:

“ifdef RTL PG EMULATE
reg [3:0] save current state;
always @ (posedge SAVE) begin
save_current state <= current_ state;
end
always @ (negedge NRESTORE) begin
current state <= save current state;
end
“endif
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Note that with UPF we can control whether we simulate retention simply by whether
we include the UPF in the list of source files. When we modify the RTL using a script,
we need to use an ifdef to control simulation.

5.6 Design For Test Considerations

A key component of design for test (DFT) best-practices is providing external control
of clocks and resets. This enables standard Automatic Test Pattern Generation tools to
generate high coverage test vectors.

Power gating designs create some additional challenges for design for test. These
challenges include:

e External control and observability for the power gating, retention and isolation
signals

® Dealing with max current and power limitations during test

e Testing the power switching network for correct analog behavior

e Testing correct shutdown, isolation, retention behavior

e Testing correct function of power gating controller

5.6.1 Power Gating Controls

Best practice RTL design requires the designer to ensure controllability of resets for
testability. All derived or re-synchronized resets (or presets) are multiplexed from an
externally controllable primary reset control pin. That is, in test mode we must be able
to override all the resets in the system and provide a master reset from an external pin.

For similar reasons the designer needs to provide controllability of power gating con-
trol networks. During test, we need to be able to:

® Prevent scan test patterns from accidentally toggling state machine outputs that
activate power gating of sub-systems.

® Prevent scan test patterns from accidentally toggling isolation clamp signals.

® Prevent scan test patterns from accidentally asserting restore and corrupting the
data in the scan flops.

Thus, all the signals coming out of the power gating controller need to be gated or
multiplexed when in test mode. Forcing the isolation signals and restore off during
scan is a minimum requirement. A better solution is to provide direct control over
these signals from external pins or an on-chip test controller when in test mode.



Designing Power Gating 71

Forcing power gating off — forcing all power gated block into power-up mode — dur-
ing test is an option in some designs. But in many designs this is not an acceptable
practice because of overall power limitations on the chip.

5.6.2 Power Limitations During Scan Test

During scan testing, all the flops in the scan chain can potentially toggle in each
clock. This means that switching activity (and hence dynamic power) can be much
higher during test than in normal operation. In fact, the dynamic power during scan
test can exceed the capabilities of the package, leading to excessive heat and damage
to the chip.

For this reason, we would like to be able to power down all the power-gated blocks in
the chip except for the one under test. To do this, we need to be able to control the
power gating signals from external pins during test mode. We also need to design the
scan chains so that there are separate chains for each power gated block. We cannot
have the scan chain for block under test go through a block that is powered down.

Depending on the design, it may be possible to multiplex the 10 pins of the chip to
provide the required control. In other designs, we may need to use a JTAG controller
and some dedicated logic to control these power gating, isolation, and retention sig-
nals.

5.6.3 Testing the Switching Network

Manufacturing problems in the switching network are difficult to detect. Control
buffer or switch transistor faults may lead to some power gates not being switched on
properly, resulting in excessive IR drop. This can lead to the end product not meeting
its performance specification.

Other defects may cause some power switches to be permanently on, resulting in
excessive current consumption. This situation can be partially tested using IDDQ test,
but may not always be detectable. IDDQ threshold(s) should be set to validate any
needed specifications for battery life.

At-speed testing is an automated method that is able to identify some malfunctioning
power switches. High impedance or broken power switches may cause timing failures
in critical paths. Transition fault testing will pick up many of these, and targeted path
delay testing can address others. No solution is fool-proof, however, so some func-
tional test may be needed. Care must be taken during test development to ensure that
all necessary clock control is available for each power mode under test.
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Some form of static current (IDDQ) testing is needed to verify that power switches
turn off correctly. For power-gated chips, the chip is put into a number of quiescent
states (at least one for every “sleep” mode), and IDDQ is measured and compared
with its specified value. Leakage measurements can take a long time, but specialized
measurement techniques and DFT can both reduce test time and improve the quality
of results. Because background leakage can be high, modern IDDQ testing methods
often compare multiple measurements, sometimes across multiple die, rather than set-
ting a single threshold value.

In addition to these tests, it may be useful to confirm that power domains can be pow-
ered up and down without corrupting the behavior and register contents of other
(powered-up) blocks. In addition, we need to test that retention registers retain state
when other blocks power up and down. Such tests can be quite challenging, since the
effects of powering up a block can be highly design-dependent, as well as dependent
on how much activity is going on in the adjacent blocks. But in some designs it may
be worthwhile to develop functional vectors to verify this behavior.

5.6.4 Testing Isolation and Retention

During normal scan testing, we force the isolation control signals to the non-clamping
state. The correct function of the isolation cells (in the non-clamped state) is then
tested as part of the normal scan testing of the chip.

We can test the isolation cells in the clamped state in two different ways:

o We can use functional tests

e We can repeat the scan tests of the receiving blocks while clamping the isolated
outputs of the block under test. With the isolated outputs clamped to a known
value, these just become fixed inputs to the other blocks of the chip.

Manufacturing tests of retention registers require that both zeroes and ones can be
saved and restored. This can be achieved by a special scan test where:

e a pattern of alternating ones and zeros are scanned into the flops

e save is asserted (from our external control)

e the complementary pattern of alternating ones and zeros is scanned into the flops
e Optionally - the block is powered down and then powered up

® restore is asserted

e scan out the results and check that the flops were restored correctly

We can then repeat the test with the reverse patterns of ones and zeros.
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Note that if we include power down/power up in the test, the tester must be able to
control the power gating of the block under test.

5.6.5 Testing the Power Gating Controller

With the techniques described above, we can provide effective manufacturing tests
for power gated designs, with one exception: we have been forcing the outputs of the
power gating controller. Now we need to test it.

We can test the power gating controller either with functional tests or with scan. The
functional tests will be design specific. The scan test approach requires that we force
the outputs of the power controller outputs to the appropriate state during scan — so
that we avoid accidentally toggling power meshes up and down during the test. One
way to facilitate this control is to wrap the power gating controller in an IEEE 1500
wrapper. This approach ensures full controllability and observability of the power
gating controller while allowing us to keep the outputs of the controller at a stable
value.

Recommendations:

® Clock and reset signals must be made externally controllable during test

e Power gating control signals must also be made externally controllable during test
® Isolation control signals need to be made controllable during scan test

e Retention controls must be made controllable during scan test.

e Support for IDDQ testing should be provided in the case where “stuck-on” power
gates could potentially cause product malfunction in the end-customer system.

Pitfalls:

e Determining the appropriate target values for IDDQ testing is a challenge. Power
gated quiescent current measurements can only be relative to full-on current mea-
surements due to the wide spread in leakage currents across fabrication process.
One approach is to require each measurement to have a value specified relative to
the others, such as requiring the sleep state leakage to be less than 20% of operat-
ing leakage, for example.



CHAPTER 6 Architectural Issues
for Power Gating

This chapter discusses some of the architectural issues involved in implanting power
gating designs. In particular, it addresses the issues of partitioning, hierarchy, and
multiple power-gated domains.

6.1 Hierarchy and Power Gating

A scalable approach to chip architecture is valuable since a system-on-chip design
today often becomes a component in an even larger chip in a subsequent product gen-
eration.

To support this portability, module boundaries must be enforced at the power domain
level. That is, a given module should belong to a single power domain, not split
across several domains. Some tools and flows support RTL process by RTL process
assignment to power domains, but this leads to much more complicated implementa-
tion and analysis. Clean visibility of the boundaries of a power-gated block is key to
having a clean, top-down implementation and verification flow.

Although one can in theory nest power gated modules arbitrarily within power gated
subsystems which are in turn nested on a shared switched power rail, there are consid-
erable benefits in not creating multiple levels of power switching fabric. As described
in Chapter 11, power-gating is intrusive and adds in some voltage drop and degrada-
tion of performance. Cascading multiple voltage drops can lead to unacceptable
increases in delay.
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Even if the design is represented as hierarchical at the architectural level, the imple-
mentation is improved if this is mapped onto a single level of power gating at imple-
mentation. Consider the example shown in Figure 6-1. The CPU conceptually has all
the core logic power gated, and within it a number of functional units that can each be
powered down independently — a Multiply-Accumulate and a Vector Floating Point
units in this case:

/ Rail-switched CPU Sub-system

Y

Power-Gated
CPU Core |

Integer Cache Memory Subsystem
Core

MAC VFP

Figure 6-1 Power Gating Example

The modes of operation can be described in table form as:

Cache CPU MAC VFP |Power State
(OFF) (OFF) - - Shutdown (Cache cleaned, VDDCPU off)
ON OFF - - Deep Sleep (Cache preserved)
ON ON OFF OFF |Normal Operation
ON ON ON OFF |DSP workload
ON ON OFF ON Graphics workload
ON ON ON ON Intensive multimedia mode

From an implementation standpoint the switching fabric is flattened as shown in
Figure 6-2. There is never a case when the MAC or VFP functional units is switched
on without the CPU core also being powered. So the switch control semantics are
adjusted to AND the control terms rather than cascade the switch elements.
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Rail-switched CPU Sub-system

v

Power-Gated
CPU Core

Integer
Core

MAC

Cache Memory Subsystem
VFP

Figure 6-2 Flattened Switching Network

The power mode table now includes explicit control of the nested power gated func-

tional units:

Cache CPU MAC VFP |Power State
(OFF) (OFF) (OFF) (OFF) |Shutdown (Cache cleaned, VDDCPU off)
ON OFF OFF OFF |Deep Sleep (Cache preserved)
ON ON OFF OFF  |Normal Operation
ON ON ON OFF |DSP workload
ON ON OFF ON Graphics workload
ON ON ON ON Intensive multimedia mode
Recommendations:

e Map power gated regions to explicit module boundaries

® When partitioning a hierarchical power gating design ensure that the power gating
control terms can be mapped back to a flat switching fabric.

Pitfalls:

® Avoid control signals passing though power-gated or power-down regions to other
power regions that are not hierarchically switched with the first region.

® Avoid excessively fine power gating granularity unless absolutely required for
aggressive leakage power management. Every interface adds implementation and
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verification challenges and complicates the system level production test chal-
lenges.

® Avoid a power gating system of more than one or two levels.

6.2 Power Networks and Their Control

In the design of a processor-based SOC the CPU system may well introduce a number
of power networks:

¢ An independent power rail to the entire cached CPU subsystem — this allows the
CPU to be completely turned off for long-term “sleep” modes of operation.

e A power gated supply to the CPU logic to support short-term leakage savings
modes where the cache memory can be left retained but all the leaky standard cell
logic turned off locally.

e Optionally, some form of always-on retention power supply from the non power
gated rail. This is needed to support state-retention registers in the standard cell
portion of the design.

® An always-on supply to provide power to the isolation cells.

® A non-power gated supply for the power gating controller and for the buffers on
all the power control signals: the power switch controls, the retention controls, and
the isolation controls.

e An SOC-level always-on supply to control the external rail switching handshake
with the power supply.

Figure 6-3 illustrates the power networks with independent “VDDCPU” and always-
on “VDDSOC” with a common VSS ground connection; in this example the power-
gated standard cell area has a non-gated state retention supply shown to indicate an
active supply rail within a power gated region:

VDDCPU
vDDSOC A
Power-Switching fabric
A\ L y Y
State
Retain Iso
Power-Gating Power-Gated Non-Power-Gated
Control -* Controller CPU Standard-Cell Cache Memories
VSS A y A

Figure 6-3 Power Network Control
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6.2.1 External Power Rail Switching

External power rail switching offers the best long-term leakage power savings — but
introduces a significant turn-on delay to allow voltage regulation to stabilize and set-
tle within specification.

Only a few voltage rails can typically be externally switched; every power supply
incurs (external) regulator cost and area on the circuit board — including inductors and
capacitors required to implement switched mode power supplies. Every power rail
also requires on-chip power distribution that costs area and complicates the power
planning and physical floor-planning. Most SOC’s already have at least three power
rails:

e JO power (at least one of 1.8/2.5/3.3V, and perhaps several depending on the
application

e “Always-on” SOC core rail (technology dependent logic and internal memory
power rail)

® (Clean analog power supply rail to PLL’s.

® An optional “keep-alive” voltage supply to the real-time clock

Adding more than two or three external switch power rails adds significant complex-
ity and cost to the end-product.

Typically a shared ground/VSS connection approach to the chip and board works best
for external power rail switching. Although there are typically independent VSS pins
for both the IO pad-ring and the chip core to de-couple output simultaneous switching
activity from the logic and memory, these are typically grounded on the circuit board
into a shared “0-volt” ground plane. Treating any other power supplies as switched
positive supplies relative to the common ground minimizes complexities when adding
power gating.
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External power rail switching incurs significant delays on wake-up events — from the
order of tens of microseconds to milliseconds or even longer. Much faster supply
switching times are not necessarily desirable. The in-rush currents to re-charge all the
capacitive nodes in the powered-down subsystem result in noise injection into other
(powered) regions of the chip. The resulting “ground-bounce” in a shared ground sys-
tem can introduce problems that are hard to quantify until very late in the implemen-
tation and analysis phases of the design flow.

Translating such latencies into clock cycles at RTL level is not simple. Normally the
clocks should be suppressed until a switched power rail is stable and within specified
tolerance. For a design operating in the hundreds of MHz region this may be the
equivalent of tens of thousands of clock cycles. The actual delays are highly depen-
dent on the power supply technology (which may have to be multi-sourced in a pro-
duction).

Separate power rails become a necessity when one introduces dynamic voltage scal-
ing (Chapter 9). It may also be highly desirable to give large banks of memory their
own supply which may be switched to intermediate RAM retention operating condi-
tions, for example. This is discussed more in Chapter 13.
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Recommendations:

e Minimize the number of external switched independent power rails — each one
must be justified from an end-product requirement given the associated additional
power supply real-estate costs and on-chip power distribution.

e With external switched rails, it is best to switch (positive) supply rails and retain a
common ground.

e In systems implementing voltage scaling an independent rail must be provided for
each voltage scaled region.

Pitfalls:

® Design for significant external power rail switching times: tens or hundreds of
thousands of clock cycle latencies must be factored into wake-up and will be
dependent on the external PSU specifications.

e Although multiple rails appear elegant from a system design perspective they
introduce verification and deployment challenges in production. Independent sup-
ply rails have independent voltage control regulators, and independent rails can
exhibit vastly different load regulation characteristics when active, wait-stated or
halted compared to logic powered at interfaces.

6.2.2  On-Chip Power Gating

On chip power gating is much faster than off-chip power rail gating. And the smaller
the power gated region, the faster power can be gated on and off. The current required
to power up a small power gated region is much less than that required for a large
block. But time must be budgeted to manage the minimization of power gating tran-
sients and noise injection as seen by other logic and memory.

Therefore it is realistic to see power gating in terms of a few clock cycles for very
small regions and tens or even hundreds of clock cycles for more significant gate
counts. Turning on a number of small power-gated regions at the same time is no bet-
ter than powering up a large block and may lead to a much more complex power con-
troller.

Power gating has an impact on both performance and area, as will discussed later
chapters, due to the nature of the switching transistor fabric. These limitations will

impact system architecture and design objectives.

Recommendations:
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® Design for technology-dependent power-gating times: tens or hundreds of clock
cycle latencies may need to be factored into wake-up times dependent on the area
switched and the switching fabric control characteristics.

® Design for “wait-states” across boundaries where there are dynamically power
gated functional units such that the implementation-dependent delay times can be
safely managed and latency constraints set.

Pitfalls:

e Every power-gated rail introduces verification and test challenges so the number
of power gated regions needs to be carefully justified and factored into project
timescales.

6.3 Power State Tables and Always On Regions

When dealing with multiple power-gated power domains, power routing can become
complex. In particular, the concept of “always on” becomes less clear. Figure 6-4
shows three power domains, each of which is power gated.

Domain A Domain B Domain C
Iso Iso
N % b a |'> b aQ —‘>~
_|ow _|owx
Retention Flop Retention Flop

Figure 6-4 Buffering Inter-Domain Signals

If power domain B is always on, then there is no problem. But if domain B is turned
off while domains A and C are powered up, then there is a problem: the outputs from
A to C are corrupted because the buffer in B is powered down. In this case, we would
have to route power from some other “always on” supply to the buffer in B. We could
use either the isolation supply in A (since it stays on even when A is powered down)
or the supply from C.
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On the other hand, if we know that whenever B is powered down, then C is also pow-
ered down, we do not have to provide a special supply to B. In this case, we consider
B to be “relatively always on” — that is, always on relative to domain C.

Thus, we can end up with some fairly complicated power routing rules depending on
the power gating relationships among different blocks.

UPF provides a succinct way for system architects to communicate these power gat-
ing dependency rules to the implementation tools.

The create_pst and add_pst_state commands allow us to create a power state table
that can be used to specify the relationships between different power supply nets. See
Appendix B for a description of these commands.



CHAPTER 7 A Power Gating Example

The SALT technology demonstrator project provided a platform for testing the
approaches to power gating and state retention described in this book. In this chapter
we give some more details on the system design and RTL coding for this project.

The SALT chip is implemented in 90nm generic technology and contains an ARM
processor, an AMBA bus and set of peripherals, and a Synopsys USB OTG digital
core and PHY. The ARM core and the USB core are independently power gated. The
ARM core uses full state retention; the USB uses partial state retention. Both the
ARM core and the USB use switching fabrics of header switches; thus they switch
VDD and use a common ground (VSS).

In this first section, we describe the power gating design for the processor. Figure 7-1
on page 86 shows a simplified block diagram of the SALT chip.

7.1 Leakage Modes Supported

Most battery-powered processor based designs have to deal carefully with the balance
between performance (to support product features) and low power (to support long
battery life). The performance requirement steered us to a higher performance, leakier
process. To maintain long battery life, we needed to provide aggressive leakage man-
agement.
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Figure 7-1 SALT Block Diagram

For the SALT project, the processor uses four low-power modes. In all modes, the
power controller generates a SLEEP signal to enter the low power mode and the
WAKE signal to exit. In order of increasing leakage savings — and increasing time to
power up and power down — the modes are:

HALT: SLEEP turns off the clocks to the processor, WAKE restarts the clocks.
Power remains on.

SNOOZE: SLEEP initiates power gating with state retention; power is switched
off to the processor itself, but the cache memory remains powered up. WAKE ini-
tiates the power up and restore sequence; power is brought up as fast as safety
allows.

HIBERNATE: SLEEP initiates a sequence of scanning the processor’s internal
state to external memory; the VDDCPU power rail is then switched off. WAKE
causes the power rail to be switched back on, and the scan chains are used to
restore the internal state of the processor. A 32-bit AMBA-based bus is used to
write to and read from an external memory. A 32-bit CRC provides integrity
checking. The CRC is saved along with the scanned data and used to protect
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against restarting with corrupted state. Note that VDDCPU provides power to the
processor logic, not cache. So in HIBERNATE mode, only the processor is pow-
ered down; the cache memory remains powered up.

e SHUTDOWN: SLEEP initiates the same power down sequence as in Hibernate,
but now both the processor and the cache have their external power supplies
turned off. Explicit code must be called to write back any dirty data in the cache
memories before both the VDDCPU and VDDRAM supplies can be power-rail
switched. This mode is the only mode not transparent to the operating system.

In addition to these modes, the SALT chip provides active leakage reduction through
externally managed threshold scaling. This threshold scaling is done using back-bias
control. Both P- and N-wells for the CPU standard cell area are brought out to the
chip’s pins. This enables experimental analysis of delay and leakage power character-
istics as the bias is varied.

Using this well-biasing scheme, we defined three operating modes:

e NORMAL: with standard well-bias
e TURBO-RUN - with the wells forward biased for increased speed
¢ POWERSAVER-RUN - with the wells reversed biased for reduced leakage

The power controller is designed to ensure that well-bias voltages are only changed
while the design is static and un-clocked. Any change between “normal” and back- or
forward biased modes of active power management go through one of the HALT,
SNOOZE, or HIBERNATE states. Figure 7-2 on page 88 shows the state diagram for
the power modes.
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Figure 7-2 Power States for SALT

7.2 Design Partitioning
The RTL design is partitioned to allow the three primary power supplies to be mapped
to the RTL design:

e VDDSOC is the “always-on” supply that powers the entire chip except the pro-
cessor and its cache.
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e VDDRAM is an external switched power rail that supplies the Cache and MMU
RAMs.

e VDDCPU is an external switched power rail that supplies the CPU standard cell
area.

VDDSOC provides power to the digital side of the PLLs, the clock generators and the
power management control blocks, plus all the real-time peripherals. These peripher-
als include a real-time clock and timers; these can generate wake-up events as part of
their interrupt service requests.

VDDSOC also provides power to the USB OTG subsystem. The USB is power gated
though its own power switching fabric using a separate power controller.

Using a separate power supply (VDDRAM) for the cache accomplishes several
objectives: it allows the CPU to be powered down while keeping the cache powered,
allowing faster restore. It allows the CPU and cache to be powered down while keep-
ing the peripherals of the chip powered up. These peripherals control the wake up of
the CPU — upon detecting an interrupt, the interrupt controller signals the power con-
troller to power up the CPU. Finally, using a separate cache power supply allows
development of detailed leakage and active power consumption profiles, so that we
can determine the minimum operating voltage for the cache memory and the mini-
mum voltage that assures that the cache retains is contents during CPU shut-down.

Similarly, using a separate supply (VDDCPU) for the CPU logic allows detailed leak-
age and active power consumption profiles to be measured as well as the time and
energy cost to get in and out of each power saving state. Figure 7-3 shows the parti-
tioning of the SALT chip.
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Figure 7-3 Partitioning of the SALT Chip

Since the original SALT design, the CPU sub-system has been re-implemented to
improve design re-use. The Bus Interface Unit and the Power-Gating Controller are
now integrated into a “VDDSOC” region within the CPU. This integration signifi-
cantly reduces the number of signals — and blocks — that the SoC design team has to
deal with when integrating the ARM core into the chip.

Although this makes the 3-supply-rail CPU subsystem slightly more complex to
implement, the timing and internal power gating and isolation interfaces are now all
abstracted away from the top-level SOC design. Any changes or enhancements to the
low-power states supported by the IP block are independent of the top level system
design.

Figure 7-4 shows the re-partitioned CPU subsystem.
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Figure 7-4 Re-Partitioned CPU Subsystem

Power Gating control and handshakes

The CPU power-gating control system manages:

the interfaces to the external power supplies for hibernate and shutdown modes

the bus-clock synchronous scan clock pulses for hibernation-mode save and
restore.

local header-switch power gating control for snooze mode
isolation and state retention for snooze mode

the handshake with the system clock generator to switch CPU clock frequencies
for the different run modes

One of the goals of the SALT project is to develop a methodology that supports a
wide range of library components and current in-rush management techniques. To do
this, the CPU power controller uses a request-acknowledge handshake for every con-
trol signal: power gating, isolation, save, restore and reset.
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All the acknowledge signals are treated as asynchronous to the controller clock, and
have local synchronizers to the state machine clock domain.

This approach ensures that the design is free of locally coded delays or counts. It also
allows the acknowledge signals to be tied directly to the requests for some implemen-
tations or built as true handshakes. In the current SALT implementation, the acknowl-
edges for isolation, save and restore, and reset, are all tied to their respective requests;
as implemented, these functions are all very fast and require no delay in sequencing.

The power gating control of the header switches uses a true acknowledge. The power
down request is daisy chained through the header switches, so that the acknowledge
that arrives back at the controller has a delay equivalent to the switching time of the
whole fabric.

A couple of additional design notes:

e After asserting reset, the initialization (power on reset) sequence pulses the
save/restore signaling to flush out any X-s from the shadow retention flops. This
may be useful when running functional test programs or vectors on the gate level
netlist.

¢ All timing-dependent state machine transitions include a holding term that waits
for the output asserted in that state to be acknowledged in order to maintain the
timing-independent request/acknowledge sequencing

e The power-gating assertion and de-assertion use a request-acknowledge hand-
shake.

e In the SALT project there are extra diagnostic control inputs to control the switch
fabric which allow the power gating to be soft-sequenced or forced fully on and
off, and only the power-gating acknowledge input to the state machine is used to
determine when power is safely restored.

7.3 Isolation

The SALT project uses several different isolation techniques. The initial version of
SALT was done before there was tool support for automatically inserting isolation
cells. As a result, we manually inserted these cells in the RTL.

The interface between the CPU and cache is particularly timing critical, requiring
careful design and timing analysis. We put isolation cells on all of the outputs from
the CPU to the cache, but placed them in the cache’s VDDRAM region. This was
convenient in the SALT design because the cache is always powered up, making
power routing to the isolation cells simpler.



A Power Gating Example 93

The VDDRAM region has input isolation cells instantiated as “Generic Library
Cells.” These are just RTL wrappers that can be mapped either to behavioral simula-
tion models or to technology-specific clamp cells from the “Power Management Kit”
for the standard cell library. This approach provides explicit instantiation of the cells
on the many critical path signals, including clocks and resets, into the memories from
the CPU core logic. Instantiating these cells in the RTL provides clean visibility of the
clocks and critical signals that need to be managed carefully in the implementation
flow. Clock balancing across isolation cells is not straightforward; isolation cells typ-
ically limit the flexibility the clock buffering tools in restructuring the buffer trees.

The outputs from the CPU to the Bus Interface Unit are isolated by cells placed in the
CPU - that is, in the VDDCPU region. These output isolation cells pull-down all out-
put signals at the AMBA bus interface in Snooze mode (local power gating), to guar-
antee clean SOC interface signals.

However when the CPU rail is switched off (Hibernate mode) these isolation cells
lose their VDDCPU power and the outputs could again float. To address this problem,
simple bus repeater or hold cells were added in the VDDSOC domain to clamp these
outputs while avoiding any further gate delays. In addition, the isolate control signal
from the power controller drives reset in the bus interface module to force logic-0
clamping of all bus interface protocol signals.

The power controller generates a single isolate control signal, but it is routed as two
separate signals. On copy goes to the cache RAM without going through the CPU
region, and one copy goes to the CPU without going through the cache. When
VDDCPU has its power rail shut down during hibernate, the isolate signal for the
cache is still powered up since all the buffers in its path are powered by VDDSOC or
VDDRAM. Thus, the inputs of the cache are protected from floating signals (and data
corruption) during hibernate.

The USB OTG block uses the alternative of instantiated AND gate cells in the RTL
with suitable “don’t-touch” attributes added to prevent logical optimization across
these isolation boundaries. During synthesis we force these AND gates to be mapped
to cells that do not crowbar with one floating input (as long as the other input is low).

All of the isolation cells in the SALT design were instantiated using a generic, tech-
nology-independent wrapper module. For hand instantiated cells, this provides a
degree of design portability and enables simulation before a specific technology
library has been selected.

The initial version of the SALT chip instantiates isolation cells in the RTL as
described above. In a subsequent version, we use EDA tools to implement the isola-
tion cells without modifying the RTL. The re-partitioning of the CPU subsystem to
include VDDSOC also eliminates the need for bus repeater cells for the AMBA bus
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interface signals. Now the isolation cells get power from VDDSOC, which is always
on. Thus, a single set of isolation cells is used to isolate the bus interface signals.

With the UPF-defined simulation semantics, it is possible to instantiate and simulate
isolation cells by issuing a UPF tcl command (set_isolation); no hand instantiation or
generic wrappers are required.

7.4 Retention

The SALT project incorporated several retention techniques to allow comparison and
analysis of the area/time/energy cost functions for each technique on the same silicon.

The CPU uses full state retention. Given a fully validated CPU core, retaining every
register bit state is the only safe approach to ensuring that the processor can be
restarted with arbitrary control and data state. To retain only the architectural state,
and use reset signal for non-architectural state, would require a serious verification
project.

A key concern of any power gating design is to assure that retention registers do not
get corrupted during the power down/power up sequence. On SALT we added a non-
real-time diagnostic mechanism to the power control sequencing. It uses the “Hiber-
nate” scan functionality to check-sum and save to external memory the contents of the
all the shadow registers after the SAVE operation and then checksum and save the
entire register contents after the RESTORE operation. These can then be compared to
detect any corruption of the retention registers during power sequencing.

This approach allows error analysis for both random and location sensitive problems
and the efficacy of the soft-start power gating sequencing in limiting in-rush current.
This also turned out to be a valuable way of quantifying the safety margins of the
retention flops and allowed them to be subjected to thermal and voltage shocks while
in retention mode.

On the other hand the USB OTG core uses partial retention. The core is partitioned
with persistent USB end-point data held in the Control and Status Register (CSR)
block, while the Protocol Interface Engine (PIE) block contains only protocol state.
Data for the current transaction is held in a RAM-based FIFO. During power down,
the USB waits for the current transaction to finish, so the FIFO is empty. It then saves
all the state of the CSR, using the standard retention register technique. On power up,
the CSR has its state restored, and a reset is issued to the PIE. This resets the protocol
engine, and it is ready for the next transaction.

The USB power gating design is discussed in more detail in Chapter 8.
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7.5 Inferring Power Gating and Retention

In the SALT project, we use a retention register cell with a single-pin control to con-
trol save and restore in an edge-triggered manner. Retention state is captured on the
falling edge of an active-low NRETAIN signal and restored on rising-edge of the
same NRETAIN:

Building on the same worked example described in Chapter 5 we can modify the UPF
to show this retention behavior as follows:

set retention control my retention strategy
-domain my power domain
-save signal {NRETAIN negedge}
-restore signal ({NRTAIN posedge}

Or, if we are using a simulator that does not support UPF, we can modify the RTL to
show retention behavior as follows:

“ifdef RTL_PG EMULATE

reg [3:0] state SAVE = 4’'DbXXXX;

wire PWR;

assign PWR = pwr req & pwr_ack;
“endif

always @ (posedge clk or negedge nrst
“ifdef RTL PG EMULATE
or negedge PWR or negedge NRETAIN

“endif

) begin

“ifdef RTL PG EMULATE
if (!PWR)

current_ state <= 4'bXXXX;
else if (!NRETAIN)
current_state <= state_SAVE;
else
“endif

if (!nrst)
current state <= 4'b0101;
else
current state <= next state;
end
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“ifdef RTL_PG EMULATE
always @ (negedge NRETAIN)

state SAVE <= current state;
“endif

7.6 Measurements and Analysis

We evaluated the SALT project silicon to understand the power gating and state reten-
tion improvements to leakage power, and the effect of the switching fabric on the
functional performance.

Figure 7-5 shows the basic evaluation of the dynamic and leakage power as measured
for both the cache memories and the standard cell logic for the ARM926EJ CPU sub-
system stepping the power supply in 10% steps from 110% of nominal down to 70%
of nominal. For this 90nm Generic process technology the nominal supply voltage is
1.OV.
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Figure 7-5 Power Measurements for SALT

The measurements are at the circuit board level — before any package/bond-wire/on-
chip IR drop and the power gating fabric itself — so are very reasonable for “typical”
silicon at room temperature.

The worst-case timing sign-off target frequency for the CPU design was 300MHz.
The first three measurements show the dynamic power with the CPU operating at
300MHz, 200MHz, and 100MHz respectively.

The “ClkGate” measurements reflect the baseline leakage when the clock for the
entire CPU is gated off.

The “SRPG” (Save Restore Power Gating) measurements are the leakage during
power gating. Thus it reflects the leakage of the switches, the retention latches and the
always-on control buffer trees, and in this case also includes the baseline leakage for
the cache memories that are not power-gated.
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Figure 7-6 shows the measured leakage power for the power-gated “VDDCPU”
power domain across the temperature range of key interest for battery-powered
products. The vertical scale is plotted logarithmically:

SALT90G CPU Logic CG/ SRPG
566
/4/
- 100 ]
g 100 =+
E
)
z
&
Y 4
©
X
E — R A
e
—
8
Mj
30 20 10 0 10 20 30 40 50 60 70 8 90 100 110
Temperature (C)
| —#—CPU CG power—o—CPU SRPG power]

Figure 7-6 Leakage Power on SALT

The upper curve plotted is the baseline leakage when the clocks are stopped. The
lower curve is the measured leakage power with State-Retention Power-Gating.
Across the entire temperature range the leakage power savings are more than 10-fold
and greater than 25-fold around room temperature.

Figure 7-7 shows the measured leakage power for not only the power gated standard

cell logic but also the cache memories, which were not available with power-gating
for this project:
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Figure 7-7 Leakage vs. Temperature

The upper curve is the baseline total leakage for the CPU subsystem (logic plus
RAMs) and the lower curve shows the power with the logic portion power gated with

state retention.

The leakage power of the RAM now dominates the leakage power but there is still a
factor of two leakage power saving for the CPU subsystem. With integrated power
gated RAMs the savings could be improved to closer to those achieved for the logic

portion.

Figure 7-8 on page 100 shows the detailed comparison of the leakage power savings
of state retention relative to the baseline leakage. The ratio of baseline leakage to
SRPG leakage is plotted, on a linear scale, to show how this characteristic varies
across the temperature range.
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Figure 7-8 Leakage Savings vs. Temperature

The deterioration of the savings at the high end of the temperature range can be
explained by the leakage behavior of the High-V switches. The very best power-gat-
ing leakage power saving for this particular design and technology was achieved at
35C.

In summary, power gating techniques when applied to standard-cell logic produced
leakage power savings of between 10x and 25x over the baseline leakage. Because
cache memories are typically tuned for performance and so exhibit a fairly high leak-
age power, these too benefit from leakage reduction techniques. This topic is
addressed in Chapter 12.

The SALT technology demonstrator has been an effective vehicle for developing
State-Retention Power-Gating techniques and methodologies and for analyzing the
costs and benefits of power gating on a 90nm process. These techniques and method-
ologies will be highly appropriate at 65nm and below.



CHAPTER 8 IP Design for Low Power

The previous chapters have discussed low power design from the perspective of the
system architect and chip designer. This chapter describes low power design from the
perspective of the engineers who design complex IP, such as processors, DSPs, USB,
PCI Express, and bus infrastructure. Until now, we have assumed that the IP is rela-
tively fixed, and that we must add low power capability to it. Now we discuss how to
design complex IP to meet our low power objectives.

Today the vast majority of complex chips are designed using IP — either third party or
internally developed. And the key to designing good IP is to design it in a way that
allows it to be used in multiple applications.

To assure that an IP can be used effectively in multiple applications requiring low
power, we must design it so that it can be used with different power strategies. In one
application, clock gating and multiple V1 libraries may provide low enough power. In
other applications, aggressive on-chip power gating may be required. In other appli-
cations, dynamic voltage scaling may be the key to achieving the chip’s power goals.

To address these various needs, we need to do the following:

e Partition the design to support various low power strategies, especially power gat-
ing

® Include explicit support for power gating

e Develop reference power intent files

e Design the clocking and reset strategy with low power in mind

e Package the IP to support low power

e Verify the IP using various low power strategies
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As we go through the architecture, design, and packaging process for IP, we need to
bear in mind that any or all of the following techniques may be used in the actual
implementation of the IP in a chip:

e Multi VT
® C(Clock gating
e Power gating (internal and/or external)

e Voltage Scaling
For certain types of IP, different kinds of support for these functions may be required.

Memory and other hard IP blocks have special requirements for low power. Low
power memories often have various modes: a normal operating mode, a retention
mode, and power off. In retention mode, the voltage is lowered to the minimum
required to retain data, but below that required to do reads and writes.

Physical layer interfaces for 10 standards like USB or PCI Express typically have
more than one power mode as well. In addition to the normal operating mode, there
may be a complete shutdown mode that drives power close to zero. There may be an
additional operating mode where enough of the circuit is powered up so that it can
wake up in response to activity on its interfaces.

Configurable soft IP, because it can be configured by the user, offers a complex
design challenge that in some sense is a super set of the challenges of hard IP. For soft
IP, multiple power modes and multiple power reduction techniques must be supported
in a user-configurable way that is robust, easy-to-use, and flexible. How to design
such IP is the focus of the rest of this chapter.

We use as an example the USB On-the-Go (OTG) IP that we included on the SALT
chip. The OTG core is a Synopsys digital soft IP core that was designed with power
gating in mind, but which had never actually had power gating capability added to it.
We modified the RTL to add a power gating controller, retention registers, and isola-
tion cells. Today, of course, we would use UPF to describe most of these modifica-
tions, as described later in this chapter.

8.1 Architecture and Partitioning for Power Gating

A good working definition of architecture (in the context of IP design, at least) is the
partitioning and interface design of the IP. In supporting various low power strategies,
power gating presents the most significant new architectural challenge in the architec-
ture of IP.
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To support power gating, we need to:

® Decide when and how the IP will be powered down and powered up

® Decide which blocks will be power gated and which blocks will be always on

® Design a power controller that controls the power up and power down sequence
e Determine which signals need to be isolated during power down

e Develop an initial strategy for clocks, resets, and the power control signals

8.1.1 How and When to Shut Down

On the SALT chip, we included a power gated versions of the CPU and the USB OTG
digital core. The strategy for the CPU was to have the power down sequence con-
trolled by software. When the software determines that it wants to power down the
CPU, it signals the CPU power controller. The controller then goes through the power
down sequence. Just enough of the processor is kept alive to respond to an interrupt.
When the appropriate interrupt occurs, say from a timer peripheral or from an exter-
nal source, the power controller for CPU then goes through the power up sequence.

The strategy for the USB OTG was to power down during idle times, but only when
allowed by the CPU. The CPU writes an enable bit in a register in the USB OTG to
enable power down — essentially saying that it is done with transactions. The USB
OTG then waits until the USB bus has been idle for 3ms (indicating that the USB
OTG can enter SUSPEND mode). On entering SUSPEND, the USB signals to the
USB power controller to begin the power down sequence. Enough of the USB OTG is
kept alive that it can respond either to a read/write from the CPU or to activity on the
USB bus. If the CPU clears the power down enable bit, or if there is activity on the
USB bus, then the controller goes through the power up sequence.

8.1.2 What to Shut Down and What to Keep Alive

Figure 8-1 on page 105 shows a simplified diagram of the USB OTG digital core.
During power down, the Bus Interface Unit is kept powered up so that it can respond
to a CPU request to power up. Similarly, the PHY Interface block is kept powered up
so that if USB activity is detected, it can signal the power controller and wake up the
core. The Clocks and Reset block is also kept powered up to provide clocks to the Bus
Interface Unit and the PHY Interface.

All of the rest of the USB OTG core is power gated. The status and control registers
are saved and restored in the power gating sequence, using retention registers con-
trolled by a single pin, NRETAIN. The protocol engine, since it starts each transaction
from scratch, is simply reset at power up.

The power controller is included in the AHB Slave block of the Bus Interface Unit
simply as a matter of convenience — it runs off the AHB clock, needs to stay powered
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up during power gating, and the power gating enable register is located there as well.
But the controller could just as easily have been a separate block.

There are two clock domains in the power gated region of the USB OTG digital core
—the AHB clock domain and the PHY clock domain. Synchronizers are used for con-
trol signals, including power gating control signals, that pass between the two
domains. Thus, the time from the assertion of a power gating control signal (in the
AHB domain) to the time it affects the PHY domain is not deterministic. And in fact
it can vary greatly, as the timing relationships between these two domains can vary
greatly from application to application.

For this reason, request-acknowledge handshakes are used for a number of the power
gating control signals.
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Figure 8-1 USB OTG Block Diagram

8.2 Power Controller Design for the USB OTG

The power controller in the USB OTG is conditionally compiled using ‘ifdef; if the
user does not want to use power gating, the controller is not compiled into the design.

The power controller is a simple state machine that controls the following signals:

® pwr_reset n // the reset to the protocol engine
e gate hclk, // control signal to turn off clocks in the AHB domain
® h2pd stop pclk // control signal to turn off clocks in the PHY domain
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® bius pwr clamp // control signal to clamp outputs of the AHB domain
e h2pl pwr clamp // control signal to clamp outputs of the PHY domain
e pwr dwn req n //control signal to request power down (active low)

® retain n // negative edge is save; positive edge is restore

And it receives the following inputs:

e pwr dwn_ack n /I acknowledge for pwr_dwn_req

e stop pclk ack /I acknowledge for h2pd_stop pclk

® pwr clamp ack // acknowledge for h2pl pwr clamp

e gsuspend detected // indicates no USB activity for 3ms

e fifo flushed // indicates all pending USB transactions are done

e wkup res det // indicates activity has been detected on the USB bus

e cnable power gating // from CPU to enable power gating

s JUIUUUUULLILY JUUUUUUY
fifo_flushed J
clamp signals |
pwr_clamp_ack |
gate_hclk, stop_pclk |

stop_pclk_ack |

retain_n |

WFTFF

reset_n |

pwr_dwn_req_n | % J
pwr_dwn_ack_n |_ % |

Figure 8-2 Power Gating Sequence for the USB OTG

When the power controller sees that suspend_detected is asserted (and the power gate
enable bit is set in the status register), it starts the power down sequence. This
sequence is shown in Figure 8-2 and described below:
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It waits until fifo flushed is asserted. This indicates that all pending transactions
have completed, and the fifo that stores pending transactions is empty.

It then asserts bius_pwr_clamp (to the AHB clock domain) and h2pl pwr clamp
(to the PHY clock domain) to clamp the outputs of the power gated portion of the
USB OTG.

It then waits for pwr_clamp_ack (from the PHY clock domain). This tells the con-
troller that the isolation cells are all clamped (in the USB OTG, they are all
clamped to “0.”)

It then asserts gate hclk and h2pd_stop pclk to stop both AHB and PHY clocks.

It then waits for stop_pclk ack (from the PHY clock domain) to indicate that
clocks have stopped in the PHY domain. Because of synchronizers, the PHY
clocks always shut down after the AHB clock.

It then asserts retain_n (an asynchronous signal, so no handshake required). This
causes the retention registers to save their contents.

It then asserts reset _n (an asynchronous signal, so no handshake required).

It then asserts pwr_dwn_req n, causing the power gated sections of the USB OTG
to be powered down.

It then waits for pwr_dwn_ack n to be asserted, indicating that the USB OTG is

completely powered down. Once this acknowledge is received, the power control-
ler goes to an idle state, waiting to be told to wake up the USB OTG.

When the power controller sees either that enable power gating has been cleared
(indicating that the CPU wants to power up the USB OTQ) or that activity has been
detected on the USB bus, then the power controller state machine starts the wakeup
sequence:

It de-asserts pwr_dwn_req_n, causing the power gated sections of the USB OTG
to be powered up.

It then waits for pwr dwn _ack n to indicate that the USB OTG is completely
powered up.

It then de-asserts reset_n, so all the flops in the protocol engine resume in the reset
state.

It then de-asserts retain_n so all the retention flops in Control and Status Register
block are restored.

It then de-asserts gate hclk and h2pd_stop pclk to start both clocks.
It then waits for stop_pclk ack to indicate that the clocks are running.

It then de-asserts bius_pwr_clamp and h2pl pwr_clamp to release the clamps on
the outputs of the power gated portion of the USB OTG.

It then waits for pwr_clamp ack. This tells the controller that the isolation cells
are all released.
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Once this acknowledge is received, the power controller goes to an idle state, and the
USB OTG resumes normal operation.

8.3 Issues in Designing Portable Power Controllers

In addition to implementing the functions described above, the power controller for
an IP must be designed to be portable - that is, to be used in multiple applications and
with different libraries. The two major challenges here are:

® Dealing with different libraries that may require different control signals

® Accommodating the (potential) need to interface with a system level power con-
troller

The basic control functions are to turn power on and off, turn clocks and reset(s) on
and off, turn isolation cells on and off, and issue save/restore commands to retention
flops. These are common to virtually all power gating designs. But specific libraries
may require different specifics:

e Signal polarity may be different for different libraries.

e Request/Acknowledge may or may not be required on any of the individual con-
trols.

e Save and restore can be implemented either as a single control (retain n in the
example above) or as two separate signals.

Recommendations:

e Parameterize signal polarity on all control signals, so it can be configured by the
user

e Implement a request/acknowledge handshake on all controls, but provide a mech-
anism so that the user can configure the IP to connect acknowledge to request for
those applications that do not require a handshake.

e Parameterize the save and control function so that the user can configure it to be
either a single control or dual (save and restore) control.

As power gating becomes more common, it is likely that chips will use a central
power controller to coordinate the activities of the various power gated blocks in the
design. In particular, if multiple blocks want to power up at the same time, it may be
necessary to sequence through the blocks, powering up one at a time, to limit noise
from excessive voltage spikes. A central agent may be needed to arbitrate among
blocks wanting to power up or power down.

The kind of power controller described in the previous section should be able to
accommodate such a system architecture. The user can route the power down request
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to the central controller which can issue an acknowledge when it decides to service
the request. The only requirement on the IP design is that the power down request and
acknowledge signal must be available at the top level port of the IP.

8.4 Clocks and Resets

Clocks and resets for an IP need to be controlled for various reasons:

e For scan, normal clocks may have to be muxed with a scan clock
e For scan, resets may need to be controlled from a scan control pin at the chip level

e For power gating, clocks may need to be turned off and on for the power gated
region while staying always on for the non-power gated region

e For power gating, resets may need to be selectively asserted to portions of the
power gated region while not being asserted in other regions of the design

For these reasons, it is increasingly important to have a dedicated clock and reset
module in the IP that handles only clocks and resets, and which provides the flexibil-
ity to meet the needs outlined above.

To provide optimal controllability for scan testing, we recommend that the power
controller itself be controllable from outside the IP. That is, a central, chip-level scan
controller needs to be able to force power on or off for the IP, as well as force clocks,
reset, save and restore for the powered down region.

In the SALT chip, we also made the decision to do all scan clock muxing external to
the USB OTG IP. The PHY clock is generated by the USB PHY and goes through a
mux before providing the PHY clock to the digital core. This mux switches between
the PHY clock (used by the digital core during normal mode) and the scan clock (used
by the digital core during scan testing).

8.5 Verification

Verification for any configurable IP is a major challenge. This challenge is increased
by adding power gating.

In developing the power-gated version of the USB OTG, we initially did full RTL
functional testing without the power gating circuitry in place. Once the USB OTG
passed all diagnostics, we added the power gating functionality and re-ran the diag-
nostics. Once these all passed, we ran a set of diagnostics for testing the power down
feature itself.
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Since the power gating function is completely independent of other USB functions,
this approach seemed the appropriate way to minimize the verification effort and still
provide strong verification.

At the RTL level, we simulated the power switching fabric by forcing register outputs
to “X” during power down. This approach allowed us to completely verify the core at
the RTL level. But because power gating is so closely tied to the physical implemen-
tation of a switching fabric, we also did extensive gate-level simulation of the power
down function. This allowed us to use a detailed model for the switching fabric,
including the time it takes to power up or down completely.

8.6 Packaging IP for Reuse with Power Intent

The SALT chip was developed before UPF was available to provide a convenient way
of specifying the power strategy for an IP block. With the introduction of UPF, it
becomes much more straightforward to include power strategies in the final packag-
ing of the IP.

Any IP needs to be packaged in a way that enables users to configure the IP to their
application. Often this is done using a configuration tool. For soft IP, the final packag-
ing includes:

e Configuring the RTL (for the USB, this includes selecting the number of end-
points and configuring each endpoint)

e Ability to generate a test bench for the verifying the configured core, both pre and
post-synthesis

e Synthesis scripts for the configured core, including support for clock gating and
multi—VT

For cores that support power gating, we need to add:

e The ability to configure the power controller

e The ability to generate a test bench for verifying pre and post-synthesis power
operation

e The ability to configure the power intent, including the target retention registers
o Synthesis scripts that support the power intent
e Configurable UPF code to support the configurable power strategies
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8.7 UPF for the USB OTG Core

Figure 8-3 on page 112 shows a more detailed block diagram of the USB OTG digital
core. In the original SALT chip, we had to add retention, isolation, and the power
switch directly in the RTL. With the introduction of UPF, we can describe this func-
tionality using UPF tcl commands.

Note that the Power Control block still has to be designed in RTL and instantiated in
the design.

The UPF code for adding power gating, retention, and isolation is shown below. The
block names otg (top level of the core), biu, mac, etc., are the names of the instances
of these modules in the RTL.

To make the UPF code portable, we use a variable ($otg) to indicate the actual path
from the top of the design to the top level of the core in the RTL. We also use vari-
ables for the origin of the VDD and VSS power nets. Most likely these would be at
the top level of the chip.
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Figure 8-3 Power Gating for the USB OTG

set scope Sotg
create power domain otg power domain
-elements {aiu pfc mac sync csr}

create supply net switched VDD
-domain otg power domain

set domain_ supply net otg power domain
-primary power net switched VDD
-primary ground net /$Stop VSS
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create power switch power switch
-domain otg power_ domain
-input supply port {sw input port /Stop VDD}
-output supply port {sw output port switched VDD}
-control port {sw_control port biu/pwr dwn req n}
-ack_port {pwr_ack port biu/pwr_dwn ack_n}
-on_state {pwr on state sw_input port

{sw_control port ==1}}

-off state {pwr off state {sw control port ==0}}

set_isolation otg isolation -domain otg_power domain
-isolation power net S$top VDD
-clamp value 0

set isolation control otg isolation
-domain otg power domain
-isolation signal biu/bius_pwr_clamp

set_retention otg retention
-domain otg power domain
-retention power net S$top VDD

set retention control otg retention
-domain otg power domain
-save signal {biu/retain n negedge}
-restore signal {biu/retain n posedge}
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8.8 USB OTG Power Gating Controller State Machine

The following code is included as an example of a simple power controller state
machine. It is coded as a hierarchical state machine — a format which we find quite
useful, particularly in more complex state machines.

//

//

// (C) Copyright 2004-2005, Synopsys, Inc.
// ALL RIGHTS RESERVED

//

//

// Filename : optc_sm.v

// Author : Mike Keating

// Date : November 28, 2005

// Version : 1.0

// Description : This Module implements state machine

// part of power down control logic for
// OTG

reg [2:0] main state;
parameter TOP_IDLE= 3'd0;
parameter SLEEP= 3'dl;
parameter WAKEUP= 3'dz2;
parameter FLUSH FIFO=3'd3;
reg [2:0] SLEEP_state;
parameter SLEEP IDLE=3'd0;
parameter CLAMP= 3'dl;
parameter SAVE = 3'd2;
parameter PWR DOWN= 3'd3;
parameter CLOCKS OFF=3'd4;
parameter SLEEP DONE=3'd5;
parameter RESET PDN =3'dé6;
reg [2:0] WAKEUP_ state;
parameter WAKEUP_IDLE=3'dO;
parameter WAKEUP DONE=3'dl;
parameter PWR UP= 3'd2;
parameter CLAMPS OFF=3'd3;
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parameter RESTORE= 3'd4;
parameter CLOCKS ON=3'd5;
parameter RESET OFF=3'd6;

always @ ( posedge hclk or negedge hreset n ) begin
if (!hreset n) begin
bius pwr reset n <= 1'bl;
pwr _clamp n tmp <= 1'bl;
bius pwr clamp n tmp <= 1'bl;
h2pl pwr clamp n tmp <= 1'bl;
bius_pwr_clamp_tmp <= 1'b0;
bius gate hclk tmp <= 1'b0;
h2pd stop pclk <= 1'b0;
retain n <= 1'bl;
pwr _dwn req n <= 1'bl;
main state <= TOP_IDLE;
SLEEP_state <= SLEEP_IDLE;
WAKEUP_ state <= WAKEUP_IDLE;
end else begin
case (main state)
TOP_IDLE: begin
if (suspend detected interrupt &&
enable power gating)

begin
main state <= FLUSH_FIFO;
end
end
SLEEP: begin
sleep;
if (SLEEP_state == SLEEP DONE &&
(sp2ht_wkup res det biu ||
lenable power gating ))
begin
main state <= WAKEUP;
SLEEP state <= SLEEP_ IDLE;
end
end
WAKEUP: begin
wakeup;
if (WAKEUP_state == WAKEUP_DONE)

begin
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main state <= TOP_IDLE;
WAKEUP state <= WAKEUP_ IDLE;
end
end
FLUSH_FIFO: begin
if (fifo_flushed)

begin
main state <= SLEEP;
end
end
endcase
end
end
R EEREEEEEEEE
// sleep task
J /=

task sleep;
case (SLEEP_ state)
SLEEP_IDLE: SLEEP_state <= CLAMP;
CLAMP: begin
pwr_clamp n tmp <= 1'b0;
bius pwr clamp n tmp <= 1'b0;
h2pl pwr_ clamp n tmp <= 1'b0;
bius pwr clamp tmp <= 1'bl;
if (pwr_ clamp ack sync==1)
SLEEP state <= CLOCKS_OFF;
end
CLOCKS_OFF: begin
bius_gate_hclk _tmp <= 1'bl;
h2pd stop pclk <= 1'bl;
if (stop pclk ack sync==1)
begin
SLEEP state <= SAVE;
retain n <= 1'b0;
end
end
SAVE: SLEEP_ state <= RESET PDN;
RESET PDN: begin
bius pwr reset n <= 1'b0;
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SLEEP state <= PWR_DOWN;
end
PWR_DOWN: begin
pwr_dwn reqg n <= 1'b0;
if (!pwr_dwn_ack_sync_n)
SLEEP_state <= SLEEP_DONE;
end
SLEEP_DONE:
endcase
endtask

task wakeup;
case (WAKEUP_ state)
WAKEUP_ IDLE: WAKEUP_ state <= PWR UP;
PWR _UP: begin
pwr _dwn req n <= 1'bl;
if (pwr_dwn ack sync n==1'bl)
WAKEUP_ state <= RESET OFF;
end
RESET OFF: begin
bius pwr reset n <= 1'bl;
WAKEUP_ state <= RESTORE;
end
RESTORE: begin
retain n <= 1'bl;
WAKEUP_ state <= CLOCKS ON;
end
CLOCKS_ON: begin
bius gate hclk tmp <= 1'b0;
h2pd _stop pclk <= 1'b0;
if (stop_pclk ack sync==0)
WAKEUP state <= CLAMPS OFF;
end
CLAMPS OFF: begin
pwr _clamp n tmp <= 1'bl;
bius pwr clamp n tmp <= 1'bl;
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h2pl pwr clamp n tmp <= 1'bl;
bius pwr clamp tmp <= 1'bO0;
if (pwr_clamp ack sync==0)
WAKEUP state <= WAKEUP_ DONE;
end
WAKEUP_DONE:
endcase
endtask

Figure 8-4 shows the top level state machine. The notation is the state-chart notation
used in UML 2.0. We find this format more useful than the traditional bubble dia-
grams.

)
TOP_IDLE

[(suspend_detected_interrupt)]/

—

FLUSH_FIFO WAKEUP

[(fifo_flushed))/
T [(resume _detected_interrupt)]/
SLEEP J

sleep();
—_

Figure 8-4 Top Level State Machine

The figure on the next page shows the details of the SLEEP and WAKEUP states:



IP Design for Low Power

SLEEP_IDLE

( CLAMP )

pwr_clamp_n_tmp <= 1'b0;
bius_pwr_clamp_n_tmp <= 1'b0;
h2pl_pwr_clamp_n_tmp <= 1'b0;
bius_pwr_clamp_tmp <= 1'b1;
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h2pl_pwr_clamp_n_tmp <= 1'b1;
bius_pwr_clamp_tmp <= 1'b0;

[(pwr_clamp_éck_sync::0)]/

WAKEUP_DONE



CHAPTER 9 Frequency and Voltage
Scaling Design

Scaling the supply voltage of CMOS is possible over a technology-specific range;
gate delays, setup and hold times and even memory access times scale monotonically
with reduced operating voltage over a limited range. Linear voltage reduction results
in a square-law reduction in both dynamic power consumption and in leakage power.

The earlier chapters have focused on basic multi-voltage techniques for optimizing
dynamic power and on techniques to address leakage on advanced technology nodes.
Voltage Scaling — reducing the supply voltage and clock frequency based on work
load — is a more aggressive technique for dynamic power reduction. It can be effective
on 0.18u and 0.13u technology nodes (typically 1.8 and 1.2V standard operating volt-
age respectively) where there is significant voltage headroom. In generic 90nm nodes
(and below) there is not sufficient headroom to use voltage scaling very effectively.
But it can be applicable to the “Low-Leakage” technology nodes at 90nm, 65nm and
below, since these run at higher voltage than the equivalent generic or high-speed pro-
cesses. (The 90nm low voltage processes run at 1.2V nominal voltage compared to
1.0V for the “generic” or high-speed process nodes, for example).

Voltage scaling introduces complications into both the system design and the imple-
mentation flow, but can be valuable for portable battery-powered products. Rarely is
all the logic on a SOC required to run at the limit of performance at all times, and in
many systems there may be several different performance profiles. Dynamically scal-
ing the supply voltage to a processor or multi-media subsystem, for example, may
significantly improve battery lifetime in the final product.

But every voltage scaled domain introduces another voltage regulator, usually off-
chip, and the requirement to interface between different analog values across voltage
boundaries.
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In addition, determining the minimum voltage to meet a particular (sub)system per-
formance level is a challenge. The EDA tools and library views start from a given set
of process, voltage and temperature operating points, and sum delays across the
design to determine critical paths and hence the resultant frequency limit. When the
supply voltage of each block can vary among many different values, or even vary
continuously, calculating delays and performing optimization becomes a much more
difficult task.

The challenge of achieving timing closure over a range of voltages and clock speeds
should not be underestimated. Even determining the appropriate range of voltages is a
challenge.

The actual available headroom for a design is a complex function of process, design
goals, libraries, and timing analysis methods. Temperature inversion in particular lim-
its the range over which timing, voltage, and temperature maintain their normal
monotonic relationship. A detailed analysis of all these factors is required before
embarking on a DVFS design.

9.1 Dynamic Power and Energy

The dynamic power dissipated by CMOS is largely described by the equation:

2
Py = Ceff *Via®

clock

Because dynamic power is linearly proportional to switching frequency, dynamically
reducing the switching frequency whenever maximum performance is not required
can reduce dynamic power significantly.

The fact that dynamic power is linearly proportional to the capacitance being
switched is more of a design and implementation constraint and is improved primarily
by reducing the length of interconnect driven and the design complexity and hence
area.

The voltage term has the greatest effect on power, and in the case where frequency
can be reduced to allow a reduction in voltage, the power is reduced quadratically.

Although generic in terms of technology and exact voltage, Figure 9-1 shows there is
a region of operation where frequency increases monotonically over voltage, with a
max voltage that is specified for the process, and a lower limit below which the cir-
cuitry runs out of safe voltage headroom and may fail to operate reliably — or where
the delay paths no longer vary monotonically.
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Figure 9-1 Voltage and Frequency Scaling Opportunity
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Figure 9-2 Increased Savings with Frequency Scaling

Figure 9-2 shows the generic power dissipation relationship between reducing fre-
quency with and without reducing supply voltage. The gap between the two curves
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equals the power saving achievable between the minimum and maximum operating
voltages.

Energy is the integration of power over the time taken to complete a task of work.
Ignoring the effects of leakage power, clocking a block at half the frequency halves
the dynamic power but takes twice as long to complete the work. Where scaling the
voltage is possible the quadratic dynamic power reduction permits energy savings to
accumulate over the duration of the task.

Dynamic Energy Dissipation
T T
| |
| |
____________ L | I,
I o= |
| - |
> : - - :
< | e I Freq Scaled fixed
::J’ _____________ Tt TTTTT T FTTTT Voltage
X | | = = 'Freqand Voltage
b : : scaled
= | |
| |
| |
| |
| |
| |
| |
Frequency

Figure 9-3 Energy Savings From Voltage Scaling

In calculating the energy savings from voltage scaling, the static leakage power can-
not of course be ignored. Reducing the frequency and taking longer to complete a unit
of work also means that the active leakage will be scaled in proportion to the inverse
of frequency. Running to completion then stopping the clocks and applying the leak-
age mitigation techniques of the previous chapters allows the inactive leakage power
to be minimized.

In addition, each voltage scaled block requires and additional power rail, and every
power rail introduced into a SoC design has an impact on the realizable energy sav-
ings. Every regulated supply rail has some lost efficiency from generating that voltage
with real world power controllers.

Although local on-chip voltage regulation would appear attractive, most digital
CMOS technologies are not well suited to the implementation of switch-mode or lin-
ear voltage regulators that can power digital subsystems of more than a few tens or
hundreds of gates.
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9.2 Voltage Scaling Approaches

As stated in Chapter 3, the approaches to voltage scaling are:

e Static Voltage Scaling (SVS): different blocks or subsystems are given different,
fixed supply voltages.

e Multi-level Voltage Scaling (MVS): an extension of the static voltage scaling case
where a block or subsystem is switched between two or more voltage levels. Only
a few, fixed, discrete levels are supported for different operating modes.

e Dynamic Voltage and Frequency Scaling (DVFS): an extension of MVS where a
larger number of voltage levels are dynamically switched between to follow
changing workloads.

e Adaptive Voltage Scaling (AVS): an extension of DVFS where a control loop is
used to adjust the voltage.

In this chapter we focus on DVFS and AVS.

9.3 Dynamic Voltage and Frequency Scaling (DVFS)

Figure 9-4 on page 126 shows a simplified version of a DVFS design. The CPU sub-
system is powered by a programmable power supply. The rest of the chip is powered
by fixed power supply.

A PLL provides a high speed clock to the SysClock Generator, which uses dividers to
generate the CPU CLOCK and the SOC CLOCK.

To execute voltage and frequency scaling, software first decides the minimum CPU
clock speed that meets the workload requirements. It then determines the lowest sup-
ply voltage that will support that clock speed.

If the target clock frequency is higher than the current frequency, then the execution
sequence is as follows:
e The CPU programs the power supply to the new voltage

e The CPU subsystem continues operating at the current clock frequency until the
voltage settles to the new value

® The CPU then programs the new clock frequency.

e [f the clock frequency change just requires a change in the divider value, it pro-
grams the SysClock Generator for this new value. No pause in CPU operation is
required.
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e [fthe new clock frequency requires a change in the PLL frequency, then the CPU
programs the PLL to the new frequency. Either the PLL or the SysClock Genera-
tor suppresses all clocks until the PLL settles.
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Figure 9-4 DVFS Block Diagram

If the target clock frequency is lower than the current frequency, then the execution
sequence is as follows:

e The CPU first programs the new clock frequency.

e [f the clock frequency change just requires a change in the divider value, it pro-
grams the SysClock Generator for this new value. No pause in CPU operation is
required.

e If the new clock frequency requires a change in the PLL frequency, then the CPU
programs the PLL to the new frequency. Either the PLL or the SysClock Genera-
tor suppresses all clocks until the PLL settles.

® The CPU then programs the power supply to the new voltage

e The CPU subsystem continues operating at the new clock frequency while the
voltage settles to the new value
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Varying clocks and voltages during operation is a new paradigm in design and offers
some unique challenges:

® Determining which voltage and clock values to support

® Modeling timing

e Dealing with the settling time of clock generators and power supplies
Timing/Voltage Values

Most DVFS systems use a set of discrete voltage/frequency pairs. Determining which
values to support is a key design decision, and is highly application dependent.

Too few operating points may result in systems that under some profiles spend a sig-
nificant time ramping between the two levels — and the energy efficiency savings dur-
ing the ramping times are typically significantly less than the steady-state values.

On the other hand, too many levels results may result in the power supply spending
most of the time “hunting” between different target voltages.

Initially, we determine the number of operating points analytically:

e what are the appropriate clock frequencies for the different work loads

e which frequencies have clock periods that are multiples of the PLL period and
thus require just changing the clock divider, not the PLL frequency

e what voltage is required to support each target frequency

Performing this timing analysis requires either special library and tool support or sig-
nificant manual effort.

One approach to refining the selection of operating points is to provide the software
developers with prototype, such as an FPGA implementation or a high level simula-
tion model, that can run example workloads. There is no need to actually scale volt-
age; we simply emulate the performance clock scaling and representative power-
supply ramp times. This enables us to understand how many distinct performance lev-
els are useful under realistic dynamic workload conditions.

The Effects of Temperature Inversion

One restriction on DVFS design is that the voltages must be limited to the range over
which delay and voltage track monotonically. That is, we must always operate above
the temperature inversion point, the limiting voltage where delays start to behave
non-monotonically with temperature.

Temperature inversion is an observed phenomenon on deep submicron technologies
where delay and voltage invert their normal relationship. Normally, delay increases as
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temperature increases. But below a certain voltage (2 * Vraccording to [1]), this rela-
tionship inverts, and delay decreases as temperature increases.

Because this phenomenon is a function of Vr, the temperature inversion point varies
between high V- cells and low V cells. The result is that, if we decrease the voltage
too much, we can see paths that used to be non-critical suddenly become the critical
delay paths in our design. The voltage/timing relationship now becomes non-mono-
tonic, and voltage scaling becomes (for all practical purposes) impossible.

Libraries

In order to establish what voltage levels are needed for the selected clock frequency,
we need to perform timing analysis under a variety of conditions. Typically this
involves doing some trial implementation at reduced voltages and measuring perfor-
mance at these de-rated voltage points.

In order to do these trial implementations we need libraries whose characterization
extends beyond their nominal supply voltages. Current source models, as described in
Chapter 12, are an example of the type of models needed for this type of analysis.

Switching Times and Algorithms

For both voltage regulators and clock generators, switching performance levels takes
time. We would like to the block to continue working (even at a reduced performance
level) during this switching time.

Switching voltage levels is particularly slow. Off-chip linear regulators may take tens
of microseconds to milliseconds to stabilize. Overshoot and undershoot need to be
carefully controlled for safe DVFS operation, further increasing settling time. Typi-
cally we will want to multiple-source the voltage regulators, so the settling time may
vary with the specific component used. The SOC designer needs to understand the
power supply specifications in detail and how to handle multiple-sourced components
with different DVFS characteristics — or build in worst-case delay counters to guaran-
tee safe voltage settling times.

Switching frequencies is typically orders of magnitude faster than voltage level
switching, especially if we just need to change the count value in the clock divider. (If
we have to change the PLL frequency, then the worst-case PLL lock times may start
to approach voltage settling times.)

We can take advantage of this faster clock switching time, but only with some care.
Frequency can only be increased once the higher operating voltage has been safely
reached. Frequency must be decreased before the dynamic scaled voltage is lowered.
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Can the system make forward progress during DVFS changes? Stopping the clocks
while a PLL re-locks may well be a requirement, but freezing clocks while waiting
for voltage or the clock to change and settle could result in unacceptable interrupt ser-
vicing times — or break device driver timing requirements.

One technique to avoid this problem is to have the lowest operating frequency (such
as a primary bus clock rate) available at all times. We can then use this clock while
changing the supply voltage and the variable clock. This allows the block to continue
safe operation as the voltage regulator and clock generator settle.

Power Up Sequencing

DVEFS systems typically use at least two external power supplies. In this case we need
to pay attention to the power-up control. We need to ensure that there are no dead-
locks due to 10O pad signaling not being stable until the power rail is valid, for exam-
ple. We need to control the power up sequence and provide a guaranteed voltage
settling time before issuing reset and starting the system. We can do this using a local
digital counter, or some form of “voltage ready” handshake signal.

9.4 CPU Subsystem Design Issues

Dynamic Voltage
) CACHE RAM with memory VDDRAM
o (MEMORIES) retention

-

-
&
T CLAMP | CLAMP
d Dynamic Voltage
Q CPU with VDDCPU
CPUCLK J§> > CPU power-down
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L-SHIFT | L-SHIFT

Figure 9-5 CPU Subsystem

DVFS is most frequently used on processor subsystems. Figure 9-5 shows an exam-
ple of a cached CPU partitioned for voltage scaling and power gating. During power
gating the CPU is powered down and the VDDRAM is set to the lower memory reten-
tion voltage. During voltage scaling the power supply is scaled to both the RAM and
CPU logic domains together to ensure no differential voltage or timing across the crit-
ical path: the cache-CPU interface. In this case only isolation clamps and not level
shifters are required across the CPU-memory interface. The clamps allow the cache
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memories to be isolated and held at a retention voltage rather than losing state during
power down.

Level shifters are required between the CPU and rest of the chip. During power down
the clock to the cache must be clamped as well. This means that there will be addi-
tional clock delay for the cache compared to the CPU. During clock tree synthesis we
must compensate for this additional delay and achieve carefully balanced clock net-
works.

The partitioning described above is suitable for 130nm and above. Below 130nm
there is little or no headroom for voltage scaling memories, so a more practical design
is shown in Figure 9-6.
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Figure 9-6 CPU Subsystem with Fixed Cache Supply

In this design, the cache uses a fixed, high voltage during operation. (During power
down it can be set to a lower, retention supply voltage). Only the CPU is voltage
scaled. Thus, we need to use level shifters between the CPU and cache, as well as on
the other CPU interfaces. Also, all outputs of the CPU must have isolation clamps to
support power gating.

Now that the CPU and cache run on different supply voltages, the clock frequency
and latency for the cache memories must be scaled with the CPU supply voltage. In
this case the clock for the cache is buffered with the standard clock tree in the
VDDCPU domain to reflect the latency scaling and is then exported across the level
shifter interface to the RAMs.

9.5 Adaptive Voltage Scaling (AVS)

The voltage scaling techniques described so far are “open-loop” techniques. Pairs of
frequency/voltage values need to be determined with sufficient margin to guarantee
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operation across the entire range of best and worst case silicon process and tempera-
ture.

In Adaptive Voltage Scaling a closed-loop feedback system is implemented between
the voltage scaling power supply and delay-sensing performance monitor on the SoC.
The on-chip performance monitor not only sees the actual voltage delivered on-chip
but also understands whether the silicon is slow, typical or fast, and the effect of the
temperature of the surrounding silicon.

Taking the cached CPU example again, the adaptive scaling tracking would be imple-
mented with the voltage-scaled logic as shown in Figure 9-7.
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Figure 9-7 Adaptive Voltage Scaling

The performance monitor should be tightly integrated with the IP it is monitoring to
get the best thermal tracking, and for a large voltage scaled subsystem there may be a
number of distributed performance monitor blocks that can be analyzed together —
with the worst sensor being the critical feedback element. The performance monitor
communicates with a power controller which in turn set the voltage of the power sup-

ply.

9.6 Level Shifters and Isolation

As in any multi-voltage design, level shifters are required at the interfaces of blocks
operating at different voltages. If the DVFS block is power gated, then we need to iso-
late the outputs as well.
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Note that it is much easier to implement level shifters that shift only in one direction.
That means that the DVFS block must always be at a higher voltage than the blocks it
interfaces with or it must always be at a lower voltage.

Because of the lack of voltage headroom for RAMs, in most DVFS CPU designs, the
cache is always at a voltage higher than or equal to that of the CPU.

Although in theory the bus interface of the CPU could be at a higher or lower voltage,
for practical reasons the bus is usually also kept at a voltage higher than or equal to
that of the CPU. The CPU can be carefully characterized to determine its minimum
operating frequency; the bus interface unit usually is not so carefully characterized,
and running it at or below the CPU’s lowest voltage could cause system errors.

9.7 Voltage Scaling Interfaces — Effect on Synchronous
Timing

The timing of a synchronous interface between a DVFS block and the rest of the sys-
tem is made more complex by the fact that the DVFS block changes voltages and fre-
quencies.

As the voltage in the DVFS block varies, so do the clock tree delays. There is no way
to distribute a single, low-skew clock to both the DVFS block and the system that will
remain low skew for all voltages. Thus, the standard model for a synchronous inter-
face breaks down.

One solution is to use an asynchronous interface. One DVFS-enabled configuration
of the ARM1176 takes this approach. It provides an asynchronous interface to an AXI
bus, complete with synchronizers in both directions. These synchronizers do add to
the initial access latency of the transactions across the interface. In this case, this
increased latency is acceptable because the AXI bus is a split-transaction bus that can
handle long-latency transactions without degrading the overall bus performance.

The more basic AMBA AHB bus does not support split transactions, and as a result
long latency transactions directly degrade bus performance. Therefore, adding an

asynchronous interface to an AMBA subsystem is not practical in most designs.

Figure 9-8 shows one approach to deal with this problem.
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This approach requires a CPU clock that is always a multiple of the bus clock
(HCLK). We add latches at the interface between the CPU and the AMBA bus. The
CPU clock is adjusted so that its rising edge occurs roughly aligned to the active (ris-
ing-edge) of bus clock HCLK With careful design, we can maintain this relationship
to within half a CPU clock period over all operating conditions (including changing
the voltage and clock frequency).

We then need to deal with the fact that the CPU clock can be early or late relative to
HCLK. To deal with the case of an early CPU clock, we over-constrain synthesis to
guarantee that data arrives early (by our worst case skew). If the CPU clock is late, the
latch assures that data is still available.
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Figure 9-9 Read Timing for Latch Based Re-timing
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The timing waveform for a read transaction is shown in Figure 9-9. In this example
the CPU clock is twice the frequency of HCLK. The Low-phase input latches
(LphLAT) are transparent when HCLK is low. Input data is guaranteed by over-con-
straining synthesis to arrive before the rising edge of HCLK. At the rising edge of
HCLK, the latch captures the input data and holds the data for half an HCLK cycle.
This guarantees that the data to the CPU will meet setup and hold requirements, even
with significant skew on CPUCLK late relative to HCLK.
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WRITE

DATA

Figure 9-10 Write Timing for Latch-based Re-timing

Figure 9-10 shows how the output hold times to the SOC interface is managed. The
High-phase HphLAT latches are transparent with HCLK is high. If the CPU clock is
early, then the latch holds the old data on the bus until the write is complete. If the
CPU clock is late, then data will be late arriving on the bus, so we over constraint the
bus write timing in synthesis to guarantee that writes work correctly even if data is
late by our worst case clock skew.

Thus for both read and write, the system level timing interfaces must be over-con-
strained to meet the worst case setup paths on inputs and outputs across the clock
domains. The latch methodology assures that the hold times are managed safely in
both directions.

An alternative approach to the CPU-Bus interface using standard rising-edge register
is shown in Figure 9-11.

To avoid the complications of latches we run the CPU clock in advance of the bus
interface clock, guaranteeing the hold times from the SOC to the CPU — providing the
timing constraints on the SOC bus system are tightened to meet earlier timing to the
CPU read path.
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Figure 9-11 Register-based Re-timing

Figure 9-12 shows the write timing for this design. The CPU clock runs early enough
so that it generates write data, the data is available at the input of REG early enough
to meet the setup time requirements of the register. Write data is sampled by the regis-
ter at the rising edge of HCLK and held for the duration of the write transaction.
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Figure 9-12 Write Timing for Register-based Re-timing

On read timing, we simply rely on the system to return read data before the CPU
clock that occurs just before the rising edge of HCLK.

One advantage of this register-based approach is that it uses all edge-triggered regis-
ters, so standard implementation work effectively to assure correct timing. This
makes automated design-for-test straightforward, but does requires tighter over-con-
straining of the input paths to the CPU interface.
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9.8 Control of Voltage Scaling

Energy savings are only possible with Dynamic Voltage and Frequency Scaling when
the system level performance requirements are understood and it is clear when the
frequency can be lowered without missing deadlines or compromising the user inter-
face “experience.”

For an embedded system with a known workload it may well be possible to instru-
ment the embedded firmware or hardware to drive the performance request and hence
voltage requirements directly.

For a real-time system typically the deadlines are well understood and expressed in
terms of scheduler priorities or scheduled events. These real-time requirements can be
dynamically calculated and used to drive the performance and voltage scaling hard-
ware. Because ramp-times for power supplies are not insignificant the delays for
DVFS readiness can be factored into the scheduled deadlines in order to pre-compen-
sate for such latencies.

Open application platforms are harder because typically these have to run down-
loaded tasks and applications that are not known (or may not even have been written)
at system design time, and it is not feasible to require application writers to instru-
ment their portable code to add SoC-specific DVFS hints or requirements in systems
that will run a large number of concurrent applications.

Simply trying to guess from system utilization metrics or statistics is not a good solu-
tion to this problem. An example system utilization trace might look something like
that shown in Figure 9-13. In order not to risk falling behind with sudden requests for
performance, the system typically would have to keep erring on the side of higher
performance. It could easily end up cycling between high performance and some
“average” lower performance level, with some energy cost associated with needing to
keep above the theoretical minimal level.
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Figure 9-13 Example Utilization Trace
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ARM’s Intelligent Energy Manager (IEM) is an example of an approach that instru-
ments certain operating system interfaces to build a task level view of the underlying
requirements at the individual task or thread level. From this it builds an awareness of
producer and consumer task frequencies and deadlines. For example, for a Graphical
User Interface the calls to the window server and the perceived display refresh rates
may be used to judge the right level of performance for interactive tasks.

An extensible stack of “IEM” policies is added alongside the operating system which
then builds an aggregate level of performance sufficient to meet the deadlines of the
dynamically changing task load.

The aim is to leave the user applications unchanged, although in a high-volume sys-
tem design there may be additional energy savings possible from simple annotation of
key real-time tasks to indicate their specific requirements to the policy stack.

Figure 9-14 shows how the example utilization trace shown in the previous figure can
be broken down with task knowledge to determine that certain tasks are periodic. In
this particular example there happened to be a lightweight sound daemon running fre-
quently. This daemon is interrupt driven and consumes data from a main audio
decoder producer task. This task needs to produce the next buffer of sound samples
every 180ms or so. In the mean time, the foreground user task consumes the rest of
the bandwidth some of the time, or is waiting on user interaction much of the rest of
the time.
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Figure 9-14 Trace With with Periodic Tasks Identified

Whatever the underlying system design or software workloads, the energy savings
will only be as good as the decision making algorithms that set the performance level.
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CHAPTER 10 Examples of Voltage
and Frequency Scaling
Design

The previous chapter introduced Dynamic Voltage Scaling and Adaptive Voltage
Scaling. This chapter describes two examples of voltage scaling: the ULTRA926 and
the ATLAS926. Both chips were designed as technology demonstrators for low
power design techniques.

10.1 Voltage Scaling - A Worked Example for UMC
130nm

The ULTRA926 technology demonstrator chip used an ARM926EJ-S as a test vehicle
for Adaptive Voltage Scaling. The ULTRA926 was a collaborative effort between
ARM, Synopsys, Artisan, NSC, and UMC. The overall SoC design was developed by
ARM for UMC with Synopsys providing the EDA methodology and implementation,
Artisan providing the IEM-specific cell library and PLL components, and National
Semiconductor Corporation providing Adaptive DVFS (AVS) power supply technol-

ogy.

The chip was implemented using UMC’s 130nm process. This process has a nominal
supply rail voltage of 1.2V, which leaves some useful headroom to apply DVFS tech-
niques and obtain valuable energy savings.

As a methodology development vehicle this presents the primary design and verifica-
tion problems that have to be addressed for full-scale product designs.
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10.1.1 ULTRA926 System Design Block Diagram

As shown in Figure 10-1the ULTRA926 system supports both DVFS and AVS.

The cache memories and CPU standard cell logic share the VDDCPU power domain
as there was sufficient headroom to voltage scale the memories in this technology. So
they are voltage scaled and power gated together.

The tightly coupled memories (TCMs) have their own voltage-scaled domain,
VDDRAM, which is scaled with the VDDCPU voltage in functional use, but can also
be kept alive at a reduced retention voltage when the CPU is powered down. The
clamps allow the RAM control signals to be isolated when the CPU is powered down.

Level shifters handle the voltage scaled interface between the CPU subsystem and the
SoC. The CPU clock is generated in advance of the AHB clock to allow the simple
HCLK re-timing registers on CPU outputs to the SOC.

The SoC power domain contains the PLL’s, power management, clock generation,
system memory and peripheral controllers. The SoC domain is always powered up.

The CPU subsystem was implemented on the UMC 130HS process technology which
is faster but leakier than the 130LL Low Leakage technology used to implement the
rest of the SOC.

Support for Adaptive Voltage Scaling is included for the VDDCPU domain. The
Adaptive Power Control IP is implemented in the always-on VDDSOC power
domain together with the PLL(s) and the clock generator.

For the adaptive voltage scaling, the current clock (guaranteed safe CPU frequency
for operation at current voltage conditions) and a target clock (desired target CPU
clock frequency) are generated. On the request to raise the performance level, the
CPU continues to be clocked at the safe current clock frequency while the voltage on
the VDDCPU domain is raised. When the Hardware Performance Monitor has suffi-
cient timing slack to indicate that the voltage is high enough, the Dynamic Clock
Generator (DCG) is switched up to the target frequency.

On the request to lower frequency, the DCG provides the new, lower clock to both the
CPU and the Hardware Performance Monitor. The power supply is then ramped down
to just meet the required timing slack and margins for the reduced target frequency.
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Figure 10-1 ULTRA926

10.1.2 Voltage/Frequency Range Exploration

Selecting appropriate frequencies for DVFS on the ULTRA926 project required a
good understanding of the voltage/delay characteristic of the system. Unfortunately
this is a compound surface as the critical paths are a mix of combinatorial, sequential
and memory components. Typically one must start from a number of voltage points
and determine the composite delays in order to derive the frequency of operation.

On this project we used transistor level models to analyze the performance of the core
at reduce voltages as cell based timing models were not considered to be accurate
when de-rated beyond standard IR drop levels. A Synopsys NanoSim characterization
flow was used to generate detailed analysis of all paths and post-processed to generate
top level timing models of the core in Liberty format (.LIB)

As this process is highly compute intensive it was not practical to analyze the core at
fine grain voltage decrements across process and temperature. However the voltage-
delay characteristics for buffers, combinatorial cells, sequential cells and memory ele-
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ments has been analyzed by others and the monotonicity for each has been confirmed
and well documented [1].

The standard CPU characterization at 1.2 (nom), 1.08 (-10%), 1.32 (+10%) for fixed
voltage rail operation and IR drop was performed for the fast and slow process and
temperature corners. From experience and knowledge of the RAM operating voltage
headroom, the characterization was extended down to 0.94V, 0.80V and 0.73V oper-
ating points. Some further analysis was in fact conducted down at 0.66V but the accu-
racy of the RAM models was of concern and not trusted for detailed design work.

The resulting maximum frequencies at the characterized voltages are shown plotted in
Figure 10-2.

The standard “sign off” worst case frequency (Fmax [SS] at 1.08V) was 288MHz. As
the RAM sense amps only need approximately 0.75V, this frequency could be com-
fortably halved to 144MHz as our minimum DVFS performance point. Analysis of a
previous DVFS implementation showed that the best energy savings are in the 50-
100% frequency range, so bounding the clock by 288MHz (max) and 144MHz (min)
made sense. The challenge was to determine the intermediate frequencies and how to
generate them.

A PLL master clock operating at 2 x 288MHz (576MHz) provided the starting point.
To provide fast clean dynamic clock switching, we used a shift-register approach to
generate the CPU clocks shown in Table 10-1:

Adding the option of a second PLL locked at 5/6 of the main PLL (480MHz) provides
the 240MHz frequency. The power costs — and potential dynamic power-down — of a
second PLL of course have to be factored into the system level energy savings and are
highly technology dependent.
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Figure 10-2 ULTRA926 Scaling Analysis
Table 10-1
CPU CPU Voltage
PLL clock Clock Performance | Voltage (Typ)
(MHz) Divider | (MHz) % (Worst) (V) | (V)
576 2 288 100% 1.08 0.87
480 2 240 83% 0.95 0.8
576 3 192 67% 0.86 <0.75
576 4 144 50% 0.76 <0.75
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10.1.3 Synchronous Design Constraints

Varying the voltage results not only in the variable performance (and set up and hold
times) but also in wide clock tree latency variation as shown in Figure 10-3:

Clock Tree Latency Analysis
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Figure 10-3 ULTRA926 Clock Tree Latency

Such a wide variation of latency is impossible to handle with standard set-up and hold
fixing, and so the interface to the core looks to be asynchronous. However, it was pos-
sible to avoid the overhead of synchronizers by “pre-compensating” the clock to
accommodate the increased latency in the core. This technique also requires a set of

“re-timing” registers (“REG” in the block diagram) on the outputs to ensure hold
times are met.
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10.1.4 Simulated (predicted) Energy Savings Analysis

The dynamic power component is governed by the {Csz} switching component for
CMOS. With fixed voltage, executing at half speed effectively halves the dynamic
power — but takes twice as long to complete the workload. The total energy consump-
tion is given by the product of power and duration (reciprocal of the performance) to
complete the same workload so the energy calculation is proportional to the V2 com-
ponent. The relative energy efficiency for the candidate frequencies is shown in
Table 10-2:

Table 10-2
CPU Voltage Voltage V2 V2 Energy Energy
Clock (worst) (typ) (worst) | (typ) Ratio Ratio
MHz V) (A%) (E) (E) (worst) (typ)
288 1.08 0.87 1.166 0.757 100% 65%
240 0.95 0.80 0.903 0.640 | 77% 55%
192 0.86 0.75 0.740 0.563 63% 48%
144 0.76 0.75 0.578 0.563 50% 48%

For worst-case silicon there is on the order of 23%, 37%, and 50% energy savings
when one can run the tasks at selectively lower performance levels. However in the
normal production spread the typical silicon at room temperature is close to 35%
more energy efficient at maximum performance and tends to just better than 50% sav-
ings for the lowest two performance levels. Interestingly with typical silicon the 50%
performance level (144 MHz) is no more energy efficient than 67% (192 MHz) as
there is no voltage scaling headroom left to exploit — an important consideration in
designing production silicon for optimal battery-life.

Note. All the analysis has been performed at the lower limit of operation. Safe work-
ing tolerances do need to be added for system-level IR drop and operating margins.
The relative analysis for an additional 10% (etc.) tolerance simply affects the overall
magnitude and not the energy ratios between operating points.

10.1.5 Silicon-Measured Power and Performance Analysis

The measured current I/V and power P/V curves are included below, and show good
monotonicity. The measurements are at the power supply connections to the board
power connector. Thus, the actual silicon has additional IR drop from the circuit
board, BGA socket, bonding wires and on-chip power rails — while the transistor sim-
ulations do not take any of these into account. So the fact that we could maintain
operation down to 0.72V with typical silicon at room temperature was encouraging.
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The processing performance for the cache-intensive Dhrystone application work load
and how this translates into work-load duration for the energy consumption analysis
is tabulated below:

10.1.6 Silicon-Measured ULTRA926 DVFS Energy Savings

Freq (MHz) KDhry/ second
144 217.00
192 288.32
240 360.58
288 43291
Freq (MHz) IMDhry(milliseconds)
144 4608.30
192 3468.31
240 2773.30
288 2309.97

Analysis

Table 10-3 on page 148 shows the tabulated energy (power * duration) measurement
data displayed at the four performance levels designed into the ULTRA926 SoC.
These were gathered across 5% steps of VDDCPU supply from 60% to 110% of the
nominal (1.2V) supply rail. A blank in the column entry indicates the processor is out-
side safe operating range.

The frequencies chosen for the ULTRA926 project are in fact all multiples of a master

48MHz bus clock at the default PLL multiplier configuration setting:

6x (100%) for worst case 288MHz “FMax” sign-off

5x (83.3%) for 240 MHz
4x (66.7%) for 192MHz
3x (50%) for 144MHz
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The energy measurements all correlate very cleanly — taking a row for a certain oper-
ating voltage, the energy consumption is similar at each of the frequencies with some
positive increase approaching 5% in the 144MHz case.

Table 10-3 Energy vs. Operating Voltage

A" 288MHz (mJ) | 240MHz (mJ) | 192MHz (mJ) | 144MHz (mlJ])
0.72 (unsafe) (unsafe) (unsafe) 37.44
0.78 (unsafe) (unsafe) 42.12 43.68
0.84 (unsafe) 48.38 49.14 50.40
0.90 (unsafe) 56.16 56.70 57.60
0.96 63.36 63.36 64.80 65.28
1.02 71.40 72.22 73.44 73.44
1.08 81.00 81.65 82.62 84.24
1.14 91.20 91.66 92.34 93.48
1.20 100.80 102.24 104.40 105.60
1.26 112.14 113.40 115.29 115.92
1.32 124.08 126.72 126.72 129.36

Figure 10-6 shows the same energy consumption data plotted in histogram form to
visually display the close-to-linear energy efficiency relationship measured for the
device.

Even with 10% voltage margins added back for safety there is still on the order of
50% energy savings on workloads that can be run for twice as long at half the fre-
quency (50.4 milli-Joules for 144MHz at 0.84V compared to 100.8 milli-Joules for
288MHz at 1.2V).

The leakage power becomes apparent in the energy “losses” for the 83%, 66% and
50% performance levels compared to 100%. If we look at any one row of the table
(1.20V, for example) we see that the energy increases as clock speed decreases. Thus,
even though the dynamic energy is the same for each of the four cases, the leakage
current increases the total energy for lower clock speeds running longer. For leakier
process technology nodes this is a reminder of the balance that must be evaluated
between running slower to reduce power and the expense of burning leakage power
for longer.
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Figure 10-6 Energy, Voltage and Frequency for ULTRA926

The “shuttle” silicon for this project was confirmed as close to typical process by
UMC. To explore the case of slower silicon, we raised the master PLL frequency to

raise FMax to 360MHz.

The measured minimum voltages for the four supported fractional performance levels
are tabulated below together with the energy consumption savings possible while
emulating “moving the silicon” closer to the edge by using over-clocking:

CPU Vmin | [ (mA) KDhry/sec | Energy Energy
MHz (limit) (mlJ]) consumed
180 0.777 |33 271.003 95 58%

240 0.842 | 47 363.636 109 67%

300 0.932 | 65 454.546 133 82%

360 1.030 | 86 542.005 163 100%




150 Low Power Methodology Manual

10.2 Voltage Scaling — A Worked Example for TSMC
65nm

At 65nm, process technologies diverge into higher performance (but higher leakage
power) or lower leakage versions with different gate oxide materials. The “generic”
process technologies are typically 1.0V nominal supply voltage while the low-leakage
variants use 1.2V nominal supply voltages. The low leakage technologies can suffer
from higher dynamic power when pushed for performance so voltage scaling is a rea-
sonable option for optimizing battery-life in this technology.

10.2.1 ATLAS926 Case Study

The ATLAS926 project was a collaborative effort between ARM and TSMC to dem-
onstrate both dynamic and static power reduction on a low leakage 65nm technology.
This “LP” process is a 1.2V nominal technology that is optimized for portable prod-
ucts, and contrasts with the higher performance “generic” technology that is specified
at 1.0V and exhibits a higher leakage power.

Although the 1.2V LP process is low leakage, the dynamic power dissipation needs
careful management when high clock speeds are required. (The quadratic dependence
on voltage implies that moving from 1.0V to 1.2V increases dynamic power 44%.)

The compiled RAM technology available to this project however was not safely scal-
able with voltage. The full 1.08V (1.2V — 10%) worst case voltage is required for safe
RAM operation. Therefore low-leakage High-V1 RAM technology was specified for
the cache memories to keep the retention power to a minimum when not running, and
voltage scaling only applied to the standard cell logic.

The standard cell libraries and level shifters available to the project had extended low
voltage characterization in addition to the standard +/- 10% derating from nominal:

Table 10-4 Voltage Range for Library Characterization

Voltage Voltage (V)
Scaling

110% 1.32

100% 1.2

90% 1.08

80% 0.96

70% 0.84
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Because the cache RAMs were not voltage scalable, the level shifters had to be intro-
duced into the ARM926 CPU design to handle the different VDDCPU and
VDDRAM voltage interface levels. As has been described earlier, low-to-high level
shifters in particular add some delay. Given the fact that critical paths in a cached
microprocessor are often across the memory interfaces, this did introduce complexity
and limit the upper frequency of operation at worst case conditions.

10.2.2 Voltage/Frequency Range Exploration

The design approach for this project was to establish the worst-case performance for
standard condition sign-off (the worst case temperature and process conditions at
1.08V). With the level shifters on the RAM and SOC interfaces this was found to be
around 240 MHz. With careful implementation work this was improved to 250MHz,
but the cost/timescale trade-offs were clearly in the area of diminishing returns.

Unlike the ULTRA926 project there was not the time available to do weeks of
detailed transistor level simulation so the approach was to design the clock generator
to support a range of instantaneously switchable frequencies and determine the safe
operating voltage and margins later.

The dynamic clock generator was specified with a 1GHz master PLL clock that sup-
ported integer divider ratios for the CPU, system bus and memory clocks, in order to
support a synchronous interface between the cached ARM CPU and the AHB system
bus IP.

Frequency (MHz) Performance Level
250 100%

200 80%

150 60%

100 40%

50 20%

10.2.3 Silicon-Measured Power and Performance Analysis

The VDDCPU and VDDRAM supplies were separately bonded out of the ATLAS
design in order to support independent current monitoring and safe working voltage
testing.

The limits of voltage scaling were mapped and the current measurements for reliable
operation were captured. These were used to derive the measured steady-state power
graphs shown below.
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The graphs are basically monotonic but the current resolution of 1mA resulted in
slightly quantized current readings resulting in the staircase appearance of the graphs.
Below 1.08V a shallower gradient is just apparent. Down to 1.08V the CPU and
cache were scaled together; below 1.08V, only the CPU was scaled. This resulted in
the partial flattening of the curve.
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Figure 10-7 Power, Voltage and Frequency for ATLAS926

Figure 10-8 documents the measured energy consumption after the workload duration
scaling has been factored in. The energy is shown normalized to the consumption at
1.20V. Again the energy efficiency gradient is slightly shallower below 1.08V due to
the RAM energy cost remaining consistent below this point.
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Measured Energy Savings (relative to 1.20V @ 240MHz)
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Figure 10-8 Total Energy (Relative to 1.20V FMAX)

Dynamic voltage scaling also has a dramatic effect on leakage power in as well as
dynamic power. Figure 10-9 on page 154 shows the measured leakage power at room
temperature for the ATLAS silicon, plotted on a logarithmic scale to handle the

dynamic range:

e The HALT curve is the baseline leakage when clocks are stopped.
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e The RETENTION curve is the measured leakage with State-Retention Power-Gat-
ing

e The HIBERNATE curve is the measured leakage with the power supply to the
standard cell logic turned off. Thus it is a measure of the cache leakage.

The breakpoint in the curves at 1.08V reflects the fact that only the logic portion of
the CPU is scaled below this voltage; the RAM supply rail is not scaled below 1.08V.

Leakage Reduction with Voltage Scaling
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Figure 10-9 Power Savings in the Different Modes
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CHAPTER 11 Implementing Multi-
Voltage, Power Gated
Designs

This chapter describes the implementation of designs that use power gating and multi-
voltage techniques. It highlights the areas in the implementation process that are spe-
cific to multi-voltage and power gating designs.

To illustrate the implementation process, we use a multi-voltage power gated
ARMI1176JZF-S microprocessor as an example design.

The ARM1176JZF-S integrates a number of technologies including power gating and
dynamic voltage scaling. It employs the IEM techniques described in Chapter 9; it
dynamically monitors and predicts the performance requirements of multiple applica-
tions, and tunes the processor’s operating voltage and frequency to match the require-
ments. These techniques reduce the processor’s energy consumption by 25% - 50%.
In order to exploit this IEM technology, the ARMI1176JZF-S processor has been
architected for a low power implementation.

The ARM1176JZF-S is illustrated in Figure 11-1 on page 156 and consists of a cache
sub-system, central core CPU, memory management sub-system and AXI interface.
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Figure 11-1 ARMI1176JZF-S Synthesizable Applications Processor

There are three power domains within the ARM1176JZF-S

® An always-on power domain (VSOC) containing the logic that interfaces to the
SoC through the AXI interface. The logic in this power domain also manages the
asynchronous mode of the processor when performance scaling is employed.

e A shutdown power domain (VCPU) that contains all of the core CPU logic. This
power domain can operate at multiple voltages and can also be powered down.

® An always-on power domain (VRAM) that contains the cache memory instances.
Typically, memory cannot be scaled to the same degree as standard cells and dur-
ing voltage scaling the VRAM and VCPU power domains need to be scaled inde-
pendently. Also, when VCPU is shutdown, the VRAM power domain can be
placed into retention. However, as discussed earlier in this book, if the cache is
placed into retention state during sleep then the wake-up from sleep will take
longer since the time for the power supply to the memories to stabilize will need to
be factored into the wake-up time.

Figure 11-2 below shows the basic structure of the ARMI1176JZF-S from a power
domain perspective.
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Figure 11-2 ARMI1176JZF-S Multi-voltage, power gated design

VSOC always operates at full voltage — the same voltage as the logic sitting on the
AXI bus externally to the processor. The VCPU power domain can operate at a num-
ber of voltages and can be shutdown. VRAM operates at the same voltage as VSOC
or is placed into retention if VCPU is shutdown. Placing a memory into its retention
state typically means stopping the clock(s), disabling the memory and reducing its
supply voltage to the retention voltage.

To implement this design, we use an implementation process that allows for the logi-
cal and physical partitioning of multiple power domains with multiple voltage levels.
The implementation process also supports the insertion of level shifters, isolation
cells, and retention flops. We will also provide power switching networks for the
VCPU power domain. As we proceed with the implementation, we pay particular
attention to management of voltage drop, impacts on timing from our multi-voltage
partitioning and the electrical integrity of our design, particularly at the power domain
interfaces.

For the discussion in the rest of this chapter, we introduce two definitions:

A Power Domain is a logical entity and is a collection of design elements that share a
primary power supply.

A Voltage Area is a physical entity that represents a geographic area of the chip that is
used to place the logic within a given power domain. It is possible for a power domain
to have a number of disjoint voltage areas depending on the nature of the chip. How-
ever, in the discussion that follows, it is assumed that there is a one to one relationship
between a voltage area and a power domain.
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Power domains are created during the synthesis phase; the voltage areas (physical
realizations of the power domains) are created during design planning and managed
throughout the rest of the flow. Levels shifters, isolation cells and retentions registers
are inserted into the design as early as possible so that their impacts to both timing
and the physical design can be considered. Clock tree synthesis and design for test
must also be power aware.

11.1 Design Partitioning

Partitioning a design into separate power domains introduces new interfaces between
each power domain. These added interfaces may contain isolation cells and level
shifters. Thus, the specific partitioning can have a significant impact on the overall
performance of the design.

The job of partitioning a design into power domains is a joint responsibility of the
system architect(s), RTL designer(s), and implementation engineer(s). Between them
they understand the target application, the power and performance objectives, and the
limitations of the target technology.

11.1.1 Logical and Physical Hierarchy

When mapping the logical hierarchy to power domains, we want to assign hierarchi-
cal functional units in their entirety wherever possible. Synthesis engines operate top
down on a cell in the hierarchy and the best Quality of Results (QoR) is achieved if
the entire hierarchy can be manipulated under the same goals and constraints.

Gathering up various hierarchical cells from different levels of the design and assign-
ing them to power domains can make timing closure significantly more difficult.

Figure 11-3 shows the logical hierarchy of the ARM1176JZF-S after some logical
grouping of top level modules in preparation for a low power implementation.
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Figure 11-3  Alignment of power domain to logical hierarchy

In this example, we map the entire CPU to the VCPU domain, the whole cache —
logic and RAMS — to the VRAM power domain, and the AXI bus to the VSOC
power domain.

This partitioning meets several objectives:

® In some power modes, we power gate the CPU, but keep the cache powered up to
enable a fast restart.

e For multi-voltage, we will operate the CPU at several different voltages, depend-
ing on work load. But in many technologies there is not enough headroom to run
the cache RAMs at these lower voltages.

By maintaining a high correlation between the power domain structure and the logical
hierarchy we can minimize the number of signals that cross the power domain inter-
faces. This minimizes the amount of logic we need to introduce to maintain electrical
integrity. This in turn minimizes the QoR impact to our design and makes physical
implementation easier.

For the same reasons, we have implemented the minimum number of power domains
required to meet our low power objectives. Creation of unnecessary power domains
makes the implementation process more complex and can negatively impact QoR.
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11.1.2 Critical Path Timing

In most designs, the critical paths are known, predictable and well understood. During
design partitioning for low power, we need to minimize the impact on these critical
paths and make sure we do not create any new critical paths.

In our case, we have a cached microprocessor, where the critical paths are through the
interfaces between the cache system and the CPU logic. However, in a multi-voltage,
power gated implementation, we have placed the CPU logic and the cache memory in
separate power domains. Our already critical memory interface paths are further
impacted by the addition of level shifters and/or isolation logic.

These level shifters and isolation cells will be placed in dedicated geographic areas in
the floorplan (voltage areas) that impose additional hard constraints on any optimiza-
tion. This additional interface logic and restriction in optimization may create critical
paths in the design that are not desirable.

This is also true for off-chip interfaces. Any logic in the design that is operating at a
voltage level different to that of the IO will need to be level shifted prior to the IO
interface thereby adding additional delay to these off-chip paths.

When partitioning a design into multiple power domains we also need to avoid the sit-
uation where logic in always-on blocks is dependant on state set in powered down
blocks.

Investing the time to architect power domains carefully can help minimize the impact
on physical design and system timing.

Recommendations:

e Ensure that the power domain hierarchy aligns with logical hierarchy where possi-
ble

e Pay particular attention to the critical path timing in the design — especially around
power domain interfaces

11.2 Design Flow Overview

As show in Figure 11-4, the design flow for a multi-voltage, power gating design fol-
lows that of a standard implementation with a few exceptions.
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Figure 11-4 Design Flow Overview

Primarily, the differences between the standard design flow and that for a multi-volt-

age, power gated design are:

Specification of the power intent

Creation of power domains during synthesis

State retention synthesis with always-on network management

Multi-voltage physical design partitioning and the addition of MTCMOS switch

cells

Multi-voltage power network synthesis for MTCMOS power gating during power

planning phase

Early power network analysis to validate power gating switch topology


HX00790
高亮
differences between the standard design flow and that for a multi-voltage, power gated design
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e Multi-voltage placement optimization including level shifter and isolation cell
optimization
e Multi-voltage clock tree synthesis and optimization

e Intensive post route power network analysis with power-up sequencing verifica-
tion

11.3 Synthesis

Logic synthesis is the process by which we map a generic RTL representation of the
design to a target technology. In low power designs, we include the power intent — the
specification of power domains, isolation, and so on — at synthesis so that optimiza-
tion includes the effects of these added circuits. We can view the logic synthesis of a
multi-voltage power gated design as simply a low power overlay to the typical logic
synthesis process.

11.3.1 Power Intent

This power intent describes the power domains in the design and defines how power
is distributed to the various power domains. It defines where level shifters, isolation
cells and retention flops are required. It describes how power is switched on and off to
the various power domains.

Power intent can be captured in several ways

e Through explicit definition in the RTL by hand instantiating the level shifters, iso-
lation cells, etc.

e Through explicit definition in the RTL by using HDL pragmas.

e Through the use of tool-specific commands.

e Through the use of a accompanying power file in a standard format such as the
Unified Power Format (UPF).

For the purposes of the discussion here, we will use the UPF format.

11.3.2 Defining Power Domains and Power Connectivity

In UPF, power domains are specified with the following command.

create_power_domain domain_name
[-elements /isf]
[-include_scope]
[-scope instance _name]
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Where:
domain_name Identifies the new power domain
-elements /ist Indicates which elements are in the domain.
-include_scope Indicates that the scope of the domain should be included

in the domain.
-scope inst_name specifies that the scope (instance) in which the power
domain is created. Default is the current scope.

As discussed previously, it is strongly recommended that the power domain hierarchy
align with the logical hierarchy where possible and that the elements list be a collec-
tion of hierarchical cells within the design.

11.3.3 Isolation Cell Insertion

Isolation logic must be inserted at the interfaces of power gated blocks such that the
logic in these blocks is isolated from the rest of the design during shutdown. Specific
isolation cells are typically used for this purpose and these cells are available in most
physical IP libraries today.

In UPF, isolation cells are specified by the following two commands:

set_isolation isolation_name
-domain domain_name
<-isolation_power_net net name | -isolation_ground_net net name |
-isolation_power_net net_name -isolation_ground_net net_name |
-no_isolation>
[-elements /ist] [-clamp_value <0 | 1| latch | Z>]
[-applies_to <inputs | outputs | both>]

Where:

isolation_name specifies the isolation strategy name.

domain_name is the name of the domain to which the strategy is to be applied.

-elements indicates which elements of the domain will have their interfaces
isolated.

net_name identifies the supply net(s) used to supply the isolation logic
inferred by this strategy.

-no_isolation does not isolate the port, pin, or design element specified in the
elements list.

clamp_value is the value to which the input or output shall be clamped. The
default is 0.

applies_to indicates whether the domain’s input ports, output ports, or both

are isolated. The default is outputs.

We recommend isolating all outputs from a shutdown block. These recommendations
can be met by using the default value for the applies_to and -elements.
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Having defined an isolation strategy for a shutdown block, we must now also define
how the isolation is controlled. The set_isolation_control command does this.

set_isolation_control isolation_name
-domain domain_name
-isolation_signal signal name
[-isolation_sense <high | low>]
[-location <self | parent | sibling | fanout | automatic>]

Where:
signal name identifies the signal that causes the specified element to drive its
clamp value.
-location specifies where the isolation cells are placed in the logic

hierarchy. The default is automatic.

Location determines where the level shifters will be inserted:

e Self means in the module whose output is being shifted

e Parent means in the parent of the module whose output is being shifted

e Sibling means a new module is created at the same level as the module whose out-
put is being shifted. The shifters are put in this new module.

e Fanout means that the shifters will be place in all the destination modules of the
shifted signals.

e Automatic means that the tools are free to put the shifters in the appropriate loca-
tion.

There can be multiple styles of isolation cell each with specific requirements on
where they are placed and how they are power routed. Thus, we recommend that the
location of these cells be determined automatically by the synthesis tool based on the
nature of the isolation cell being targeted. The default value of automatic for the
—location switch accomplishes this.

11.3.4 Retention Register Insertion

Retention registers are synthesized automatically during the logic synthesis phase
once the retention style and associated attributes have been defined.
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In UPF, the state retention strategy and the specification of state retention control are
separated and are specified by the following commands.

set_retention retention_name
-domain domain_name
<-retention_power_net net name | -retention_ground_net net name
-retention_power_net net name -retention_ground_net net name>
[-elements /isf]

Where:
retention_name specifies the retention strategy name
domain_name specifies the domain for which this strategy is applied.
net_name identifies the supply net(s) used to supply “always-on” power to
the retention registers inferred by this strategy.
elements /ist indicates which objects in the power domain.

Selecting a subset of elements in a design which shall have their state retained during
shutdown is an architectural decision and should not be made during the implementa-
tion phase. Implementing partial state retention in a design must be a carefully man-
aged process to ensure that the design can come out of a sleep mode correctly. The
interaction and protocols between state retention functionality and the system reset
controls must be well defined and honored during wakeup.

Therefore, the list of elements provided to the set_retention command is an integral
part of the design architecture specification and should be identified prior to the
implementation phase.

Having defined the retention strategy it is now necessary to define the retention con-
trol network.

set_retention_control retention_name
-domain domain_name
-save_signal {{net name <high | low | posedge | negedge>}}
-restore_signal {{net name <high | low | posedge | negedge>}}

Where:
save_net identifies the signal that causes the register values to be saved
into the shadow registers.
restore_net identifies the signal that causes the register values to be restored

from the shadow registers.

The specific values for the options in this command are again related to the architec-
ture of the design and the specific retention registers available in the library.
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Note: The set retention_control command also has optional arguments for defining
assertions about the save and restore signals to assist in verification. See the full UPF
specification of details on these arguments.

11.3.5 Level Shifter Insertion

Level shifters are inserted automatically during synthesis once the location and usage
rules have been defined.

In UPF, level shifters are specified by the following command:

set_level_shifter level shifter name

Where:

-domain domain_name

[-elements /ist]

[applies_to <inputs | outputs | both>]

[-threshold value]

[-rule <low_to_high | high_to_low | both>]
[-location <self | parent | sibling | fanout | automatic>|

[-no_shift]

level shifter name
domain_name

elements

applies_to

threshold

rule

is the name of the level shifter strategy, which is
used by the tools for reporting.

is the name of the domain to which the strategy is
to be applied.

indicates which elements of the domain will have
their interfaces shifted. Default is all the
interfaces.

indicates whether to shift the (elements of the)
domain inputs, outputs, or both. The default is
both.

defines the voltage, in Volts, for determining
when to insert level shifters. If the difference
between two domains is greater than the
threshold, level shifters are inserted. The default
is OV.

determines whether to insert level shifters for
interfaces that go from a lower voltage to a higher
one, a higher one to a lower one, or both. Default
is both.
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We strongly recommended that level shifters be used on all power domain interfaces
where an up shift is required, since this prevents crowbar currents and improves edge
rates and therefore timing.

In general, we recommend that level shifters be used on all power domain interfaces
where a down shift is required. It is safe to overdrive the input in the lower voltage
domain. However, the timing characteristics of the destination cell will assume a cor-
rectly driven input signal operating at the same voltages the output driver of the cell.
There will be an error in calculating the delay if a level shifter is not used.

Thus, we recommend -rule both.

The placement of the level shifters is important. The output driver for a level shifter
requires more supply current than the input stage. For this reason, we recommend
placing the level shifter in the destination domain — the domain that the level shifter
output drives. This assures a high quality power connection to the output stage of the
level shifter cell.

There are two ways to do this with the set_level_shifter command. We can say:

applies_to inputs
-location self

Or we can say:

applies_to outputs
-location fanout

There is no general, ironclad rule to prescribe the difference in voltage levels above
which level shifters are required. This decision is technology and library dependent.

In certain cases, when the voltage difference between the two power domains is less
than the threshold voltage then level shifters are not strictly required. However, when
making this decision, the tolerance of the power supplies should be considered. It may
be the case that when both power domains are being powered by ideal supplies that
the voltage difference is tolerable, however when worst case variation between the
power supplies is considered, the difference may be too great and level shifting
required.

Using the default -threshold of 0V is a safe initial value. If timing across critical
interfaces becomes a problem, we can revisit this issue and specify a different value.

In any case, we do need to specify unambiguously which power domains are at what
voltage level, so the tools know where to insert level shifters. The UPF power state
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table constructs (create_pst and add_pst_state) provide an explicit mechanism to
specify voltage levels.

In the diagram below, a net is entering the VSOC power domain which is at a differ-
ent voltage from the cell driving this net. In this situation, the net must not be buffered
(in the SOC domain) prior to the level shifter. Otherwise we defeat the whole purpose
of using a level shifter. The requirement to avoid buffering of level shifter input effec-
tively forces the level shifter cells to be placed close to a power domain boundary.
Modern tools address these issues automatically.

Power Domain VSOC, 1.2v

—1

4
Input net to /

level shifter must
not be buffered

Functional Logic

Figure 11-5 Input Nets on Level Shifters are Protected

Recommendations:
e Define a comprehensive power intent for the design that can be implemented and
verified

® Define the power domains early and manage the power intent throughout the
entire design process

e Define isolation logic and state retention as part of the design description (in the
RTL or UPF file) to ensure full design verification

® Include isolation and state retention synthesis in the overall logic synthesis step —
not as an afterthought. The area and delay cost of isolation and state retention
should be an integral part of the overall cost function for the design.

e Ensure that all control networks for always-on logic (switch cells and retention
registers) are buffered using always-on buffers to ensure that they remain alive
during power down.

11.3.6 Scan Synthesis

As described in Chapter 5, low power designs pose special problems for scan testing.

The typical DFT challenges faced in multi-voltage design include:
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e Power aware architecture and reordering of scan chains

e Automatic insertion of level shifters and isolation logic on DFT signaling across
power domains

e Timing issues in scan chains that cross power domains operating at multiple volt-
age levels

¢ Intelligent routing of the scan enable signal(s) to minimize power domain crossing

Figure 11-6 shows the situation we want to avoid.

Scan
Chain1 _[[°"°| L

Scan

PD2 PD3
Q*'s o' s| [e* s| [a*'s Chain 2 Q*'s a*s| [a*s] [a™s
[T en R [T R| |QeasR| |Qas R [T es R DVen R| [RenR| |Qan R

Figure 11-6 Power Domain Mixing of Scan Chains

This situation, where scan chains cross power domains, can cause real problems. At
the least, level shifters and isolation cells may have to be inserted.

In the worst case, keeping all three power domains powered up during test is not pos-
sible. Since switching activity in scan mode can be much higher than in normal oper-
ation, scan testing with all domains powered up may exceed the max power for the
chip.

For these reasons, we need to make every effort to implement the scan chain structure
in a power aware style, where the scan paths are localized within each power domain.
The scan elements can then be reordered within the power domain during placement
optimization to minimize wire length. We also avoid requiring the clock skew on the
scan paths to be balanced across domains, which would add unnecessary complexity
in clock tree synthesis.

Figure 11-7 on page 170 shows another example of the difficulty in managing scan
chains across domains. Here a scan chain comes from power domain VCPU, which is
a power-down domain, and connects to Scan Flop 2. Since this connection did not
exist in the original design description, the path is not isolated and therefore addi-
tional isolation logic needs to be added. This may mean that we have to add more
UPF commands.
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Recommendations:

e Try to implement a scan strategy that is power domain aware — minimize the num-
ber of times scan chain(s) cross power domain interfaces to restrict the number of
isolation cells and/or level shifters.

® Scan chain reordering should also be power domain aware and where possible
scan chains should be reordered within the power domain only.

Scan Flop F2
D a
Power Domain sl
el Added L o
Isolation SE
Scan Flop F1 Sl
D Q
S|
> QN 1 I\l\ Functional Logic
" T
Existing
Isolation

Figure 11-7 Additional Isolation Needed For Scan Chain Creation

11.3.7 Always-On Network Synthesis

When implementing any power gating design, we need to make sure that the control
signals from the power gating controller remain alive during shutdown. These control
signals include the controls for the power switches, isolation cells, and retention reg-
isters.

The networks of buffers that distribute these control networks are referred to as
always-on networks and must use only always-on buffers and inverters. These
always-on cells are very similar to their standard counterparts but are connected to the
always-on supply instead of the local switched supply. This ensures that the signals on
these control networks remain alive during shutdown.

In most EDA solutions available today, identification of these always-on networks is
fully automated within the synthesis process. Retention registers, isolation cells and
power supply switches have specific pins annotated with always-on attributes that
enable the synthesis of always-on networks. Similar attributes exist on specific buff-
ers and inverters in the library that the synthesis tool can then select to buffer these
networks.
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A basic power gated supply with state retention register is shown in the diagram
below. The control of the power gating switch (SLEEP) and the retention register con-
trol (RETN) are both buffered by always-on networks in the design. These pins are
connected to the power gating controller through a network of always-on buffers and
inverters that are connected to always-on power supply VDD. The local logic in the
design is connected to the switched power supply VVDD delivered by the power gat-
ing switch.

DD
SLEEP ‘ E |
1 Power Gating
Switch
VVDD
VDD VDDG
—D
RETAIN [\ RETN a
L
— CLK A
VSs
Retention
Register
VSS

Figure 11-8 Always-on Networks Required in Power Gated Designs

Although the synthesis and physical design tools understand always-on power rout-
ing, we still need to verify the always-on nets as part of Low Power Validation at the
end of the design process. The design and specification of these networks is complex;
they are usually inferred from the commands that specify the isolation and retention
strategies. It is easy to make a mistake in these commands but sophisticated rule-
based checkers can help spot any mistakes in this area.

11.4 Multi Corner Multi Mode Optimization with
Voltage Scaling Designs

It is commonplace in modern SoC designs to have a variety of functional modes. With
multi-voltage design we introduce a number of additional modes to the design,
including various performance levels and sleep modes, such as light sleep, hibernate
and complete shutdown. These additional modes need to operate at a number of dif-
ferent corners (process, voltage and temperature points). The combination of these
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multiple modes each operating at different corners can be termed as scenarios. During
the implementation process we need to both optimize and analyze the design for each
of these scenarios.

For a dynamic voltage scaling design, we are concerned with ensuring full device
operation at each of the various performance levels that are specified for the design.
Specifically, we need to ensure that as we scale the voltage in conjunction with scal-
ing the frequency that we have an optimal implementation at each supported combi-
nation of voltage and frequency. In a single voltage design, our worst case corner (for
setup) is usually at the lowest voltage, highest temperature and worst case process.
However, as we scale the performance levels in our design we may find that our worst
case corner is some intermediate combination of voltage and frequency that does not
reside at the edge of our operating window. Identification of this corner is important
and an integral part of the implementation process.

This process is managed in the EDA tools through the use of multi-corner, multi-
mode analysis. The designer can specify the modes of operation of the design and the
corners at which the design is to operate. The implementation tools use these scenario
specifications as constraint corners for optimization.

For the ARM1176JZF-S we intend to operate the design with varying voltage levels
applied to the VCPU domain. When we vary the voltage at which VCPU operates, we
also vary the clock frequency. Each of these modes, each of these combinations of
voltage and frequency, has a number of associated of timing corners representing
some variation in voltage, temperature and process. In addition, each of these modes
will have a set of associated timing constraints, unique to each corner, which the
implementation of the design must satisfy.

In using multi-corner, multi-mode techniques we need to get the best balance between
quality of results and the turn time for each pass of implementation. Specifying doz-
ens of operating modes and corners will likely result in enormous run times for the
implementation tools and will not necessarily yield the best quality of results. Speci-
fying a few well considered modes and corners for implementation followed by a
more comprehensive set of modes and corners for signoff is typically the best
approach.

Each defined mode needs to be accompanied with a comprehensive set of constraints
(SDC) that are used during both the implementation of the design as well as the
signoff.

We specify the constraints for the restricted set of scenarios at synthesis and carry
them through the entire implementation flow. We then use the constraints for the full
set of scenarios for signoff static timing analysis.
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11.5 Design Planning

The design planning process is critical to the implementation of a low power design.
It is during design planning that we are presented with the majority of challenges and
have the greatest opportunity to adversely affect the QoR of the design if we are not
careful. Implementing a multi-voltage power gated design is going to impact the
resulting QoR. Degradation of QoR can be caused by a number of factors including:

e Reduced operating voltage for certain parts of the logic

® Added delay introduced by level shifters and isolation cells

e Increased IR drop across switch networks in the power mesh

® Increased congestion caused by the use of switch cells and retention flops
® Placement restrictions due to physically bounded voltage areas

The physical design phase of the implementation starts with a determination of the
overall topology of the design. Typically, the design topology will be governed by
many factors, most of which are not necessarily low power related. The location of
inputs and outputs for a design will be heavily influenced by the nature of the applica-
tion into which the design is to be placed. Similarly, the location of the memory sys-
tem and other blocks of hard IP within the design will dominate the topology, thereby
reducing the flexibility and degrees of freedom available to the designer.

We need to overlay the power intent on the physical design process such that we do
not limit the resulting QoR unnecessarily or place undue restrictions on the placement
optimization process.

11.5.1 Creating Voltage Areas

During design planning, we will be physically bounding our power domain with volt-
age areas. This will ensure that all logic that constitutes a specific power domain is
placed close together, allowing power to be delivered to that logic more efficiently.

When architecting voltage areas, we need to try to optimize the relative location of
functional blocks and their communication with other blocks in the design. Where
possible, we want to route power consuming busses efficiently and avoid unnecessary
scenic routes around power domains. As with most design planning tasks, the creation
of a voltage area from a power domain will be an iterative process and will involve
identifying the best size and shape of the voltage area and how best to fit that voltage
area in the chip.

We determine the size and shape of the voltage area based on the performance
requirements of the logic and how densely it can be packed. Also, we consider the
type of logic that is to be placed - does the voltage area contain a number of hard IP
blocks that would present a significant challenge to the router if placed in the middle
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of the design? Would using rectilinear voltage areas with these types of power domain
help in the floorplanning process? We also need to make sure that voltage areas do not
overlap.

Since voltage areas by definition contain logic that employ differing power strategies,
care must be taken at the interface to these voltage areas to ensure that the voltage
domains are truly isolated. We recommend that each voltage area be surrounded by a
guard band providing some degree of physical isolation between the power domains.
Guard bands present a physical placement constraint for the voltage area and they
should be large enough to provide the necessary isolation but not so large that they
use up valuable silicon real estate and impact the QoR. Figure 11-9 on page 174
shows how the voltage areas may be created.

ARM1176JZF-S

Default
Voltage Area
for top level
power
domain VSOC
VCPU VRAM
Power Down Domain Always-on Domain
0.9v, 1.0v. 1.1v,1.2v 1.2v
A v

Guard Bands

Figure 11-9 Mapping of Power Domain to Voltage Area

As mentioned in Chapter 7, nesting of power domains is a logical concept and should
be avoided in the physical design. If they are absolutely required, care must be taken
to ensure that the physical bounds of the nested voltage areas are separate from the
voltage area of the parent power domain.

We also do not recommend splitting a power domain into multiple separate physical
regions on the chip. Although this is supported in most EDA tools today, having to do
this should prompt the designer to reconsider the design partitioning.

Level shifters place specific constraints on design planning. For electrical integrity,
the level shifters need to sit as close to the boundary of a voltage area as is possible, as
they have input signal nets that are protected from buffering. Long un-buffered nets
can create timing problems in a design.
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When there are many signals between two power domains, the large number of level
shifters required can present a challenge. For example, power domains that provide
data on a number of wide data busses will naturally require large numbers of levels
shifters, all of which will be pulled as close to the physical boundary of the voltage
area as is possible. This can result in multiple site rows being consumed with level
shifters around the periphery of a voltage area, leading to degradation in QoR for
those nets that have their level shifter placed furthest from the boundary.

In these situations, it is recommended that power domains be floorplanned in such a
way as to align data busses across power domain boundaries and give as large a
dimension as possible to common interfaces. This will allow for spreading of the
level shifters, resulting in a smaller physical separation between the logic in each
power domain.

11.5.2 Power Gating Topologies

Where local power gating is employed, there are a number of alternative topologies
for the placement of the power gating switches. These are discussed in detail in Chap-
ter 14.

For most designs, including the ARM1176JZF-S, we use a grid design for the power
network. With modern tools, we have two options for specifying the placement of the
switches. We can specify an x and y increment, and the tool will place the switches
evenly throughout the network. Or we can give the tool a design goal (such as current
capability or IR drop) and the tool can do switch placement exploration and return
with a list of options for the designer.

The size and placement of the switches is critical in determining the IR drop across
the switch network. This in turn is critical in determining timing, since delay is very
power-supply dependent.

In UPF, power gating switch cells are specified by the following command

create_power_switch switch_name
-domain domain_name
-output_supply_port {port_name supply net name}
{-input_supply_port {port name supply net name}}*
{-control_port {port name net name}}*
{-on_state {state_name input_supply port {boolean_function}}}*
[-on_partial_state {state name input supply port {boolean_function}}1*
[-ack_port {port name net_name [{boolean_function}]}]*
[-ack_delay {port name delay}]*
[-off_state {state name {boolean function}}]*
[-error_state {state name {boolean_function}}1*



Where:

switch_name
domain_name
-output_supply_port
-input_supply_port
-control_port
-ack_port

-ack_delay

-on_state
-on_partial_state

-off_state
-error_state
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specifies the name of the switch instance to create;

specifies domain containing the switch.

identifies the output supply port of the switch and the net where
this port connects.

identifies the input supply port of the switch and the net where
this port connects.

identifies a control port on the switch and the net where this
control port connects.

identifies the acknowledge port on the switch and the signal net
where this port connects.

identifies the acknowledge port and delay on the switch where
this port connects.

defines what value of the control port turns the switch on.
defines what value of the control port turns puts the switch in a
current-limited state.

defines what value of the control port turns the switch off..
identifies any error states, which if defined on the switch can be

flagged during simulation or analysis.

11.5.3

The power-up sequence for a power gated design is critical for limiting the in-rush
current, so that we do not cause voltage spikes that could corrupt retention registers or
data in adjacent domains.

In-rush Current Management

One effective technique, employed on ARM1176JZF-S, uses a buffered switch which
provides a buffered (SLEEPOUT) version of the switch control input pin (SLEEP).
This allows daisy chaining of the sleep control network throughout the design by con-
necting the SLEEP pin of one switch to the SLEEPOUT pin of another switch.

The exact topology of this daisy chain can be user defined, but the end goal is the
same — a buffered sleep network that can be turned on quickly but at the same time
limiting the in-rush current. This usually entails grouping sets of switches together,
and driving the whole group with the same SLEEP pin, so they all turn on at the same
time. One of the SLEEPOUT signals from the group is connected to the SLEEP pin of
the next group. Thus, groups of pins are daisy chained. The speed vs. noise trade-off
now involves determining the size of the group. This can be done through power anal-
ysis.

11.5.4 Recommendations:

® Voltage areas should be guard banded where necessary.

® Placement optimization must be constrained to ensure that cells in a power
domain are placed inside the associated voltage area.



Implementing Multi-Voltage, Power Gated Designs 177

e New cells created during the physical design optimization process must be placed
in the appropriate voltage area and powered by the correct power supply.

e Short feed-through paths in a voltage area should be protected from repeater inser-
tion during design optimization and design-rule fixing to maintain wire connec-
tion.

e The isolation cells and level shifters should be placed at the voltage area boundary
to ensure minimal impact to timing.

¢ [t may be necessary to experiment with various power switch topologies and com-
pare the results to determine which is most suitable for the design in question.

e Consider the power routing impacts for the switch topology chosen.

11.6 Power Planning

With a physical topology in place we can now begin to consider how to provide
power to the various voltage areas in the design. Since by definition, each power
domain employs a different power strategy, it is likely that we will be routing differ-
ent power rails to each voltage area.

Minimizing the voltage drop across each of these power rails is a key part of meeting
the performance goal. Unfortunately, many of the techniques that we employ in a low
power design can make the voltage drop and noise problem worse. For example,
when the design is operating at reduced voltage levels, our available margin for volt-
age drop is considerably reduced. When we change performance levels or power-up a
block after shutdown, the on-chip current gradients become worse which can lead to
noise injection. And in power gating blocks, there is an IR drop across the power
switches.

Most EDA tools provide some level of automated power network synthesis (PNS)
capability for the distribution of power across a design. We recommend highly that
the implementation of a multi-voltage design utilize this type of PNS capability wher-
ever possible. The number of concurrently changeable variables in a multi-voltage
system is such that attempting to construct a power plan manually may result in a sub-
optimal result both in terms of routing resources consumed and the voltage drop on
the rails.

Power network synthesis allows the designer to specify the absolute constraints on the
power plan (such as maximum voltage drop, routing layers and via requirements). It
ensures that the power budget for the design is satisfied and provides integrated volt-
age drop and electro-migration analysis. Most level shifters available today that are
shifting from a low voltage to a higher voltage require two power supplies. Cells that
combine level shifting and isolation require a secondary supply that provides always-
on power to the cell. During the power planning process it is necessary to hookup the



178 Low Power Methodology Manual

primary power pins to the appropriate voltage rails. There are various ways that this
can be achieved depending on which EDA tools are being used. For example, for iso-
lating level shifters, the primary power supply pins can be hooked up to the appropri-
ate voltage rails through PNS and the secondary power pin (for always-on power) can
be connected by the power router later in the design flow when the final placement of
these cells is frozen.

The sleep transistor power network is composed of three components: a permanent
power network, a virtual power network and an array of the sleep transistors. All of
these components contribute to the quality of the sleep transistor power network in
terms of IR drop, routing resources and silicon area. Consequently, the synthesis of
the sleep transistor power network becomes a challenge. Historically, most power-
gating designs used scripts to insert and place the switch cells, and create power
straps and rails based on heuristic rules. Today, the sleep transistor power network can
be synthesized using a power planning tool PNS [PNS] that considers all the three
components.

Recommendations:

e Use a power planning tool which supports switch cells to create the sleep transis-
tor power network including switch cell insertion and placement.

® Run both static and dynamic IR drop analysis on a design with switch cells to ver-
ify the power integrity. Significant static IR drop violations usually require
increasing the number of switch cells and adjusting their positions.

e Dynamic IR drop violations are commonly fixed by decoupling capacitor inser-
tion. Accurate power-on sequence I-V responses have to be obtained by transient
analysis to assure that all IR drop violations are fixed.

e In the case of any IR drop violations, try to fix the violations in the permanent
power network, because any changes in the switch cells distribution and virtual
power network usually require re-analyzing wakeup latency and peak current.

e Run wakeup in-rush current analysis to check that the max in-rush current and
wakeup latency meet the defined constraints. For small designs, it is possible to
run this analysis in SPICE. At chip level, the wakeup analysis is done using rail
analysis tools.

¢ Run dynamic IR drop analysis covering the wakeup period to detect any viola-
tions caused by current spikes, through common power rails, on the parts of the
design that are alive while the power-gated block is waking up.
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11.6.1 Decoupling Capacitor Insertion

An integral part of the power planning process involves ensuring that the noise cou-
pling between different power supply rails and between cells in the same power
domain is minimized. This power and ground noise can degrade timing and possibly
cause functional failures. Inserting decoupling capacitors (decap cells) in the design is
the method commonly used to address these issues.

Decoupling capacitor insertion becomes more challenging in power-gating designs
than in normal designs. Implementing in-rush current control techniques, such as
daisy chaining the power-gating structure to sequentially charge the power-gated
block, reduces the in-rush current. However, the turn-on current of each switch, par-
ticularly of those switches which are close to the head of the daisy chain and turned
on first, can still generate significant power and ground noise pulses in the rest of the
design, through the permanent power supply and common ground networks. Adding
decoupling capacitors to the permanent power supply nets is an effective way to
reduce this noise. It is most effective to insert the decoupling capacitors next to the
switch cells which are the sources of the noise during wakeup.

Apart from the power and ground noise generated by the in-rush current, there is also
the noise generated by cell switching currents in the power-gated block during normal
operation. Decap insertion is a common method to address this noise. However, decap
insertion becomes more challenging in the power-gated design. In sub-90nm technol-
ogy, decap cells exhibit high leakage power that needs to be controlled. Also, the
decap cells added to the virtual power network have significant impact on the wakeup
latency and in-rush current. The larger the decoupling capacitance, the larger the in-
rush charge current and the longer the charge time (latency) at wakeup. Therefore, the
optimization of de-cap insertion in the power-gating design becomes very important
to achieve maximum noise reduction with minimum added capacitance at the virtual
power network. This can be done by identifying noise hot spots using dynamic IR
drop analysis tools and then inserting just enough capacitance at the hot spots to
reduce the noises meeting defined noise target. It is worth noting that advanced EDA
tools have implemented such optimal decap insertion methods.

Recommendations:

® Add as much decoupling capacitance as permitted in the permanent power net-
work at the positions close to the switch cells. This achieves the maximum effec-
tiveness and minimum impact on the wakeup latency and in-rush current. It is
convenient to integrate the decap into the switch cell to simplify decap insertion.
The maximum capacitance of the decap on the permanent power network is con-
strained by the leakage and area penalties.
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e To fix dynamic IR drop violations in the post-layout stage, it is preferable to add
decoupling capacitance to the permanent power network close to the violation
spots, if the violations are related to the permanent power network. The rest of the
violations have to be fixed by adding decap to the virtual power network at the
violation sports.

11.7 Clock Tree Synthesis

The impact on the overall power consumption of the clock tree in a design is signifi-
cant. In many cases, more than half of the overall power consumption of a design may
be due to the clock network. There are a number of ways to mitigate the effects of the
clock tree power, including clock gating and minimizing clock tree insertion delays.

However, when we are dealing with a multi-voltage design, we have additional
restrictions on how we can manipulate the clock tree to meet both our low power
requirements and our performance requirements at each performance level. In a single
clock multi-voltage design, the clock is used in multiple power domains and hence
crosses a number of voltage area boundaries. As the clock passes through each volt-
age area its latency is modified based on the voltage at which those voltage areas are
operating. If the clock path buffering and data path buffering are not well balanced
across voltage areas then skew management becomes very difficult.

The diagram in Figure 11-10 illustrates the issue. In this particular situation, both the
data and the clock are being sent by the CPU to the memory. The data path buffering
is split between the VCPU and VRAM power domains with the clock path buffering
residing primarily in the VRAM power domain. Assume that we have very good
skew minimization when both power domain VCPU and VRAM are operating at the
same supply voltage. When the voltage on power domain VCPU is reduced as part of
performance scaling then we run the risk of slowing the data path relative to the clock
and introducing setup violations in power domain VRAM.
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Figure 11-10  Clock Tree Synthesis Challenge in a Multi-Voltage Design

In order to help alleviate this problem, clock tree synthesis algorithms in current EDA
tools are multi-voltage aware and use a bottom-up approach to constructing the clock
tree. Each voltage area is processed in turn and the clock networks for each voltage
area are constructed to minimize the skew. These low level clock tree structures are
then merged by the construction of higher level clock trees that join together the sub-
tress to form an overall clock network for the design.

Adopting this approach helps locate the buffering for the clock tree in the same volt-
age area as the data path buffering. This clock buffer clustering prevents the clock
network from winding its way in and out of a number of voltage areas, requiring level
shifters to be inserted every time the clock network crosses a voltage area boundary.
This level shifter insertion process would add significant delay to the clock tree and
impact the ability to minimize the clock skew and power. Figure 11-11 illustrates this
clustering approach. Note that the VRAM and VPCU domains have level shifters
(“LS” in the figure) in their clock trees.

ARM1176JZF-S

Clock
Port D_{:> >
VRAM

B

VCPU VSOC

Figure 11-11 Bottom Up Clock Tree Clustering

This approach lends itself well to voltage areas that have a good mix of clock and data
buffering such as blocks of standard logic. However, when we have a voltage area
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which contains little standard cell logic but rather many blocks of hard IP, extra care
must be taken to ensure that the imbalance of clock tree and data path buffering will
not introduce significant skew problems as voltage levels are scaled.

Routing

The leading commercial routers today are all low-power aware and will honor the
power intent in the design. There are however some potential pitfalls that can occur
during detailed routing which can be avoided by intelligent floorplanning and design
partitioning.

When a design is partitioned into multiple voltage areas, hard placement and routing
restrictions exist that can impact the routing of the design. This can lead to degrada-
tion of QoR. It is therefore important to consider routing of the design, especially on-
chip bus structures and global control networks, when floorplanning the design.

If the best route for a net from one part of the design to another is across one or many
voltage areas then a decision has to be made on how to deal with the net.

e Route the net through the voltage area(s) and then add the appropriate level
shifters to each voltage area crossing

e Detour the route around the voltage area(s) to the destination

With the first option, adding level shifters to every point at which the net crosses a
voltage area will be expensive in terms of area, power and delay. The second option
will introduce an incremental delay compared to a direct connection that would be
available in the single voltage design; however the impact of this approach is consid-
erably less than with the first option.

Both of these options will impact the QoR and so clearly we want to avoid this situa-
tion. The cost (in time) of rectifying this situation at the detailed routing stage will be
expensive and so avoiding this situation by considered design planning earlier in the
design cycle is recommended. Complete avoidance of this situation in a multi-voltage
design may not always be possible but making every attempt to minimize the problem
is recommended.

Figure 11-12 on page 183 illustrates the detour routing problem. Here a net going
from power domain A to power domain C must cross power domain B which is at a
higher voltage. Rather than adding level shifters to this net and routing it through
power domain C, we can detour route this net around power domain C.
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Figure 11-12 Detour Routing Around a Power Domain

11.8 Power Analysis

Having completed the implementation of our multi-voltage, power gated design, it is
now necessary to verify the integrity of the power network. Two aspects of our power
network are critical: the voltage drop seen by the standard cells in the power gated
blocks and the profile of the in-rush current during power-up sequencing.

Performing power rail analysis of the design is critical. There will be many power
rails in the design and the integrity of each needs verifying and the interaction
between rails (coupling) also needs to be verified. Using a comprehensive rail analy-
sis tool, we can perform extensive analysis of the power networks in the design. The
coarse level power network analysis was completed during the power planning phase.
What we are looking for here are areas in the design where we have excessive voltage
drop due to local level clustering which results in power “hot” spots.

Implementation tools today are very good at performing local clustering of registers,
clock gates and clock tree buffers to ensure that aggressive timing goals are met. This
however can make the voltage drop problem worse in those regions of the chip, espe-
cially in regions with switched power rails. Since logic spreading in these areas is not
viable (this will impact the QoR) we must deal with the voltage drop problem in a dif-
ferent manner and typically sizing the switch cells and power mesh is the best
approach.

The rail analysis gives us valuable data on the voltage drop seen by every standard
cell in the design. Where we have an unacceptably large voltage drop we can try siz-
ing or duplicating power switch cells and sizing the power mesh to alleviate the prob-
lem. Creation of instance specific voltage drop data for a design can then be used by a
signoff static timing to measure the impact of voltage drop on the timing of the
design.
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The second area of power analysis that needs to be addressed is that of in-rush cur-
rent. We have taken great effort in architecting a power gated design that supports a
fast transition from functional mode to standby mode, and maintains the necessary
state to resume functional mode quickly when the design comes out of sleep. Recov-
ering from a sleep mode quickly is important, but not so quick as to induce a large in-
rush current. By performing extensive transient analysis we can model the power-up
sequencing of the design under various conditions and determine the optimal balance
between wake-up speed and rush current management.

11.9 Timing Analysis

A multi-voltage power gated design will need to function in a number of different
modes each operating at different corners. During implementation, we selected a
reduced set of scenarios - operating modes and corners — and used these as con-
straints. Hopefully we chose the best and worst cases and produced a design that will
work under all scenarios.

The purpose of signoff static timing analysis is to prove that we have, in fact, imple-
mented a design that works under all scenarios. As such it is necessary to accurately
specify all of these scenarios and provide all the necessary technology libraries
required to analyze the design at the supported performance levels.

In particular, we need to make sure that the libraries — especially level shifters — are
characterized for the voltages as which we run signoff static timing analysis.

Run times will now be significantly longer than for a design that is not implemented
with aggressive low power techniques.

During the fabrication process for a CMOS based design, it is expected that there will
be minor variations in resistance and capacitance of both the transistors and the metal-
lization. These variations will impact the timing paths in different regions of the chip.
We recommend that a small window of uncertainty be placed around each of these
operating corners to provide a greater level of confidence in the final signoff results.
This window of uncertainty can help counter any on-chip variation (OCV) that may
exist across the die. On-chip variation will derate the path delays in unfavorable
directions, such as speeding up clock and slowing down data for setup checks and
visa-versa for hold checks.
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11.10 Low Power Validation

Having successfully implemented our multi-voltage power gated design that meets all
power and performance targets, it is now necessary to validate the integrity of the
design. Specifically we want to ensure that the low power intent provided at the start
of the implementation process has been successfully implemented in the final design.

We validate functionality and the integrity of our low power implementation using
three methods:

e Qate level logic simulation
e Equivalence checking
* Rule-based methods

Clearly gate level simulation of our final design can tell us if the design still remains
functional with the low power structures. Specifically, we can validate that the
design:

e resets cleanly at startup
e can be placed into various sleep modes
e Dbehaves appropriately during shutdown

e powers-up successfully after shutdown

Formal equivalence checking tools can prove that the gate level netlist is equivalent to
the original RTL plus UPF code.

A rule-base tool can tell us that the power structure of the final gate level netlist
makes sense. It can validate that the isolation cells and level shifters are placed in the
correct domains, and that all nets requiring isolation or level shifting have the appro-
priate cells in place. It can check that cells that required always on power — such as
retention registers, isolation cells, and buffers of power control signals — do, in fact,
have the appropriate supplies. Finally, we can use these tools to find situations where
there are redundant isolation cells or level shifters.

11.11 Manufacturing Test

In a typical voltage scaled system, various parts of the design will be running at
reduced power supply levels. During the implementation process, the design can be
optimized at these voltage levels thereby yielding an overall lower power design that
meets the needs of the system application. However, in most manufacturing test situa-
tions, the design will be tested at nominal supply rail voltage levels which will cause
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the design to consume significantly more power during test than it would during nor-
mal operation. If the design has only been packaged assuming functional power dissi-
pation numbers then thermal failure of both the design and package at test can result.
In addition, this increased power consumption in the core can lead to significant volt-
age drop in the power distribution network which in turn leads to functional failure. It
is therefore necessary to consider the requirements of both the functional and test
modes of the design when implementing voltage scaling.

When performing manufacturing test on designs implemented in very small geome-
tries (90/65/45 nm) it is necessary to use a variety of test models and test strategies.
Specifically, testing the design with stuck-at faults models now needs to be compli-
mented with transition fault delay testing. Delay fault testing is particularly suscepti-
ble to changes in the voltage and frequency at which a design operates. Similarly,
path based testing is also dependent upon the voltage at which the design is being
operated. As will be discussed later in this chapter, the critical path of a voltage scaled
design is not the same path at each voltage level at which the design operates. Each
performance level supported by the design may well have a unique critical path. Each
of these paths needs to be tested during at-speed test in a manufacturing test environ-
ment.

However, as we reduce the supply voltages at which we test our design, delay behav-
ior changes dramatically. In particular, weak circuit elements and defective circuit
elements do not behave in the same way. In addition, the tester environment differs
from the system environment in noise content, heat dissipation and pin load. As a
result, care needs to be taken to distinguish between correct behavior and defective
behavior. In many cases, final decisions on correct timing and voltage levels will need
to wait until silicon is available.

Automating the manufacturing test process will require performing stuck-at fault test-
ing and delay fault testing at several operating voltages, and also may involve both
nominal and high temperature test. Developing the appropriate mix of tests in order to
guarantee sufficient quality at reasonable cost is a complex problem. Different trade-
offs between test time and coverage will apply to different products.



CHAPTER 12 Physical Libraries

One of the first steps in implementing a low power design is to select a library of stan-
dard cells and a set of memory compilers that support the low power strategy used in
the design.

This chapter describes the requirements for standard cell libraries and memories for a
multi-voltage, power gated design.

12.1 Standard Cell Libraries

Standard cell libraries are tuned for different performance, power and area goals. For
low-power design the choice and mix of libraries may have a significant impact on
power, timing and area.

One key characteristic of a cell library is cell height. Cell height is measured in tracks,
which is the metal one (M1) pitch. An 8-track cell is tall enough that eight horizontal
M1 wires can run through it.

Cell libraries are designed to a certain number of tracks in height, and this height
affects the timing and routing characteristics of the library:

e Tall track height libraries support more complex routing, larger drive strength
transistors and typically are tuned for performance — but may exhibit higher leak-
age power. An 11 or 12-track library is considered a tall track height library.
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e [ow-track height libraries are optimized for area efficiency, but generally are
designed with smaller, lower drive strength transistors so are less appropriate for
high-speed designs. A 7 or 8-track library is considered a low track height library.

e Standard track height libraries are designed to give a reasonable trade-off between
area efficiency and performance. These libraries are used in the majority of
designs. A 9or 10-track library is considered a standard track height library.

Libraries can be built with compatible footprints using transistors with different
threshold voltages:

e High-Vr libraries exhibit the lowest leakage power at the cost of somewhat lower
performance. High-V libraries are a good choice for non-timing-critical designs,
and for non-critical paths in higher performance designs.

e Low- Vr libraries are built with high-speed but leaky transistors and are tuned for
high performance. They dissipate higher static and dynamic power as a result.

e Regular- or Standard- Vr libraries sit in between these and offer lower perfor-
mance than the Low-Vp transistor versions at reduced leakage and dynamic
power.

Every threshold variant adds mask costs for different implant layers and introduces
some extra variability into the final silicon. Typically the designer would limit usage
to, say, two threshold variants only.

Libraries can also be further optimized for low static power

¢ [ong channel-length gates can be used to reduce leakage, at some cost in terms of
timing and area.

e The “stack-effect” of series transistors inside gates can be exploited to reduce
source-drain leakage across the other transistors for more complex gate structures.

12.1.1 Modeling of Standard Cell Libraries

Library-level IP abstracts the detailed characteristics of the underlying circuits into
cell-level models to allow implementation and verification without the transistor level
models. This level of abstraction provides “front-end” library design views where the
commercially sensitive internals of the cells or memories are removed. A set of views
that convey the port-level interface, the functionality, timing, and power cell is suffi-
cient for synthesis, place and route, parasitic extraction and post-layout timing analy-
sis. For manufacture the “back-end” library cell views are switched in with the
technology dependent and commercially sensitive transistor-level layout.

The abstract views required include:

¢ Timing models — to support multiple corner synthesis, optimization and analysis.
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® Physical models — in the form of layout “abstracts” with all power and signal ports
¢ Functional models — for gate level netlist simulation
® Power models — to support dynamic and leakage power optimization and analysis

e Test models — to support ATPG and ensure fault coverage

Multi-voltage power gated designs rely on standard cell libraries to provide the mod-
elling information the tools need to optimize and analyze timing and power.

12.1.2 Characterization of Standard Cell Libraries

Historically, standard cells were characterized at a number of process, voltage, and
temperature conditions. Several copies of the timing models were shipped: for exam-
ple, a worst case (slow process, low voltage, high temperature), best case (fast pro-
cess, high voltage, low temperature) and typical. Worst case timing was used for
checking setup times and best case for hold times.

With the move to 90nm technology (and below) and the adoption of aggressive power
management techniques, characterization has become much more challenging.

At 90nm and below, wires are becoming more resistive, to the point where network
impedance can be higher than the output impedance of the driving gate.

Temperature Inversion

In older processes, gate delay always increases with increases in temperature. But
starting at 90nm, it is observed that the gate delay decreases with an increase in tem-
perature under low VDD or slow signal transitions. This is known as temperature
inversion.

The physical nature of the temperature inversion is complex, but here is a general
explanation of the phenomenon based on device behavior.

Gate delay is directly correlated with saturation current (Ingar); the larger Ingat, the
smaller the gate delay. Ipgat increases linearly with carrier mobility and quadratically
with voltage headroom (VDD — V). As temperature increases, mobility decreases
while the voltage headroom increases since V- drops at higher temperature. The tem-
perature effect on the gate delay from the change in mobility is opposite to that from
the change in voltage headroom. The overall effect determines the gate delay.

In older processes, the effect of temperature on mobility dominates, due to a large
voltage headroom. Consequently, gate delay increases with temperature with a given
input transition and output load on the gate.
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In sub-90nm nodes, VDD is scaled significantly lower than in the older processes. As
a result, the voltage headroom becomes small enough that the gate delay becomes
more sensitive to the change in V1 than the mobility.

At high temperature, the delay reduction due to the decrease in V1 overwhelms the
delay increase caused by the decrease in mobility. This results in a smaller delay at
high temperature and hence temperature inversion. The lower the VDD, the higher
delay sensitivity to V1 and hence the stronger the temperature inversion.

Temperature inversion also depends on signal transitions. The slower the transition,
the longer the period of the gate transition and hence the stronger the temperature
inversion behavior.

In any given library, the effect of temperature inversion is not consistent from cell to
cell. It also varies from timing arc to timing arc in a particular cell. Thus, each cell
and every arc from every input to the every output must be characterized fully to
include the effects of temperature inversion.

New Library Timing Models

With multi-voltage, voltage scaling, and power gating designs, the supply voltage
may vary significantly from gate to gate or module to module. With traditional library
modeling techniques, interpolating delay values from given timing/voltage data can
be quite inaccurate.

For all the above reasons, new library models are needed. The traditional approach of
modeling gates as time-dependent voltage sources with a series resistor is too inaccu-
rate. With composite current source modeling (CCS), the gate output is modeled as a
time and voltage dependent current source with essentially an infinite drive resis-
tance. This approach provides accurate timing estimates for a wide variety of load
impedances. It is accurate enough that instance-specific delays can be calculated for a
specific voltage — addressing the problems of multi-voltage power gating designs.

Current source modeling also can model temperature inversion, addressing (but not

solving) one of the big problems for sub-100nm designs. Finding the worst case tem-
perature is still a difficult problem.

12.2 Special Cells - Isolation Cells

Isolation logic is needed at the interface between the powered down and powered up
domains. Isolation ensures that there are no floating inputs to the active power
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domains, which could result in crowbar currents. It also assures that the inputs are in
appropriate logic states.

The isolation logic can be implemented either in the powered down domain to control
output signals (output isolation) or in the active power domain to control input signals
(input isolation). This section describes isolation circuit implementation guidelines.

12.2.1 Signal Isolation

Three types of isolation circuits can be inserted at the outputs of a power-down island:

e clamp the signal to “0”
e clamp the signal to “1”

e clamp the signal to the last value.

For an output that requires clamping the signal to “0”, we can use a NAND gate and
an inverter, as shown on the left in Figure 12-1, for signal isolation. This design uses
an active-low isolation control signal which forces the output low even if the other
input floats. The circuit diagram on the right in Figure 12-1 shows why the circuit is
immune to a floating signal on IN. As long as ISOLN is low, the bottom transistor is
off, no current can flow through the gate, and the input to the inverter is pulled up.
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Figure 12-1 AND-style Isolation Cell

For an input that requires holding a logic “1” when the source power domain is pow-
ered down, we can use a NOR gate, as shown on the left in Figure 12-2, for the signal
isolation. This is shown with an active-high isolation control signal which forces the
output high even if the other input floats. The circuit diagram on the right in
Figure 12-2 shows why the circuit is immune to a floating signal on IN.
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Figure 12-2 OR-style Isolation Cell
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Figure 12-3 shows one example of the third type of isolation cell, which includes a
retention latch to retain the state of the output signal.

: Low V1 Cell VDD
> High V1 Cell RET-latch VDD
ouT
RET —X%6—RET
VVDD
Logic Cell
ISOLATION

Figure 12-3  State Retention Isolation

The retention latch is controlled by a pulse signal RET which is asserted just before
the logic cell goes into sleep to save the current output state into the retention latch.
Then the isolation control ISOLATION is asserted to switch the output mux to the
retention latch and the logic cell goes into sleep where the virtual power VVDD is
shut off.

The isolation control signal is usually distributed as a global signal across power
domains. To ensure the signal is alive when one or more domains are powered down,
the isolation control signal is distributed with an always-on buffer tree.
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12.2.2 Output Isolation vs. Input Isolation

Output isolation has some significant advantages over input isolation.

For an output signal that goes to multiple different power domains, only one isolation
cell is required with output isolation. With input isolation, each destination would
require its own isolation cell.

With output isolation, all the isolation cells in a domain share a common control sig-
nal. With input isolation, a block may require multiple isolation control signals — one
from each domain from which it gets an isolated signal.

Output isolation has one drawback, which is that custom isolation cells are required.
Although they function as AND or OR gates, isolation cells require always-on power.
Most standard cells connect power and ground through abutment. But in a power
gated domain, one of the supplies connected by abutment is switched. Therefore (out-
put) isolation cells require special physical design to accommodate connection to the
always on supply.

12.2.3 Sneak DC Leakage Paths

One potential problem for isolation circuits is the potential for sneak path leakage. An
isolation cell clamps the output of a powered-down domain at either a “0” or “1” state
by the pull-down or pull-up transistor respectively. The pull-down/up transistor pro-
vides a possible DC path to VDD or VSS through the powered-down outputs from
logic in a connected alive power domain. Such a situation is illustrated by the diagram
in Figure 12-4.

In this case, the powered-down output is clamped at “0” and drives one of the inputs
of an XOR gate in an alive power domain. When another input of the XOR gate is
“17, a leaky DC path is formed from VDD to VSS through conducting PMOS transis-
tors and leaky transmission gate in the alive domain and the pull-down NMOS in the
powered-down domain. Although it is not a conducting DC path, the high leakage of
the transmission gate results in considerable leakage current in the sneak path. This
can defeat the purpose of power-gating. It is worth noting that cells in a power-gating
domain are commonly low-Vr cells for high performance at the expense of high leak-
age. Therefore, the OFF state transistors in any DC path could cause considerable
leakage.

Commercial libraries do not have transmission gates on cell inputs to avoid leakage
paths as well as for a variety of other reasons.
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Figure 12-4 Sneak DC path through leaky XOR gate

12.2.4 Recommendations

Output signal isolation method is usually a better choice than input isolation
method due to fewer isolation cells and simpler isolation control.

If custom output isolation cells are not available, it is feasible to use the standard
cells (AND, NOR). However, an always-on power area must be created next to the
power-down island, and the standard cell based isolation cells must be placed in
the always-on area. This allows the cells to get power when the powered-down
island is in sleep mode.

Isolation cells introduce delay penalty. Therefore, they should only be inserted
where necessary. We recommend analyzing the power-down relationship between
power domains to identify those power domains that go to sleep and wake up
together. Interfaces between such power domains need not be protected by isola-
tion cells because there is no circumstance in which one side of the interface is
powered-down and another side is alive.

During placement and physical synthesis, it is important to ensure that the input
and output isolation cells are placed inside the power island and close to the power
island boundary in layout. Moreover, the interface nets must be protected so that
no logic cell can be inserted in the nets. Such insertion between the isolation cells
and power-island’s ports will defeat the purpose of the isolation cells which needs
to be connected directly to the ports to isolate the interface signals.

Pass-gate logic cells should not be implemented at the interface between two
power domains. This constraint is necessary to prevent sneak DC paths from VDD
to ground through the pass-gates and the transistors in the interface logic cells.
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e We recommend checking the logic cells at power-domain inputs to make sure the
defined isolation states do not cause any sneak DC leak paths through the interface
cells.

12.3 Special Cells - Level Shifters

When signals cross voltage domain boundaries and logic level switching voltages are
not the same, level shifter cells must be inserted to convert the signal voltage to the
correct voltage at the receiving domain. There are two cases. Shifting the voltage
down is simpler; shifting up is more challenging and adds extra complexity.

When shifting down, we make the assumption that the higher voltage (VDDH) is not
higher than 25% above the nominal voltage of the cells used in the lower voltage
(VDDL) domain. Excessive voltage can accelerate time to failure; keeping within
25% of nominal is a reasonably safe overdrive level.

In the case of shifting down the level shifter cell can then be just a simple inverter or
buffer. CMOS gate inputs can be driven higher than the power supply voltage without
problems, up to the gate breakdown voltage. We power the level shifter from VDDL
and drive the input from 0 to VDDH; the output swing will be 0 to VDDL. However it
is important to properly characterize the level shifter with the actual voltages that will
be present on each pin, in order to account for the transition times on the high voltage
input.
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Figure 12-5 High to Low Level Shifter

In the case of shifting up it is necessary to design a special level shifter circuit because
a low voltage swing input signal would not necessarily be strong enough to turn the
NMOS input transistor fully on. This could lead to an unacceptably long risetime or
falltime. A simple “low to high” level shifter that solves this problem is shown below.
The input and the inversion of the input drive a simple amplifier.
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Figure 12-6 Low to High Level Shifter

Due to voltage regulator tolerances and power-on sequencing conditions it may not be
possible to guarantee that VDDL never exceeds VDDH. Therefore there is a need for
separate N-wells for VDDL and VDDH domains within the level shifter, connected to
different voltages.

N-wells at different potentials have specific (and larger) spacing rules than N-wells at
the same potential. Because the level shifter cells have to abut with arbitrary standard
cells, they must present a standard (VDDH) well at the periphery. Internally a local
“hot” VDDL N-well with large spacing rules around the P-MOS transistors of the
input buffers is required. This makes the final cell larger than the internal transistor
count would suggest.

Therefore the low-to-high level shifters may be multiple-cell row height to facilitate
the multiple power well connections and to comply with the well separation design-
rules. As a result these cells require careful placement to minimize area. Specialized
level shifter cells can also be built which allow the wells to be connected by abut-
ment. This approach avoids the overhead of complete well separation within every
level shifter cell but requires specialized placement and EDA tooling.

An example level up-shifter layout is shown in the figure below. To handle the VDD
N-well isolation cleanly the cell in this case is built as a triple height cell. This may
appear excessive, but it allows completely flexible placement in the high voltage
domain. It can be vertically flipped depending on whether the “base” row is a VDD or
VSS rail. The fact that there is a large amount of unused space around the well separa-
tion is acceptable in this case as it does not require special placement rules and script-
ing.
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Figure 12-7 Example Layout of a Low to High Level Shifter
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The advantage of managing the layout of the N-wells internally is that a clean stan-

dard cell is presented to the implementation tools.

The “up-shift” design can be extended to provide isolation as well. Figure 12-8 shows
an example of a level shifter + isolation cell. When driven low, the “ISOLN” clamp
control (controlled from the VDDH domain) effectively turns off the up-shifting
amplifier and clamps the level shifter output to zero. The VDDL supply can then be

turned off and the buffer outputs can float without causing any crowbar currents.
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Figure 12-8 Level Shifter Plus Isolation Cell

Incorporating the isolation control within the level shifter can simplify implementa-
tion when power gating blocks that operate at different voltages.

12.4 Memories

In most cases, memories are generated from memory compilers. In some special
cases, however, optimized memory instances may be built for specific power/perfor-
mance sensitive applications.

Memory compilers can generate a variety of memory architectures:

e Single or multi-ported RAMs

® RAM arrays or register file architectures
e Performance-optimized memories

® Area-optimized memories

e Power-optimized memories

The performance and area trade-offs are largely due the characteristics of the bit cell
and to the underlying banking architecture of the memory. Small banks can be
decoded and accessed faster, but the more banks the larger the area.

RAMs can also be designed with high or low threshold voltage transistors. Small
cache memories for example are typically tuned for performance and the extra
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dynamic and leakage power has to be tolerated. Other on-chip memories however
may better be implemented in high-V transistors, at least in the periphery circuits, in
order to keep the power to a minimum.

12.4.1 RAMs for Multi-Voltage Power Gated Designs

In 90nm geometries and below, RAMs typically have little or no voltage headroom.
They must be run at full voltage to meet their timing specification.

In voltage scaling designs, we often run some standard cell logic blocks at voltages
lower than full voltage to reduce power. Thus, in multi-voltage designs it is often nec-
essary to level shift up the inputs to the RAM and shift down the RAM outputs.

If power gating or external power rail switching of the logic is supported then to
retain the contents of the RAM correctly we need to clamp the inputs to the RAM as
well.

Memories are often on the critical timing path of any design, and closing timing is
challenging when clocks and inputs are level shifted and clamped. For this reason we
would like to place the level shifters and clamps as close to the memory as possible.
This avoids any differential path delay between the RAM clock and the RAM control,
address and data inputs.

Figure 12-9 shows an integrated multi-voltage RAM interface. In this case the level
shifters and clamps are part of the RAM. The level shifters, clamps, and memory are
all characterized as a single unit.

The active low isolation clamp signal shown in this example, ISOLN, needs to be
driven by a buffer that is always on to ensure it does not float and corrupt the RAM
contents. Other inputs may be shut down once the interface is isolated.

If the RAM compiler does not support the generation of interface layers that include
level shifting and isolation, then the best alternative is to build and characterize each
instance of the RAM with its own discrete level shifters and clamps as a new compo-
nent.

When several RAMS share interface signals, it can be tempting to group them
together and share the level shifters and isolation cells. Unfortunately this increases
the distance between the shifters/isolation cells and the RAMs. This in turn results in
buffering and interconnects on the far side of the level shifters, making timing closure
and clock tree balancing a challenge.
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Figure 12-9 Multi-Voltage RAM Interface

12.4.2 Memories and Retention

There are several techniques for lowering the static power of memories when the
logic around them is powered down. This is discussed in Chapter 13.

12.5 Power Gating Strategies and Structures

There are several different approaches for gating the power rail. The two most com-
mon are:

e “MT-CMOS” — Multi-Threshold CMOS (high V- switches)
e “MV-CMOS” — Multi-Voltage CMOS (low V1 switches)

MT-CMOS consists of using high V switches to turn power off. It is addressed in
detail in this chapter, and is simply referred to as Power-Gating.

MV-CMOS consists of using low V switches to turn power off. In order to reduce
the leakage through these switches during power down, the gate of the switch is
driven above VDD (for header switches) or below VSS (for footer switches). The
challenge for MV-CMOS is that during power gating, when the transistor is shut off,
the control voltage must be outside the VDD and VSS rails. For an NMOS footer cell
that switches VSS, the SLEEP control signal must be more negative than VSS. For a
PMOS header cell that switches VDD, the SLEEP control signal must be more posi-
tive than VDD.
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For this reason, MV-CMOS is complex to support. There is a requirement for addi-
tional voltage rails, and this may require on-chip charge pumps or external low cur-
rent supplies. The biggest drawback of this approach is the requirement for non-logic
supply rails and special sleep control networks. MV-CMOS is rarely used in commer-
cial designs.

For the rest of the book, power gating will refer exclusively to MT-CMOS power gat-
ing.

12.5.1 Power Gating Structures

We begin the discussion of power gating structures by revisiting a question raised in a
previous chapter: why use coarse grain power gating rather than fine grain power gat-
ing.

Fine-Grain Power Gating

In the fine grain style power gating designs, a sleep transistor is inserted into every
standard cell. Cells with embedded sleep transistors are often called MTCMOS
(Multi-Threshold CMOS) cells. Figure 12-10 shows two examples of an MTCMOS
AND gate, one with a footer, the other with a header switch.

VDD VDD
SLEEP
OUTPUTS*
INPUTS
OUTPUTS*
SLEEEN+ INPUTS
vss vss

Figure 12-10 Fine Grain Cells

A power gating control signal “SLEEP” (or “SLEEPN”) controls the sleep transistor
to switch on and off the power supply to the cell.

Since the power switch must supply worst case current required by the cell, it has to
be quite large not to impact performance. In fact, the switch often can be several times
as large as the rest of the cell.

In order to keep this area overhead to a minimum, fine grain power gates are usually
implemented as “footer” switches, switching VSS rather than VDD. This is because
NMOS transistors have a lower on-resistance than PMOS and so will be smaller.
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Even using footer switches, the area overhead of each cell is quite large (often 2x-4x
the size of the original cell).

To further reduce the area overhead, most designs only power gate the high leakage,
low threshold cells.

Mixing power-gated and always-on cells creates another problem. When the power to
the gated cell is turned off, the output will float, and may float to the threshold volt-
age. If this output is connected to a cell that is still powered up, then crowbar current
could result. For this reason, a weak pull-up/down transistor is often added to clamp
the cell output to a known state during power down. The pull-up/down transistor
remains in OFF state in normal operation.

VDD VDD
i
INPUTS OUTPUTS S
SLEEPN INPUTS OUTPUTS
= \ss

Figure 12-11  Fine Grain AND with Pull-Up

Fine-grain power gating has several advantages:

e [t is not sensitive to ground noise injection because the virtual power nets are short
and hidden in the cells.

e [t has small wake-up latency and small in-rush current at wake-up, due to the
small capacitance in the virtual power.

® The built-in clamp transistors keep all outputs at a known state which effectively
eliminates crowbar current in the CMOS cells during the wake-up period.

e the timing impact of the IR drop across the switch and the behavior of the clamp
are easy to characterize as they are contained within the cell

e [t can be synthesized and analyzed by conventional ASIC tools and flows, because
the MTCMOS library cells can be modeled and characterized in a same way as
standard cells. Only the added “sleep” signal pin needs special attention in the
design flow. The delay and IR drop effects of the built-in sleep transistors can be
accurately accounted for in the cell characterization.

However, fine-grain power gating also has several disadvantages:

e [t introduces significant area penalty due to the addition of a sleep transistor in
every cell. The cell area increase can be up to 3x for keeping low IR drop in the
cells and acceptable performance degradation.
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® [t requires a specially designed MTCMOS cell library.

® ]t needs significant buffering and routing resources to distribute sleep control sig-
nal to all the cells in a design.

Coarse-Grain Power Gating

In the coarse grain power gating designs, the sleep transistors are connected in paral-
lel between the permanent power and the virtual power networks. As in fine grain
power gating, the sleep transistors can be either header switches (switching VDD) or
footer switches (switching VSS). Figure 12-12 shows an example of coarse grain
power gating with footer switches controlled by a common sleep control signal:
“SLEEPN.”

Coarse grain power gating has following advantages:

e Because the sleep transistors can share charge or discharge current in the design, it
is less sensitive to PVT (process, voltage, temperature) variation in the sleep tran-
sistors and introduces less IR drop variations than the fine-grain power gating
design.

o |t has significantly smaller area overhead than the fine-grain power gating. The
number of the sleep transistors can be optimally tuned for design specific IR drop
and speed targets.

e [t can utilize existing standard cell libraries. Only a few special cells, such as sleep
transistors, isolation cells, and retention registers need to be added to the libraries.

VDD VDD

IS =
\\y, | OUTPUT

INPUTS | / _|
_
Switch_ed VSS

SLEEPN |J |
I \1 |
VSSG ,

Figure 12-12 Coarse Grain Power Gating

|
_

However, the coarse grain power gating design has its disadvantages:
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e [t requires a complex power network including the permanent power network, the
sleep transistors, and the virtual power network. Consequently, the power network
synthesis becomes challenging and requires rigorous static and dynamic IR drop
analysis.

® [t requires wake-up in-rush current control to prevent power supply noise and pos-
sible data corruption.

e [t has longer wake-up latency, due to the time needed to charge up the large virtual
power network.

e [t adds complexity to STA and power analysis because cell delay depends on IR
drop on the sleep transistors. This inter-dependency of timing, IR drop, and power
requires simultaneous analysis of all three to be accurate.

e [t imposes special logic and physical constraints in logic and physical synthesis,
resulting in more complex design methodologies and flows.

12.5.2 Recommendations — Coarse Grain vs. Fine Grain

® Most design teams have found the area penalty of fine grain power gating to be
prohibitive. As a result, most power-gating designs use the coarse grain power gat-
ing style. In the remainder of the chapter (and this book), we focus on coarse grain
power gating.

12.6 Power Gating Cells

A standard cell library that supports power gating should include both header and
footer power switches. A range of switch sizes and strengths enables a variety of dif-
ferent switch network designs.

Figure 12-13 shows the abstract schematic of a footer and header switch. Here VSS is

the switched VSS and VSSG is the always on VSS. VDD is the switched VDD and
VDDG is the always on VDD.

vDDG]

SLEEPN Iﬁ—\ vss SLEEP 4 VDD

vssG|

Figure 12-13 Footer and Header Switches
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A switch cell is physically made up of a number of parallel switch transistors which
are carefully sized to maximize the on-current to off-current ratio (Ion/Ioff).

Switched VSS

SLEEPNHJ |J |J |J |A |
- |L! |L! ILl ILl |Ll |_

Figure 12-14 Parallel Transistors Make Up the Switch

The layout for an example footer switch cell is shown in Figure 12-15. The SLEEPN
control input port is shown on the left. The global VSSG rail must be connected to the
interleaved contacts spread across the center of the cell. The switched virtual ground
rail VSS appears on the bottom track to connect to standard cell ground track. The
VDD rail at the top is simply routed through as a standard cell power track, and will
normally be connected to the always on VDDG supply grid in the footer-switched
system.

Rather than trying to produce one monster switch structure, a range of at least two or
three switch sizes or strengths is typically provided. These can then be distributed
across the design using a global rail grid and a switched rail grid to maximize current
sharing between adjacent switches.

Turning on all such switches instantaneously would potentially cause the supply rails
to collapse — corrupting retention state or adjacent powered logic sharing the global
rails.

Therefore smaller switches are provided which can support reduced current turn on
strategies. For instance, an implementation may use small switches to turn on the
switched rail and provide an initial charging current. When the rail hits a certain volt-
age, the larger switches are then turned on.

The implementation phase handles how many switches are needed and in what topol-
ogy. Detailed analysis is required to manage the virtual rail IR drop and the turn-on
in-rush current. These issues are addressed in more detail in the next chapter.
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Figure 12-15 Layout of a Footer Cell

12.7 Power Gated Standard Cell Libraries

With coarse-grain power gating, we use ordinary standard library cells. One key chal-
lenge is to deal with the effects of the IR drop across the power switch on the timing
of these cells.

If header switches are used then the standard cells will be connected as:

vDDG
SLEEP _qa_‘ voo , VoD
INPUTS } }MT
: 4__Vss

vssa|_
Figure 12-16 Header-based Power Gating

Because the IR drop is design and placement specific there are two approaches to
dealing with the voltage drop de-rating on timing of power gated standard cells:

® Jgnore the timing effects of the IR drop at design time and over-constrain the
design target frequency. This can be a reasonable approach during early synthesis
runs when we are not modeling the low power aspects of the design.
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e Set a realistic IR-voltage drop for the supply rails and work with timing libraries
that support voltage de-rating. Then in the back-end analysis check the instance-
based de-rating to ensure the IR drop is never exceeded. One can start with a mesh
of many big switches and optimize these down to weaker, less leaky switches once
the “hot-spots” are satisfactorily dealt with.

Note: the design frequency for power gated designs will realistically be 5%-10%
lower than without power gating. Over-ambitious frequency goals will simply result
in throwing more and more power switches into the design to try to close timing.



CHAPTER 13 Retention Register
Design

For those designs that require fast resumption of operation after wakeup, it is neces-
sary to save the current state of a design before going into sleep mode and to restore
the state at wakeup. In this chapter, we describe on-chip retention methods, including
retention registers and retention techniques for memory.

13.1 Retention Registers

There are a number of different retention register designs. The ones we discuss here
are all variations of a standard scan-testable D-type flip-flop. We describe three kings
of retention registers:

e Single Pin Live Slave — uses a single save/restore control pin with minimal
changes to the flop itself

¢ Single Pin Balloon — uses a single save/restore control pin but adds a second slave
latch for retention

e Dual Pin Balloon — uses separate save and restore control pins and a second slave
latch for retention

13.1.1 Single Pin “Live Slave” Retention Registers

The simplest form of retention register is one in which the underlying master-slave
latch structure is adapted to provide a low-leakage mode to maintain the state of the
slave latch.
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Figure 13-1 shows the conceptual adaptation of the rising-edge clocked scan-register
design.

The front-end of the register is a multiplexer. When the scan-enable control “SE” is
de-asserted it selects the functional data “D” input; when SE is asserted it selects the
scan chain serial input “SI.” To provide best setup timing behavior this mux and much
of the data path use Low-V transistors — indicated in the drawing by a thick bar on
the gate.

CLK — CKN CK
RETAIN —

Hi-Vth, Always-On
supply

SE >$N Master Latch Slave Latch

Figure 13-1 Retention Register: “Live Slave”

The “Master” latch samples the input value when the internal clock “CK” is low and
the inverted “CKN” is high. The master latch uses Low-V transistors to improve set-
up and hold characteristics.

The “Slave” latch samples the output of the master latch on the alternate phase of the
internal clocks and is followed by an inverting buffer stage. This last inverter is
implemented with various transistor sizes to provide different drive-strength versions
of the register in the library.

Retention is added by introducing the following features:
e An AND-gate is inserted in the clock circuit to allow the retention signal (NRE-
TAIN) to force the clock off during power-gating.

® The slave latch is powered from an always-on supply while the rest of the register
is powered by the virtual rail and can be power gated off.
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e High-Vr transistors are used in the slave latch, the clock buffers, and the inverter
that connects the master latch to the slave latch.

The active-low “NRETAIN” control signal must be carefully controlled to change
only when the clock is inactive (low in this case). Also it must be driven by an
always-on network of buffers.

In system usage the clock is stopped; then the NRETAIN signal is asserted low;
finally power is gated off. NRETAIN is held low while power is gated off.

After the gated power is re-applied, the NRETAIN signal is then be de-asserted (high)
before the clock is restarted.

While NRETAIN is asserted, the three-state inverter (labeled T1) turns off, isolating
the slave latch from the master latch.

For a register with asynchronous set or reset, the retention control would also need to
isolate the register from power-gated reset or set networks that could also corrupt the
slave latch signal.

Advantages of the “Live Slave” retention register design include:

e Minimal area impact on the underlying master-slave latch design

® A single signal controls retention

Disadvantages of the “Live Slave” retention register design include:

e Performance impact on the register. The slave latch is implemented in High-V to
minimize leakage in retention mode. However this impacts the CLK to Q timing
path, and the transistor sizing for best leakage has to be sacrificed to balance the
compromise in performance.

e The High-V gating of the clock increases the hold-time requirements of the input
data. Even then, we cannot use minimum leakage transistor sizes because of the
number of internal low-V clock nodes that have to be driven with good balanced
rise and fall times.

e It is only appropriate if the clock can be forced low before restoring state — any
“unknowns” in the clock gating circuit would need explicit overrides.

As a library component such a register appears as a component with both always-on
and power-gated supply rails, and the extra retention control signal. A generic compo-
nent that could be used with either header- or footer-switched power gating is shown
in Figure 13-2 on page 212:
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Figure 13-2  Generic Switch Cell

The “global power” VDDG/VSSG supplies the high-V internal clock gate and buft-
ering as well as the slave latch. The rest of the register circuitry is power gated from
the VDD/VSS rails.

Functional control waveforms are shown Figure 13-3. The clock must be stopped and
“parked” inactive with logic 0 value. The retain signal must be asserted (NRETAIN
low in this case) before the gated power is turned off. The retain signal must only be
de-asserted after the power is restored, and only then may the clock be restarted. The
power gating signal (PG_ENABLE) powers down the gated supplies, including the
clock tree buffering as shown in the clock waveform.

e« JUUUUL | Z UL
RETAN | |

PG_ENABLE | % |

Figure 13-3 Control Waveform for Single Control Retention Register

13.1.2 Dual Control Signal “Balloon” Retention Register

An alternative design of retention that maintains the underlying register speed and
clock-to-output performance is the balloon retention register. It adds a weak high-Vt
latch to a standard D-type flip-flop. This third latch (sometimes called a shadow latch
or “Balloon” latch) is connected to an always-on power supply and holds the register
state while the leaky master-slave register latches are powered down.
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Figure 13-4 Dual Control Balloon Register

As shown in Figure 13-4, the basic register design is implemented in low V transis-
tors. A low-leakage, high V1 retention latch is added in an always-on supply voltage
region.

Two control signals have been added to the register. An always-on signal “SAVE” is
used to control the sampling of data into the retention latch. When SAVE is asserted,
the state of the slave latch is copied into the retention latch. This data is then main-
tained whenever the SAVE signal is de-asserted. In system usage the clock should be
stopped and the SAVE signal pulsed before power gating to preserve the state of the
register.

An active-low restore signal, NRESTORE provides the control to force the state of
the register to that of the retention latch value. In system usage the gated power must
be restored and safely stabilized before the NRESTORE signal is pulsed (low) to set
the state of the register back to the retained value.

A rather complex example design for the register restore paths is shown in the figure.
This design allows the retention register to restore the retained value regardless of the
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state of the clock. If the clock is low and the master latch is open and sampling input
data, the retained value is forced into the slave latch. To prevent contention when
restoring, if the clock is high the retention latch value is forced into the master latch,
which then propagates to the slave when the clock goes low.

Advantages of this Save/Restore control style of retention register design

e Minimal leakage power. The retention latch and control signal can be minimal
transistor sizing.

¢ Minimal performance impact compared to the “Live-Slave” design, although there
is some minor internal loading on the output of the master latch and the input of
the slave latch where the save/restore control transistors are added.

e Can be built to be independent of clock phase on restore, which can be valuable in
designs with complex clock gating.

Disadvantages of this Save/Restore control style retention register design

e Area impact on the underlying master-slave latch design with addition of a third
latch — even though only a small transistor structure is added.

e Using two control signals (SAVE and NRESTORE) requires two buffer networks,
only one of which (NRESTORE) can be power gated — which adds some area
impact.

® The dual control signaling adds some complexity to the system design and some
buffer tree area.

Figure 13-5 shows the library component view of such a retention register with two
independent, asynchronous, pulse-style signals to control the save and restore func-
tion. The “global power” VDDG/VSSG supplies the high V save control buffer and
retention latch. The rest of the register circuitry is powered from the (switched)
VDD/VSS rails.

VDD-r T/DDG

NRESTORE SAVE
D Q
CLK QN

VSS VSSG

Figure 13-5 Dual Control Retention Register

Functional control waveforms are shown Figure 13-6. The clock may be stopped in
either phase. The state save signal must be pulsed active (SAVE high in this case)
before the gated power is turned off. The state restore signal must only be pulsed after
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the power is restored, and then the clock may be restarted. The power gating may
power off the clock tree buffering and the restore control buffer network as shown by
the unknown logic level in the waveforms.

a1 1] y 1111
SAVE |_| é

NRESTORE ‘ % | |
PG_ENABLE | % |

Figure 13-6 Control Waveform for Dual Control Retention Register

Precedence of Retention and Asynchronous Resets and Presets

To minimize leakage we would like to power down the high fan-out reset and set net-
works as part of the system power gating. Once powered down, these nets can float,
so these ports on the retention flops may float to non-logic levels during power gating
entry and exit.

By ensuring that the balloon latch is controlled only by the state save control network,
any asynchronous sets and resets only operate on the master/slave latches. It is then a
system level sequencing requirement to assert the restore control only after resets and
presets have been powered up and put in the appropriate state.

13.1.3 Single Control Signal “Balloon” Retention Register

An enhancement to the SAVE/RESTORE style of retention register described above
is to use a single control signal for both save and restore. That is, state is saved on one
edge of the control signal and restored on the other edge.

Figure 13-7 shows the conceptual schematic for a balloon-style retention register with
a single state retain control — an active-low NRETAIN signal in this example.
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Figure 13-7 Single Control Balloon Register

The NRETAIN signal must be driven by an always-on control network and is imple-
mented in high V1 to minimize leakage during power gating. The structure is very
similar to the two-control signal register style described above, but in this case the
retention latch samples the slave data whenever the NRETAIN signal is de-asserted
high, and holds the state whenever the NRETAIN signal is asserted low.

This design has slightly higher dynamic power because the extra capacitive nodes of
the retention latch must be driven whenever the slave latch changes state. Because the
retention latch is designed with small weak transistors to minimize leakage power,
this is a small proportion of the main master-slave register dynamic power. This
design however dispenses with the requirement for two control networks.

Similar to the preceding dual-control register, a rather complex example design for
the register restore paths is shown in the figure to allow this retention register to
restore the retained value regardless of the state of the clock. If the clock is low and
the master latch is open and sampling input data the retained value is forced into the
slave latch. If the clock is high however the retention latch value is forced into the
master latch, which then propagates to the slave when the clock goes low.
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Advantages of this Save/Restore control style of retention register design include:

e Minimal leakage power. The retention latch and control signal can be minimal
transistor sizing.

e Minimal performance impact compared to the “Live-Slave” design although there
is some minor internal loading on the output of the master latch and the input of
the slave latch where the save/restore control transistors are added.

e Can be built to be independent of clock phase on restore, which can be valuable in
designs with complex clock gating.

¢ Single control network compared to the dual-control style of retention register.
This saves system-level dynamic power because only one, rather than two, sets of
buffers is required to distribute retention control.

Disadvantages of this Save/Restore control style retention register design

® Area impact compared to the “Live-Slave” design due to the addition of a third
latch — even though only weak small transistor structure added.

e Slightly higher dynamic power than the dual control balloon design, as the reten-
tion latch transitions every time the slave latch value changes.

Figure 13-8 shows the library component view with the single asynchronous retention
control signal used to provide both the state save and restore function. The “global
power” VDDG/VSSG supplies the high V1 buffer and retention latch, the rest of the
higher performance register circuitry can be power gated from the VDD/VSS rails.

VDI;r -F/DDG

NRETAI Q
D
CLK QN

Vvss VSSG

Figure 13-8 Single Control Retention Register

Functional control waveforms are shown Figure 13-9. The clock may be stopped in
either phase. The retain signal must be asserted (NRETAIN low in this case) before
the gated power is turned off, and only de-asserted once the power is safely restored,
before the clock may be restarted. The power gating may power off the clock tree
buffering as indicated by the unknown logic level in the waveforms.
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Figure 13-9 Control Waveform for Single Control Balloon Register

13.1.4 Retention Register: Relative layout

Figure 13-10 shows an example of a standard scan-testable D-type register. The
“Live-Slave” version of this would be a little larger to include the clock gating control
and high Vp internal clock phase buffering with an area of high V1 implant.
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Figure 13-10 Standard Scan D-type Register

Figure 13-11 shows an example of a “balloon style” retention style scan-testable D-
type register. The high V1 implant area for the retention latch and control buffering is
clearly visible as extra area for the cell implementation. For higher drive-strength reg-
ister versions the retention area becomes a smaller proportion of the total register cell

area.

HIGH-Vt RETENTION OUTPUT
POWERED LATCH  DRIVERS

MASTER/SLAVE
LATCHES

Figure 13-11 Balloon Register
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As show, the area overhead for adding retention to a basic, low drive-strength register
is about 30-40%.

13.2 Memory Retention Methods

FIFOs’ are often flushed before going into sleep and caches are initialized after the
wakeup in the power-gating designs. In these cases, we can power down the memo-
ries to save static power and tolerate the loss of the memory data.

However, for high performance designs which require minimum latency at wakeup,
the contents of on-chip memory need to be retained during power gating. Various
memory retention methods have been developed. The principle of these methods is to
reduce leakage as much as possible during power gating without corrupting the data
in the SRAM.

It is not practical to introduce a retention circuit like those discussed above into the
SRAM cells. Any such circuit will cause an unacceptable area increase. Instead the
VDD retention and the source bias retention methods are among those methods which
are frequently used in power-gating designs.

13.2.1 VDD Retention Method

In this method, a separate VDD power supply is provided to the memory. In normal
operation, VDD is provided at the normal supply voltage. In sleep mode, VDD is
reduced to 0.5-0.6V to reduce memory power consumption while maintaining mem-
ory contents.

This method is simple to implement. No memory circuit change is required. However,
it requires a dedicated, switchable power supply to the memories.

13.2.2 Source-diode Biasing Method

The principle of the source biasing SRAM retention method is to apply reverse body
bias for further leakage reduction after lowering the SRAM operation voltage. The
source-diode biasing method is the simplest implementation of the source biasing
method. In this method, a diode is inserted in the source supply to the SRAM cell
array and is controlled by a switch as shown in Figure 13-12.
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Figure 13-12 Source-diode Biasing SRAM Retention

In normal operations, the control signal SLEEPN is de-asserted, so that the switch
closed, bypassing the diode. In this case V_Vss = Vss.

In sleep mode, SLEEPN is asserted, which opens the switch. The source supply of the
SRAM cell array is now through the diode. The built-in threshold (V1) of the diode
raises the voltage of V_Vss above Vss (ground). The SRAM operation voltage is
reduced by V1 and hence the leakage reduced, just as in the VDD retention method.

Note that the substrate of the NMOS transistors in the SRAM array is connected to
ground (Vss), which is now lower than the source bias at V_Vss. Thus, the voltage
rise in V_Vss also applies a reverse body bias to the NMOS transistors cells. The
reverse body bias further reduces sub-threshold leakage current in the SRAM array
cells in sleep mode.

The same principle also applies to the PMOS transistors in the SRAM array cells
where a diode can be inserted in the VDD supply. However, this is not applicable to
sub-90nm SRAM designs where VDD is scaled to sub-1.2V, because a 2x V1 (on
both diodes) voltage reduction results in an SRAM operating voltage too low to retain
data.

So either PMOS or NMOS biasing can be used in sub-90nm designs. Since PMOS
transistors in the SRAM cells are less leaky than the NMOS ones, NMOS source bias-
ing is typically used in these designs.
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The bias control switch is commonly implemented by a high V- NMOS sleep transis-
tor and the diode is made by an NMOS transistor with gate and drain connected.

The advantage of the source-diode biasing method is its easy implementation. No bias
supply is required.

However, it is difficult to obtain the optimal reverse body bias for maximum leakage
reduction while retaining data. The reverse body bias is determined by the Vr of the
diode and hence is fixed for a given process.

13.2.3 Source Biasing Method

The noise margin in SRAM cells shrinks with VDD scaling. This requires optimal
SRAM operating voltage and source bias in sub-1V designs. One solution is to pro-
vide a dedicated source bias supply to the SRAM cells to replace the diode. This is
illustrated in Figure 13-13.
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Figure 13-13 Source biasing SRAM retention

The disadvantage of this method is the requirement of the separate biasing supply.
Since SRAM consumes only leakage current in the retention mode and the biasing is
in the power supply range, it is possible to generate the biasing supply on chip with a
simple design such as a voltage divider.
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13.2.4 Retention Latency Reduction Methods

For those applications where memories are not frequently accessed but access latency
needs to be short, the memory retention methods discussed above can be combined
with retention latency reduction techniques. Two such techniques are described
below.

Block-based retention and wakeup

In this method, a memory is divided into a number of small size blocks or banks. Each
block can be individually controlled to be in retention or function mode. All memory
blocks are normally in low-leakage retention mode. When a memory read or write
operation is requested, the address decoder selects the access block which is then
switched from retention to function mode, ready for data access.

After the data access, the block immediately returns to retention mode for power sav-
ing. The retention latency, i.e. the time needed to waken a block into fully function
state, is shortened by reducing the size of the virtual VSS network of the block. The
smaller the block, then the quicker the discharge of the block’s virtual VSS and hence
the shorter the wakeup latency. However, if the block becomes too small, then the
area and power overhead in the column sense-amps could overwhelm the benefit of
the leakage power saving in retention.

We recommend exploring various memory banking strategies based on the design
specific memories, access frequency, and retention latency requirements.

Row-based retention and wakeup

The row-based retention method addresses the issue of significant column sense-amp
overhead in the block-based retention method. In the row-based method, the size of
the memory block is determined by the overall considerations of memory power con-
sumption and access time. This usually results in medium size memory blocks.

Unlike the block-based retention method, the V_VSS nets in the row-based method
are distributed per row. Each row is individually controlled by its V_VSS net in either
retention or function mode. Taking the advantage of the memory access control
sequence where memory address is put on bus before data, the method uses the
SRAM word address to activate only the row which is required for the current mem-
ory access. The rest of the SRAM array cells in the other rows remain in retention
mode. The row-based retention method reduces latency because the small size of a
row allows fast power and power down. Hence we do not need to split the memory
into many arbitrary, small blocks which would incur significantly area and power
penalties in column circuitry.
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To reduce the complexity and overhead of the control circuitry, the row-based reten-
tion and wakeup control can be extended into a row-group-based method where a
group of rows, instead of a single row, is controlled during retention and wakeup.



CHAPTER 14 D@Sig’l’l Of the Power
Switching Network

Power gating is the most effective method for reducing leakage power in standby or
sleep mode. However, this method comes with overhead such as the silicon area taken
by the sleep transistors, the routing resources for permanent and virtual power net-
works, and the complex power-gating design and implementation processes which
impact design risk and schedule.

Besides the overhead, power gating introduces power integrity issues such as IR drop
on the sleep transistors and ground bounce caused by in-rush wakeup current. It also
introduces wakeup latency, the time needed to restore full power for normal opera-
tion. All these issues must be addressed during the implementation of power gating
designs.

In this chapter, we discuss:

® power gating implementation styles
e wakeup in-rush current control
e wakeup and sleep latency reduction

® sleep transistor power network synthesis

14.1 Ring vs. Grid Style

Coarse grain power gating can be implemented in either a ring or a grid style power
network.
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With ring based switching, we place the switches externally to the power gated block
effectively encapsulating the block with a ring of switches.

In the grid style implementation, the sleep transistors are distributed throughout the
power gated region.

14.1.1 Ring Style Implementation

Figure 14-1 shows an example of a ring implementation. A ring of VDD surrounds
the power gated block. A ring of switches connects VDD to a switched or virtual
VDD (VVDD) power mesh that covers the power gated block.

IA4 44
| <]
’_\_T_’_‘ VVDD ‘%’_‘
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e

Figure 14-1 Ring Style Sleep Transistor Implementation

Note that a ring style switching network is the only style that can be used to power
gate an existing hard block. The switches and VDD can be added outside the hard
block, and the hard block’s VDD power mesh can now be used for VVDD.
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The ring style sleep transistor implementation has following advantages:

e [t has a less complex power plan than the grid style because of the separation of
the permanent power network and the virtual power network. Moreover, the sleep
transistors are confined in the regions around the virtual power network and are
not mixed with other logic cells.

e ]t has little negative impact on placement and routing in the standard cell area
because neither the permanent power nets nor the sleep transistors are in the areas
where the logic cells are placed and signals are routed. Those special cells, such as
isolation cells and always-on buffers that require the permanent power supply can
be placed around the power domain areas.

The ring approach can be a good option for small blocks of logic where the voltage
drop across the switch transistors and VVDD mesh can be managed. However, for
larger blocks of logic, managing the voltage drop with a ring based approach can be
difficult.

This approach can also be useful for legacy (hard) IP or optimized logic blocks where
re-implementing those blocks would be costly.

However, the ring style has some significant disadvantages:
e ]t is does not support retention registers, since these require access to the always
on supply.

® A ring based approach can add significant extra area cost compared to a grid
approach.

14.1.2 Grid Style Implementation

In the grid style implementation, the sleep transistors are distributed throughout the
power gated region. They form a grid to connect permanent power network and vir-
tual power networks, as shown in Figure 14-2 on page 228.
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Figure 14-2  Grid Style Sleep Transistor Implementations

The grid style sleep transistor implementation has following advantages:

With the sleep transistors distributed across the power-down domain, the switches
in a grid network do not have to drive the virtual supply for the long distances
incurred in the ring-style distribution. As a result, the virtual power network can
be implemented in low metal layers. The wide straps used in the ring-style imple-
mentation are not required.

It requires fewer sleep transistors than the ring-style implementation to achieve
the same IR drop target. This is once again due to the fact that the transistors are
distributed and do not have to drive long metal interconnect.

The permanent power supply is available across the power-down domain areas.
Consequently, special cells, such as retention registers and always-on buffers,
which require the permanent power supply, can be connected to the permanent
power network in the power-down areas.

It provides somewhat better trickle charge distribution for management of in-rush
current.

It has less impact on the area of a power gated block. Typically the utilization of
any block is less than 100%, so there are places where switch cells can be placed
without increasing the area of the block.
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The drawback of the grid style implementation is its impact on standard cell routing
and physical synthesis. Since the sleep transistors are placed in the standard cell area,
their placement and routing constraints affect cell placement and net routing.

Also, by distributing the switching function across the design we have added com-
plexity to power routing. We now need to distribute always-on power to the switches
as well as the retention registers, isolation cells, and always-on buffers.

14.1.3 Row and Column Grids

With a distributed approach, we are placing the switches internally to the power down
block. Many choices are available for the distribution of these switches but they are
all basically some type of sparse array, where the switches are placed in an array
across the design, each switch separated horizontally by some distance (x) and verti-
cally by some distance (y). When y is minimal we have a column structure and when
x is minimal we have a row based structure.

A column based topology employs columns of switch cells spaced evenly across the
switched design. These switch cells effectively switch the power rail to each segment
of a standard cell row and provide very fine control over the switching function. Each
power switch only has to provide power to a small segment of the standard cell row
thereby minimizing any potential voltage drop problem.

VDD

Figure 14-3 Column Based Switching
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Of course, distributing the switch cells in columns across the design will impact the
placement optimization. These columns of switch cells act as regularly spaced place-
ment blockages, limiting the flexibility of the standard cell placer.

A row based topology may be a more optimal solution for distributed switching since
the potential impact on the placement engine is limited as all switch cells are in a sin-
gle row.

The row approach will take away of a row of standard cells from the placer, but
should not impact the placement of logic in other rows of the design.
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Figure 14-4 Row Based Switching

However, the row based approach can impact routing resources in lower layer metal.
This problem can be avoided in the column based approach; the lower layer power
straps can be routed in metal 2 directly above the power switches with minimal
impact to routing resource.

All of these various topologies have various advantages and disadvantages and it is
important to note that the best choice depends on:

® The design being implemented

® The library being used and the type of switches available
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e The technology being targeted and its specific leakage characteristics
® The performance and power goals for the design
® The use of legacy or highly optimized IP

Regardless of the initial placement of the switches, modern implementation tools can
optimize both placement and sizing of the switches to reduce IR drop and improve
timing.

14.1.4 Hybrid Style Implementation

In the hybrid style power gating designs, the grid style is implemented at the top-level
and the ring style implementation is applied to certain power-gated hard macros
and/or power domain blocks which do not have retention cells.

The hybrid style combines the advantages of the ring and grid style implementations.
It is helpful in the cases where a power-gated block has potential congestion and
routability issues in the grid style power gating implementation.

However, power planning becomes more complex in the hybrid style due to the
mixed ring and grid style power distributions.

14.1.5 Recommendations - Ring vs. Grid Style

e For those designs which implement retention cells, the grid-style implementation
is the right choice.

e [f there are no retention registers in a design, the choice of grid- vs. ring-style
implementations depends on area budget and need of permanent power supply in
the power-down areas for always-on buffers. The ring-style should be considered
when area is not the main concern and there is no need for a permanent power sup-
ply in the power-down areas.

e For those designs which have power-gated hard macros, or blocks that do not con-
tain retention logic, the hybrid style is a good choice, provided that power plan-
ning complexity does not become an issue.

e In the grid-style implementations, use wide straps in the permanent power net-
work to reduce the IR drop. The virtual power network should be implemented at
metal 1 and metal 2 layers with narrow straps sufficient to drive local logic cells
and satisfy the IR drop target. It is worth noting that the total IR drop is composed
of the IR drops in the permanent power network, the sleep transistors and the vir-
tual power network. It is preferable to minimize IR drop in the permanent power
network so as to make it easier to achieve to total IR drop specification with fewer
sleep transistors.
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e [t may be necessary to experiment with various topologies and compare and con-
trast the results from the various approaches to determine which is most suitable
for the design in question.

e Be sure to consider the power routing impacts for the switch topology chosen.

14.2 Header vs. Footer Switch

A header switch uses a high V1 pMOS transistor to control VDD; a footer switch uses
a high V1 nMOS transistor to control VSS. Either a header- or footer-based switching
fabric can be used in a power gating design. The key issues affecting this design deci-
sion are area cost, IR drop constraints, and system architectural issues. System archi-
tectural issues were discussed in Chapter 7. In the following sections we discuss the
area and performance trade-offs for headers and footers.

14.2.1 Switch Efficiency Considerations

The sleep transistor switch efficiency is defined as the ratio of drain current in the ON
and OFF states (Ion/Ioff). We would like to maximize Ion/Ioff to achieve high drive
in normal operation and low leakage in sleep mode.

Although a pMOS transistor is less leaky than an nMOS transistor of the same size,
the total leakage in the switch fabric is mainly determined by the switch efficiency.
This is because the total leakage also depends on the total number of sleep transistors
required to produce the required lon.

Figure 14-5 and Figure 14-6 show two switch efficiency curves for a 90nm high Vt
pMOS transistor and a high V; nMOS transistor. The simulations were done with
normal body bias.

In both cases, the maximum switch efficiency occurs at a gate length of 140nm. The
narrow channel effect causes the switch efficiency to change significantly when the
gate width is smaller than 0.8um. Moving away from the small width (to avoid prob-
lems with process variation), the switch efficiency at 2.2um gate width is 15,000 in
the pMOS transistor and 40,000 in the nMOS transistor. This indicates that for a same
drive current, the header switches would result in 2.67 more total leakage than the
footer switches.
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Figure 14-5 90nm High V; pMOS Switch Efficiency at Normal Body Bias
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Figure 14-6 90nm High V; nMOS Switch Efficiency at Normal Body Bias
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14.2.2 Area Efficiency Consideration and L/W Choice

The area efficiency of the switching fabric depends on the size (L*W) and layout
implementation of the sleep transistors. The optimal L is determined by the switch
efficiency and can be obtained from the switch efficiency curves generated from
SPICE analysis. Once L is defined, the area efficiency is mainly determined by the
transistor width W and by layout implementation.

The switch efficiency decreases with the increase of W in pMOS transistor, as shown
by the solid curve in Figure 14-7, due to the narrow channel effect, which affects Ioff
more significantly than Ion. Therefore, it is preferable to choose small W for high
switch efficiency.
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Figure 14-7 90nm pMOS Ion/loff and Ion vs. W

To produce the required drive current, a sleep transistor is commonly designed by
connecting a number of small W transistors in parallel in a multi-finger style. The
required drive current of a sleep transistor is defined based on statistical data of cur-
rent consumption of those standard cells in the region that a sleep transistor drives.
For example, if the sleep transistors are planned to be placed in every other row and at
50um pitch, the total current of the cells in S0um x 2rows area is the required drive
current. Once the size (L*XW) of the sleep transistor is defined based on the required
drive current, the area efficiency is determined by the layout implementation.
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It is worth noting that Ion linearly increases with W as shown in Figure 14-7. Conse-
quently, Ion/W becomes constant at given L and Vbb. This means that once L and
Vbb are defined, the area efficiency is mainly determined by the layout implementa-
tion of the sleep transistor. These layout issues and their affect on area efficiency are
described in more detail in Appendix “Sleep Transistor Design Methodologies.”

It is important to understand that the sleep transistor area, namely the total size of all
transistors, is mainly determined by the switch efficiency once the total driving cur-
rent for a design is defined. Consequently, higher switch efficiency results in smaller
area of the sleep transistors. An nMOS sleep transistor usually produces higher switch
efficiency and hence smaller total transistor size than its pMOS counterpart.

14.2.3 Body Bias Considerations

Applying reverse body bias on the sleep transistor can increase the switch efficiency
and reduce leakage significantly. The cost of reverse body bias in the header switch is
significantly smaller than in the footer switch. This is because the N-well of the
pMOS transistor is readily available for bias tapping in the standard CMOS process.
As long as the N-well of the sleep transistor has enough space (based on the hot-well
spacing rule) from the surrounding standard cells’ N-wells, it can be tapped to its own
body bias supply. On the other hand, the nMOS transistor does not have a well in the
standard CMOS process. Consequently it becomes necessary to create wells for
nMOS sleep transistors to allow separate body bias. This triple well CMOS process
will result in higher chip fabrication cost and design complexity. It also introduces
more process variations which affect design performance. As the result, pMOS
header is preferable in reverse body bias applications.

14.2.4 System Level Design Consideration

In SoC designs, blocks usually communicate in the active-high interface protocols
referencing common ground (VSS) as logic “0.” In header switch implementations,
all signal nets in power-gated blocks are settled at Vss which is convenient from a
system design perspective.

The header switch also avoids potential signal integrity issues introduced by the vir-
tual ground used in footer switch designs. Another advantage of using header
switches is that it allows a simple design of a pull-down transistor to isolate power-
gated blocks and clamp output signals at logic “0.”

14.2.5 Recommendations — Header vs. Footer

e For those designs where area efficiency is the primary concern and reverse body
bias is not available, the footer switch is a good choice.
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® In other cases, particularly when system level design and IP integration are a pri-
mary concern, the header switch implementation is a good choice. The switch and
area efficiency can be improved by applying reverse body bias.

® The header switch implementation is quite common in power-gating designs cur-
rently being implemented.

e [t is worth mentioning that the choice of sleep transistors can be limited by the
availability of low-leakage transistors in a given technology. Most technologies
provide thick t,, transistors for IO cells and thin t,, process for core transistors.
The thick t, transistor is much less leaky but also has less drive than the thin t.,
transistors. Implementing the sleep transistors with the thick t,; transistors pro-
duces the lowest possible leakage. However, it requires a large sleep transistor
area to deliver the required drive current. Consequently, high-Vr thin t, transis-
tors are preferred in most power-gating designs to control area cost. The higher
leakage in the thin t. transistor is mitigated by long gate and/or reverse body bias
techniques.

e [f the area efficiency is critical, W should be chosen as large as possible for a
given cell height to form a single row of parallel transistors in the sleep transistor
layout implementation.

e [f the minimum standby leakage is the primary goal, then the optimal W (usually
small) should be considered for high switch efficiency and hence low leakage. It is
worth mentioning that both switch efficiency and leakage current becomes more
sensitive to process variations with the reduction of W, particularly in sub-90nm
region.

e For compromised area and leakage goals, the optimal W is obtained by investigat-
ing the area and leakage trade-offs of the sleep transistor with different W through
SPICE analysis.

14.3 Rail vs. Strap VDD Supply

The sleep transistors get their power supply from the permanent power network
(VDD) and deliver it to the virtual power network (VVdd) that drives the logic cells
in a power domain. There can be two ways to distribute Vdd to the sleep transistors.

14.3.1 Parallel Rail VDD Distribution

In this implementation, a Vdd rail is added to a cell row in parallel with the VVdd rail.
The sleep transistors get their permanent power supply by connecting to the Vdd rails
as show in Figure 14-8.
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Figure 14-8 Parallel Vdd Rail Distribution

The Vdd network is built in the same way as a conventional power network from top
metal layers down to the Vdd rail layer.

The advantage of this implementation is that the permanent power rail is reachable
throughout the design. Consequently, the sleep transistors can be optimally placed
without constraints based on accessing Vdd connections. It also enables the designer
to move or insert a sleep transistor in post-layout to fix IR drop violations.

Moreover, there is no restriction on the placement of those special cells that require
connections to the permanent power supply. This helps leverage conventional physi-
cal synthesis tools and flows.

However, this implementation takes at least one track of routing resources in every
row in the Vdd rail layer.

In addition, it often incurs a layer conflict with conventional standard library cells
which use the metal 1 layer for cell internal routing. In that case, it is necessary to cre-
ate custom designed standard cell library where the added permanent power rail does
not short other cell internal routes.
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14.3.2 Power Strap VDD Distribution

In this implementation, a permanent power network is built in one or two top metal
layers. The sleep transistors are placed under the straps of the coarse-grain network
and get their Vdd supply through via pillars as illustrated in Figure 14-9.

: VVdd

I

Sleep transistor Standard Cell

Vss

Figure 14-9 Power Strap Vdd Distribution

The virtual power network, driven by the sleep transistors, is built like a conventional
power network from the sleep transistors’ VVdd metal down to VVdd rails which
connect to the standard logic cells. The sleep transistors are usually placed on a coarse
grid; each drives the cells in a grid with a number of rows.

The main advantage of this implementation is that it allows the use of a normal stan-
dard cell library in a power-gating design. There is no need to add a second rail to the
library cells. The library developer only needs to design a few switch cells, always-on
repeaters and retention registers for the library.

However, the permanent power network no longer covers the design area. As a result,
any cells that require a permanent power supply need either to be placed under the
permanent power network or connected to it by power-routing. The former method
imposes a placement constraint. The latter method introduces possible power integrity
issues on the power-routing nets, which will require checking by IR drop analysis.

Moreover, the constraint that the sleep transistors must be under the permanent power
network adds complexity in power network synthesis.
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14.3.3 Recommendations for Supply Distribution

e [fa special standard cell library which provides the extra Vdd rail is not available,
the power strap Vdd distribution must be used.

e [f the impact on routing resources becomes a concern, then the power strap Vdd
distribution is often a good choice.

e [fthere are a significant number of retention registers in a design and power integ-
rity in power-routing nets becomes a concern, the parallel rail distribution can ease
the concern.

e |t is worth mentioning that using small switch cells that can be placed in every row
will simplify the virtual power network, which becomes a simple VVdd rail in
every row.

14.4 A Sleep Transistor Example

An example of a double-row 90nm header switch cell is shown in Figure 14-10
[SALT]. In this design, 60 small pMOS transistors of 0.55um width form a sleep tran-
sistor as a 6-row transistor array. Normal body bias is applied to the sleep transistor,
enabling the N-well to be extended around the sleep transistor to join adjacent tap-less
standard cells and share well taps. In that case, Vss can be put in the middle of the two
rows without causing significant area penalty. A pair of inverters that drive the sleep
transistors is implemented in the cell for area efficiency.

The details of the sleep transistor design methods and guidelines are described in
Appendix A.
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Figure 14-10 A Double-row Sleep Transistor Implementation

14.5 Wakeup Current and Latency Control Methods

In a power-gating design, thousands of sleep transistors are commonly used to pro-
vide sufficient current to the design. When the design is coming out of sleep mode,
the sleep transistors are switched on to supply power to the design. Simultaneously
turning on the sleep transistors will result in a very large current (on the order of tens
of amps) in charging the design to a full power-on state.

This large in-rush current will cause a large IR drop in the design, and can cause func-
tional errors. In the worst case, the large current surge could result in short term VDD
collapse, causing the state saved in retention registers and memories to be corrupted.
Therefore, it is critical to limit in-rush current during power-on.
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One possible way to control the in-rush current is to separate the chip power supply
net into individual rows, each driven by a few sleep transistors. At power-up each row
is turned on in sequence. This limits power-on current to the charge of one row at a
time. However, this method has a major issue. Crowbar currents may occur in a pow-
ered-on row caused by floating inputs driven by other un-powered rows. These crow-
bar currents again can create an unacceptable IR drop. Consequently, this method has
not been adopted in industrial power gating designs.

14.5.1 Single Daisy Chain Sleep Transistor Distribution

Another way to control in-rush current is to turn on the sleep transistors gradually as
to prevent simultaneous switching current. This can be done by configuring the sleep
transistors in a daisy chain style as shown in Figure 14-11.
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Figure 14-11 Single-daisy chain sleep transistor distribution

In this distribution, the sleep transistors are controlled by a daisy chain of delay ele-
ments and turned on one-by-one at interval of AT. Consequently, the charge current
gradually increases with the number of turn-on sleep transistors. The delay elements
are implemented by buffers at little extra cost because the buffers are needed to dis-
tribute the Sleep signal to every sleep transistors cross a chip.

This implementation is simple. However, the short delay of the buffers in the chain
usually turns on the sleep transistors too quickly, resulting in larger than acceptable
in-rush current at wakeup. To resolve the issue, the sleep transistors are commonly
implemented in two daisy chains in industrial power-gating designs.

14.5.2 Dual Daisy Chain Sleep Transistor Distribution

The idea of the dual daisy chain distribution is to use weak transistors to trickle
charge the design and hence prevent large in-rush current. Once the design is trickle
charged close to Vdd, large transistors of the optimal drive strength are turned on to
provide current for normal operation. In this approach, the sleep transistors are split
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into two chains: a weak transistor chain and main transistor chain as shown in
Figure 14-12.
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VVdd

Trickle Chain
Main Chain

Power Management Unit

Figure 14-12 Dual Daisy Chain Sleep Transistor Distribution

The size of the weak trickle charge transistors is determined by the user-defined in-
rush current limit and the maximum permissible turn-on delay time. A smaller trickle
current may reduce the total surge current, but also increases the time taken to bring
the system out of sleep mode. More details about in-rush current control methods are
provided in the “Main chain turn-on control” section later.

The size of the sleep transistors in the main chain is optimized by the methods
described in the previous section for the defined performance and leakage goals.

It is important to understand the differences of the sleep transistor designs in the
trickle chain and main chain. The goal of trickle sleep transistor design is to control
wakeup rush current and reduce wakeup latency due to trickle charge time. The
trickle chain design involves transient simulation of design charge up in the wakeup
period. More detailed discussions are given in the Appendix A. On the other hand, the
main chain sleep transistor design is focused on meeting IR drop target and reducing
the sleep transistor area. The sleep transistors are optimized in the active mode where
all sleep transistors are turned on. In summary, the trickle and main sleep transistors
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are designed for different goals and optimized in different operating modes or peri-
ods.

14.5.3 Parallel Short Chain Distribution of the Main Sleep
Transistor

The wakeup latency is composed of the trickle charge time by the weak chain and the
turn on time of the main chain. The size and number of the weak transistors are
largely determined by the wakeup in-rush current limit and hence are constrained. As
the result, the wakeup latency reduction is primarily determined by the distribution of
the main chain.

The sleep transistors in the main chain can be configured as a single daisy chain; this
approach takes the longest time to charge up the design but incurs the smallest peak
charge current. On the other hand, the sleep transistors can be configured as a parallel
array which simultaneously charges up the design; this approach has the smallest
delay but the largest peak current.

The parallel short chain distribution of the sleep transistor in the main chain is a com-
promise of the two extreme cases. The sleep transistors are connected as a number of
short daisy chains. These short chains are connected in parallel and turned on simulta-
neously when the main chain is turned on. As the result, the main chain power-on
latency is reduced to the delay of a short chain. However, the peak current increases
by the number of short chains as they are turned on simultaneously. The optimal num-
ber of the short chains can be obtained by SPICE analysis to limit the peak current to
an acceptable level.

14.5.4 Main Chain Turn-on Control

Once the weak and main sleep transistors have been designed and the dual-daisy
chain’s distribution has been determined, we need to determine the threshold at which
the main chain is turned on. A lower threshold causes the main chain to turn on ear-
lier, but at the expense of higher the peak current. The optimal threshold is then deter-
mined by the peak current constraint.

14.5.5 Buffer Delay Based Main Chain Turn-on Control

A simple way to control the main header turn-on threshold is by controlling the time
to trickle charge the design to the required threshold through the weak chain. In real
power-gating designs, the trickle charge is controlled by the buffer chain which turns
on the weak transistors in sequence. Consequently, the trickle charge time is deter-
mined by the buffer chain delay.
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The drawback of the buffer delay based main chain turn-on control is that the buffer
chain delay varies with the number of the sleep transistors in the chain, which is
design dependent. Also, the delay is sensitive to PVT variations in the design. How-
ever, this style has least overhead cost, because the delay is a free: it is a product of
the buffer chain, which is needed anyway as a part of the daisy chain.

14.5.6 Programmable Main chain Turn-on Control

One solution to this problem is to add a programmable delay element (typically a
counter) to control the time to turn on the main chain. The counter can be pro-
grammed for the specific delay required to trickle charge the design to the desired
threshold before turning on the main chain.

The main advantage of this method is its ability to define the optimal main chain turn-
on time in different PVT conditions.

To reduce the counter’s size, the counter can start counting after all the sleep transis-
tors in the weak daisy chain are turned on, instead of at the beginning of wakeup. We
can use the sleep signal at the end of the weak daisy chain as the start signal to the
counter. This significantly reduces the counting period and hence the size of the
counter.

The counter can be programmed by either software or hardware. The former is flexi-
ble and tunable for various designs and application environments. The latter has the
advantage that no hardware-specific code needs to be added to the application soft-
ware.

The program resolution of the main chain turn-on time is determined by the counter
clock speed; the minimum delay delta is limited by the counter clock cycle time. If
this clock does not provide adequate resolution, we can implement a fine-tune pro-
grammable delay element in addition to the counter. An example of such a fine-tune
programmable delay element is a simple delay buffer chain with a mux to select dif-
ferent buffer segments and hence different delays.

14.5.7 Power-off Latency Reduction

Unlike power up, during power down we would like to switch off power quickly to
eliminate leakage currents as soon as possible. This can be done by adding an OR
gate to the sleep transistor control as illustrated by the diagram in Figure 14-13.
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Figure 14-13 Parallel Switching off Sleep Transistors

However, adding an OR gate to every sleep transistor and routing them across the
chip will incur a considerable area and routing resources penalty. A good compromise
is to apply the method to each sleep transistor chain segment, that is, one OR gate for
each short daisy chain of sleep transistors in a column, to simultaneously turn on all
chain segments instead of all sleep transistors.

14.5.8 Recommendations for Power Switching Control

For a large power-gating design, the dual daisy chain distribution is preferable to
the single chain distribution since it provides much better in-rush current control.

To determine the size of the weak sleep transistors, we recommend running SPICE
on a small evaluation circuit to get an initial size and then verify the size by run-
ning SPICE on a good sized evaluation circuit. It is helpful to layout the evalua-
tion design, push it down to transistor level view, extract RC on power and signal
nets, and generate a SPICE deck with the RC annotations. For a large design,
alternative analysis tools, such as NanoSim, which are able to simulate large
design much more efficiently than SPICE, are recommended.

The parallel short main chains often results in smaller wakeup latency while meet-
ing the in-rush current constraint than the single main chain configuration. How-
ever, if the wakeup in-rush current constraint is tight, then the single chain main
header distribution with turn-on threshold of 95% of VDD is a safe choice.

The trickle charge weak switch cells should be configured as a number parallel
daisy chains to evenly trickle charge the entire design and thus reduce possible
crowbar current.

The control signal buffers in the daisy chain should be implemented by a pair of
inverters built inside the switch cell. Implementing the inverters with long gate
length reduces leakage and increases propagation delay to help meet the timing
target for the daisy chain.
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e For main chain turn-on control, the programmable delay method is recommended
for its ability to obtain design specific, optimal turn-on time that meets both the in-
rush current constraint and the wakeup latency requirement.

e We recommend turning off a number of short chains rather than turning off all
sleep transistors at once; this approach results in lower di/dt and less area and rout-
ing penalties.

e We recommend stopping clocks before switching off the sleep transistors, to let all
switching activity die down. This minimizes the dynamic current in the design and
consequent di/dt when the sleep transistors are turned off.

14.6 An Example of a Dual Daisy Chain Sleep Transistor
Implementation

An example of the dual daisy chain sleep transistor implementation is the one used on
the SALT chip, shown in Figure 14-14.
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oD E

Vvss

WDD
VDD
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VvsS

WDD
VDD
WDD
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VWDD
VDD

SLEEP
READY

Figure 14-14 Dual Daisy Chain Sleep Transistor Implementation in SALT

In this example, the sleep transistors in the weak (“starter”) chain and the main chain
are placed in columns interleaving at a same pitch. The column chain segments of the
weak sleep transistors are connected in series to form a long daisy chain for sequential
trickle charging the design. However, the column chain segments of the main sleep
transistors are connected in parallel. As a result, these column chains can be turned on
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simultaneously to reduce time of charging VVDD from 90% to 100% VDD. The
main sleep transistors in each column chain segment are configured as a daisy chain
and switched on in sequence to reduce in-rush current.



APPENDIX A Sleep Transistor Design

A sleep transistor is either a pMOS or nMOS high Vr transistor and is used as a
switch to shut off power supplies to parts of a design in standby mode. The pMOS
sleep transistor is used to switch VDD supply and hence is called a “header switch.”
The nMOS sleep transistor controls VSS supply and hence is called a “footer switch.”
In designs at 90nm and below, either a header or footer switch is used due to tight
voltage margin and too large area penalty when both header and footer switches are
implemented.

Although the concept of the sleep transistor is straight forward, optimal sleep transis-
tor design and implementation are a challenge due to various effects, introduced by
the sleep transistor and its implementations, on design performance, area, routability,
overall power dissipation, and signal/power integrity.

Optimal sleep transistor design also depends on design specific goals and chosen
CMOS technology and process. A number of decisions need to be made including the
choice of header or footer switch, normal or reverse body bias, optimal transistor size,
and layout implementation details such as single or double row and extra rail or direct
via-pillar for permanent power connection.

This chapter is written as a guide to the advantages and trade-offs associated with dif-
ferent choices, rather than the design procedure which is well understood by the tran-
sistor designers. The investigations of various sleep transistor characteristics in the
power-gating design context are based on SPICE analysis instead of the theories and
equations. Device modeling becomes so complex in sub-90nm technology that the
process parameter based device models are the best analysis tool for a quality indus-
trial design.
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A.1 Sleep Transistor Design Metrics

Quality of a sleep transistor design is often measured in terms of three metrics: switch
efficiency, area efficiency and IR drop. The sleep transistor is optimized in gate
length, width, finger size and body-bias to achieve high switch and area efficiencies,
and low leakage current and IR drop.

A.1.1 Switch Efficiency

The sleep transistor efficiency (switch efficiency) is defined by a ratio of drain current
in ON and OFF states, i.e. lon/Ioff. It is desirable to maximize the efficiency to
achieve high drive in normal operation and low leakage in sleep mode. The sleep
transistor efficiency varies with gate length (L), width (W) and body bias (Vbb). The
optimal values of L,W and Vbb vary with the technology and process. These optimal
values are obtained by switch efficiency analysis in SPICE by sweeping L, W and
Vbb and measuring lon/Ioff in each case.

An example of Ton/Ioff SPICE analysis circuit is shown in Figure A-1.

T(lon) T(lorr)
|SUB|
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Von=Vbp-Mbrop Vbb Vore=0

Figure A-1 An Example of lon/loff SPICE Analysis Circuit

The circuit is composed of two high V transistors which are configured in ON and
OFF state respectively. The bodies of both transistors are biased at Vbb which is
swept in SPICE analysis. The ON-state transistor T(Ion) is configured for Ion analy-
sis. A voltage source Von is added to bias Vds at a specified IR drop target, e.g. 10mV.
It also used to measure drain current as Ion. The gate leakage current is not included
in Ion, because it does not contribute to drive current for logic operations in a power-
gating design. A high temperature of 125°C is set on the ON-state transistor to model
high chip temperature in operating mode.
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The OFF state transistor is configured for loff analysis. In this case, a zero voltage
source Voff is inserted to measure the drain current as Ioff. Since Source, Gate and
Body of the transistor are all biased at or above Vdd in the OFF configuration, the
drain current collects all main leakage currents including the gate tunneling current
Ig, sub-threshold channel current, Gate-Induced-Drain-Leakage (GIDL) current and
drain-substrate Band-To-Band-Tunneling (BTBT) current. A room temperature of
25°C is set on OFF state transistor to reflect the cool situation when the design is in
sleep mode.

The gate of the transistors could be driven by inverters in logic “1” and “0” states
reflecting the real driving situation in a power-gating design. However, this is not nec-
essary. The very small Vds (about 10mV) of the inverters has little impact on the Vgs
of the ON and OFF transistors and hence negligible errors in the simulation results.

An example of a switch efficiency curve is shown in Figure A-2. This curve shows a
65nm high V1 pMOS transistor in a nominal or generic process. The Vbb was biased
at Vdd corresponding to the normal body bias condition in SoC designs. The gate
length and width were swept from 65nm to 165nm and 0.4um to Sum respectively.
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Figure A-2  65nm High V1 pMOS Ion/loft Curve (normal back bias)

The switch efficiency increases with L and reaches peak value when L= 105nm. This
is mainly due to consequent V increase with L which results in exponentially reduc-
tion of sub-threshold leakage current and linear reduction of Ion (in linear region).
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However, the efficiency declines when L is longer than 105nm. This is because L
enters the region where Vth increase is saturated but channel resistance continues to
increases. As the result, Ioff reduction becomes less significant than the drop of Ion.

The efficiency also depends on gate width. The Ion/Ioff curve in Figure A-2 on
page 251 shows that lon/lIoff is relatively higher in narrow gate widths of up to 1.4um
and peak at W=1um. This is mainly due to the fringing effect of narrow gate width on
V1. The narrow width effect becomes complex in sub-65nm which results in the
unusual Ion/Ioff behavior in sub-micro narrow gate width transistors. Wider than
1.8um, Ion/Ioff becomes not sensitive to the gate width.

The switch efficiency also depends on body bias. Reversed body bias (RBB)
increases Vr and hence reduces the sub-threshold leakage resulting in higher switch
efficiency. The effect of RBB varies significantly with technology and process, spe-
cially in sub-90nm nodes. It is important to evaluate the effect of body bias on the
switch efficiency in the chosen technology and process by SPICE analysis of the cir-
cuit in Figure A-1. with various body bias voltages. An example of such an analysis
result on a 65nm high V1 pMOS transistor at 1.4V body bias is shown in Figure A-3.
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Figure A-3 65nm pMOS lon/loff Curve at Reverse Back Bias (Vbb=1.4V)

The result shows that Ion/Ioff at 1.4V body bias increases by 16% compared with
max lon/Ioff in the normal body bias case. Moreover, the max Ion/Ioff occurs at a
smaller gate width of 85nm compared with 105nm in the normal body bias case. Con-
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sequently, the sleep transistor of same drive current is smaller and more efficient with
reversed body bias. However, increase body bias beyond an optimal value will result
in Ton/Ioff reduction. This is because the V1 reduction becomes less significant at
high RBB, which results in slower reduction of the sub-threshold leakage current. On
the other hand, BTBT leakage current increases with the RBB and becomes dominant
at high RBB due to the high electric field generated by RBB at brain-substrate junc-
tion.

A.1.2 Area Efficiency

The area efficiency of a sleep transistor is defined by the ratio of its drive current and
silicon area, i.e. lon/Asleep. The lon is the drain current when the transistor is in ON
state and is biased at Vds equaling IR drop target. Asleep is the silicon area of the
sleep transistor depending on the gate length (L), width (W) and layout implementa-
tion. To produce required drive current, a sleep transistor is commonly designed by
connecting a number of small transistors in parallel in a multi-finger style. Certain
area overhead caused by design rules, such as hot-well spacing and diffusion spacing
rules, applies to the layout implementation of the sleep transistor and affects the area
efficiency. The detailed discussions on design for area efficiency will be provided
later in this chapter.

A.1.3 IR Drop

The IR drop on the sleep transistor is mainly determined by the equivalent channel
resistance (Ron = Vds/Ion) when the sleep transistor is conducting. The smaller of
Ron, the smaller of IR drop. Gate width is the primary parameter to determine Ron.
However, gate length also affects Ids and hence Ron. In a sub-50mV Vds region cor-
responding to ON state of the sleep transistor, Ron linearly increases with gate length
and body bias as shown by solid lines in Figure A-4 on page 254. This is the result for
a 2.2um wide pMOS high V transistor in a representative process.
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Figure A-4 90nm High V1 pMOS Ron and Ioff Curves

The result shows that Ron is more sensitive to gate length than body bias. From the
Ron and leakage curves in Figure A-4, we can see that at a same leakage current of
0.5nA (triangle and square marked dash lines), Ron is 1K Ohm (triangle marked solid
line) in the sleep transistor of 100nm Lgate and 1.6V body bias compared with 1.5K
Ohm (square marked solid line) in the sleep transistor of 180nm Lgate and normal
(1V) body bias. This shows that Ron is usually smaller in short gate at reverse body
bias than in the long gate at normal body bias.

A.1.4 Normal vs. Reverse Body Bias

The substrate of the sleep transistor can be biased normally by tapping the substrate or
well to the permanent Vdd rails in pMOS sleep transistor and permanent Vss rails in
nMOS transistor. It can also be reverse biased by connecting to a separate bias voltage
higher than Vdd in pMOS transistor and lower than Vss in nMOS transistor.

A transistor’s leakage current reduces with the reverse body bias, as shown by the
Ioff/Vbb curve in Figure A-6. The leakage reduction is mainly due to the increase of
Vth with the reserve body bias.
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The main advantage of normal body bias is simplicity in implementation. No special
bias voltage sources nor bias supply distribution is required. On the other hand, the
reverse body bias usually results in higher switch efficiency, lower leakage and
smaller area in tap-cell implementations. The choice of normal or reverse body bias
depends on design goals and trade-offs which are discussed below.

Ioff decreases exponentially with the increase of V1 while Ion reduces linearly with
the Vth increase. Therefore, we can find an optimal V1 for a given technology and
process to obtain maximum switch efficiency (Ion/loff). V1 increases with gate
length (L) and reverse body bias (Vbb). The optimal Vth can be produced from the
optimal combination of L and Vbb. The best way to find the optimal Vbb and L is to
run SPICE simulation and analyze Ion/Ioff with different Vbb and L. Figure A-6 and
Figure A-7 show the switch efficiency and loff curves for a high Vth pMOS transistor
in a 90nm process and a 65nm process at typical process corner respectively. The
transistor is 2.2um wide with Vds biased at 1.0V.

In a typical process (Figure A-7), the maximum lon/Ioff increase with Vbb and
reaches peak value of ~22,000 at Vbb = 1.8V and gate length L=100nm. This is about
43% improvement compared with the max Ion/Ioff of ~15,000 in the normal body
bias case of L=140nm. The Ioff is also reduced by 23%. In this case, the short channel
sleep transistor at reverse body bias is a better choice than the long channel transistor
at normal body bias.
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Figure A-7 90nm pMOS Ion/Ioff and Ioff Curves
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However, the advantage of applying reverse body bias becomes significantly smaller
in a 65nm pMOS transistor as shown in Figure A-8. Comparing the max Ion/Ioff of
~21000 in the reverse body bias case (Vbb=1.4V and L=85nm) and ~18000 in normal
body bias case (Vbb=1.0V and L=105nm), the switch efficiency improvement is
dropped to 15%. Ioff reduction ratio is also reduced to 9.8%. The main reason for the
reduction of the effect is the significant increase of BTBT leakage currents in 65nm
technology where strong halo doping technique is commonly used to reduce short
channel effect and subthreshold leakage current at the price of BTBT increase. More-
over, ty, reduction with technology scaling causes higher GIDL which does not
decline with RBB. Consequently, BTBT and GIDL leakage current are becoming
dominate leakage at RBB and applying RBB would be less and less effective to
improve lon/Ioff in sub-45nm technologies.
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Figure A-8 65nm pMOS Ion/loff and loff Curves

It is worth mentioning that nMOS transistor behaves differently. Figure A-9 shows
the nMOS switch efficiency curve for a 65nm process. Comparing the lon/Ioff of the
reverse body biased transistor of 85nm gate length with the normal body biased tran-
sistor of 105nm gate length, it shows that the reverse body bias still produce 34%
higher Ion/Ioff than the normal body bias. Ioff is also improved by 33%. With tech-
nology scaling below 65nm, more and more complex processes, such as
NMOS/PMOS channel engineering and halo doping, have been applied to the devices
to address critical issues in areas such as short channel effect, leakage control and
power-delay product improvement. Such complex processes significantly change
transistor’s behavior and complicate device modeling. Therefore, it is essential to run
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SPICE analysis on the design specific devices to obtain realistic transistor characteris-
tics.
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Figure A-9 65nm nMOS Ion/loff and loff Curves

The advantages of the reverse body bias sleep transistor include smaller size than the
normal bias sleep transistor for its higher Ion/(L*W) ratio.

Moreover, the reverse body bias sleep transistor has smaller Ron and hence IR drop
than the normal body bias counter part at a same leakage current.

Another advantage of the reverse body bias technique is that it becomes applicable to
tune body bias voltage for optimal leakage and performance in different modes, such
as applying the reverse body bias in standby mode to minimize leakage current and
applying normal or forward body bias to produce maximum drive current in normal
operation mode. This adaptive body bias method further increases Ion/Ioff signifi-
cantly.

However, the reverse body bias method introduces significant trade-offs below:

Firstly, it requires separate Vbb voltage source which is out of the range of the power
supply voltage to the design, e.g., Vbb > Vdd in header switch implementations.

Secondly, it requires a dedicate Vbb distributions to every sleep transistor in the
design. The Vbb network needs to be planned carefully to prevent from noise injec-
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tions to it, because the noise in Vbb can cause significant Vth and cell performance
variations.

Thirdly, it requires costly triple well process in the footer switch implementation to
create separate P-well in the nMOS sleep transistors. This is not a problem in the
header switch.

Finally, it imposes hot-well spacing rule between the sleep transistor and adjacent
standard cells. This boundary are overhead becomes considerable in small sleep tran-
sistor designs.

On the other hand, the normal body bias application does not require body bias volt-
age source nor the bias distribution. The well is simply tapped to permanent Vdd. In
the tap-less standard cell designs, the sleep transistors and standard cells can share
well which eliminates the well-spacing constraint. The sleep transistors’ well is
tapped at intervals with standard cell’s well.

A.1.5 Recommendations

e We recommend running SPICE on the high-V transistors in the chosen library to
analyze the body bias effect which varies considerably in different technologies,
process and foundries.

¢ [f minimum leakage is the primary concern, then the reverse body bias is the cor-
rect choice.

e In 90nm technology, the reverse bias is usually a good choice for its lower leakage
and area overhead than the normal bias. The advantages become considerably
smaller in 65nm technology where long gate sleep transistor at normal body bias
might be preferable than the reverse body biased choice. The decision should be
made on overall considerations of design specific goals and trade-offs in normal
and reverse body bias designs.

e [fa separate voltage source, either on-chip or off-chip, is difficult to obtained, then
the normal body bias should be chosen.

e [fthe footer switch has been chosen for the power-gating design, the normal body
bias should be used, unless the standard cell library support separate P-well con-
nection in the nMOS sleep transistor for applying reverse body bias.

e [f tap-less standard cell libraries are used, the normal body bias sleep transistor
becomes considerable for its higher area efficiency than the reversed body bias
sleep transistor.

e In the reversed body biased sleep transistor applications, the body of the sleep
transistor, such as N-well of a pMOS) must be separated with good space (Hot-
well spacing rule) from the bodies of the standard cells next to it to prevent possi-
ble latch-up events due to difference body bias potentials at the sleep transistors
and the standard cells.
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e In the normal body biased sleep transistor applications where tap-less standard
cell libraries are used, the body of the pMOS and nMOS transistors in the standard
cells must be tapped to the permanent VDD and VSS respectively to maintain safe
bias voltage as the sleep transistors when the design is in the sleep mode. On the
other hand, for those applications which use those standard cell libraries where the
body has been connected to the source of the transistors in the standard cells, the
body of the sleep transistor must be separated from the standard cells in a same
way as for the reversed body biased sleep transistor design. This is because the
bodies of the standard cells will be floating to VDD in a footer gating design and
VSS in a header gating design in the sleep mode and hence creating large bias
potential difference between the sleep transistor and the standard cells.

A.2 Layout Design for Area Efficiency

Area efficiency depends on the size (L*W) and layout implementation of the sleep
transistors. The optimal L is determined by the switch efficiency and can be obtained
from the switch efficiency curves generated from SPICE analysis. Once L is defined,
the area efficiency is mainly determined by the transistor width W and layout imple-
mentation. The method for optimal sleep transistor size (L*XW) for high area effi-
ciency has been described in Chapter 4 and hence is not repeated here. Once the size
(L*ZW) of the sleep transistor is determined, the area efficiency of the sleep transistor
is dependent on layout implementations described below.

Two design rules affect the area efficiency in the layout implementation. The first is
the active-area spacing rule which defines the minimum space between diffusion
regions of two transistors. This introduces area overhead in space between rows of the
parallel small W transistors in the layout implementations. The second rule is the hot-
well spacing rule which defines the minimum distance from N-well in the reverse
body biased sleep transistor to the N-wells in the adjacent standard cells, due to differ-
ent well bias voltages in the sleep transistor and the standard cells. The spacing rule
introduced area overhead in a sleep transistor is shown in Figure A-10.
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Figure A-10 Spacing rule overhead of sleep transistor with well-tapped standard
cells

To reduce effect of the spacing overhead on the area efficiency, we can increase the
size of the sleep transistor so as to reduce the ratio of the spacing overhead over the
sleep transistor. This means that the horizontal size of the sleep transistor needs to be
large enough to mitigate the effect of the spacing overhead at both sides of the cell
and W should be large enough to avoid multiple rows so as to eliminate the diffusion
spacing overhead. If the standard cell library is designed without individual well tap
in a cell (tap-less cells), then the well spacing rule becomes not applicable to the nor-
mal body biased sleep transistor because the sleep transistor and standard cell share
well taps and are biased at same voltage (permanent Vdd). Consequently, the bound-
ary are overhead is only caused by the diffusion spacing rule.

It is worth noting that Ion linearly increases with W as shown by the dashed line in
Figure A-8 on page 257. Consequently, lon/W becomes constant at given L and Vbb
which means that the area efficiency is mainly determined by the layout implementa-
tion of the sleep transistor once L and Vbb are defined.



262 Low Power Methodology Manual

A.2.1 Recommendations

e [f area efficiency is critical, W should be chosen as large as possible for a given
cell height to form a single row of parallel transistors in the sleep transistor layout
implementation.

e [f minimum standby leakage is the primary goal, then the optimal W (usually
small) should be considered for high switch efficiency and hence low leakage. It is
worth mentioning that both switch efficiency and leakage current becomes more
sensitive to process variations with the deduction of W particularly in sub-800nm
region.

e For compromised area and leakage goals, the optimal W is obtainable by investi-
gating the area and leakage trade-offs of the sleep transistor with different W
through SPICE analysis.

® A larger sleep transistor (L*XW) is more area efficient because the spacing over-
head has less impact on area efficiency.

e [f the sleep transistors are implemented as a daisy chain (described in detail later)
in the power network, the repeater that controls the sleep transistor is preferable to
be implemented together with the sleep transistor as a single switch cell for area
efficiency, because the space between the sleep transistor and the repeater need
not follow the hot-well spacing rule.

® The sleep transistors are often implemented in two daisy chains which will be
fully explained in the sleep transistor implementation section in the chapter. At the
wakeup, a weak sleep transistor chain is turned on to trickle charge the virtual
power network until 95% Vdd when a main chain is turned on to fully charge the
network for operation. In this case, we recommend implementing the weak and
main sleep transistors in the same switch cell to avoid the extra boundary spacing
overhead which incurs the two transistors are separately implemented.

A.3 Single Row vs. Double Row

For high area efficiency, the sleep transistor can be designed twice as high as a stan-
dard cell. The double-row implementation has two advantages. Firstly, it eliminates
the space imposed by the well spacing rule between the two rows because both rows
are occupied by the same well of the sleep transistor. This is particularly effective in
the reverse body bias implementation where the “hot-well” spacing is significant.

Secondly, W can extend into two row height forming a wide single row transistor
array and hence high area efficiency.

The trade-off of the double-row implementation is the requirement of cell alignment
with standard power and ground rails. This is usually not difficult to handle by the
back-end flow.
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The choice of single and double-row implementation also depends on how the sleep
transistors are implemented in the power network of the design. Fewer of larger sleep
transistors placed in coarse power network grids is usually more area efficient than
more of smaller sleep transistors placed in fine grids, because the spacing overhead
becomes less significant in a larger transistor. The maximum sleep transistor size and
placement grid are constrained by impact on routability and IR drop at center of a
power grid that a local sleep transistor drives.

A.3.1 Recommendations

e [f the reverse body biased sleep transistor is chosen, the double-row implementa-
tion is a right choice. The Vdd should be at the middle of the two rows to allow W
to be extend into two rows.

e [f the sleep transistor is normal biased and placed at small power grid in the tap-
less standard cell design, the single-row layout is a good choice.

e However, if the tap-cell standard cell libraries are used, then double-row imple-
mentation usually produce higher area efficiency even with the normal body
biased sleep transistor. This is because the N-well of the tap-cells is tied to the vir-
tual power network while N-well of the sleep transistor is connected to the perma-
nent power network. In the sleep mode, wells of the standard cells and the sleep
transistors are biased at different voltages. Consequently, the hot-well spacing rule
is imposed to the space between the sleep transistor and adjacent standard cells in
the same way in the reverse biased sleep transistor applications.

A.4 In-rush Current and Latency Analysis

A practical way to obtain a desirable size of the weak sleep transistor in a trickle chain
and the trickle chain configuration is to run SPICE transient simulation to evaluate the
charge current and time of a block of cells driven by a trickle-charge transistor of var-
ious gate widths in a defined trickle charge chain. Then, we can generate rush current
and charge-up time curves and choose the right gate width which meets both in-rush
and wakeup latency requirements, from the curves. An example of such an evaluation
circuit is shown in Figure A-11.
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Figure A-11 Charge Current and Time SPICE Transient Simulation Circuit

The logic cells (shown as boxes inFigure A-11) are the collection of various types of
standard cells. To simulate the transient behavior of the sleep transistor and the cir-
cuits of the logic cells during wakeup period, the transistor level models of the logic
cells should be used in the evaluation circuit. The number of the cells is determined
by the region of a sleep transistor network grid (such as 2 rows and 1 column of the
power-grid) that the sleep transistor drives. The power network resistance can be
obtained from rail extraction of an existing design with similar power rails. Cv mod-
els the power capacitance including de-cap. Cl is the load capacitance a cell drives.
The charging time can be obtained by measuring VVdd voltage changes from 0 to
99% Vdd. It is worth mentioning that decap often dominates the power network
capacitance in industrial designs. Consequently, the wakeup time and in-rush current
vary significantly with decap. It is recommended have good estimations of decaps
and include them in the wakeup in-rush current simulation so that the simulation
results correlate with final design.

The single-grid based sleep transistor evaluation model is small and efficient for ini-
tial evaluation. However, it does not accurately represent the full scale power-gating
where the sleep transistors are turned on in sequence and each turn-on transistor
drives the whole power network. Therefore, a larger scale model of closing to the full
design is often built for a final power-gating evaluation, once an initial evaluation has
done. The larger model can be built by configuring the single-grid model into a sleep
transistor network with buffer chains driving the sleep transistors in a defined
sequence. The voltage and current curves in Figure A-12 and Figure A-13 are the
result of SPICE simulation of such a circuit which has logic cells in 6 rows by 40 col-
umns driven by 12 sleep transistors configured each driving logic cells in 2 rows by
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10 columns. The results show the smaller transistors have lower current peak, but take
much longer to fully charge the design. The optimal transistor size can be obtained
from the W swept results based on the in-rush current constraint.

1.20

1.00 ’,;,,J:ﬂ:ﬂ:l:lin- - s
< 0.80 r_,r;jr‘!‘,; Ut cant ——W=0.8um
8 0.60 /’/;‘/ % ——W=1.2um
> /:;r":// ——W=1.6um
> 0.40 =

—=— W=2.0um
0.20 J
0.00
0.00 100.00 200.00
time /nsec
Figure A-12 Wakeup Power-on Voltage Curve
0 50 100 150 200

1.00
__ 0.00 pors s rs .
<.
< -1.00 >~
= 200 K aeae A —e— W=0.8um
& -3.00 1+ f—— —a— W=1.2um|
a3 -4.00 —o— W=1.6um
o -5.00 e
8 600l 1 o —=— W=2.0um
2 6.

-7.00 s

-8.00

time /nsec

Figure A-13 Wakeup Power-on Current Curve

The shortcoming of the small SPICE evaluation of wakeup power-on sequence
response is that it might not reflect exactly the power-on behavior of the chip design
which is normally much larger. Fortunately, advanced dynamic power network analy-
sis tools are capable of performing transient analysis of a large design. Consequently,
it becomes practical to perform wakeup power-on sequence analysis on an actual
design. In that case, the power network, the sleep transistors and logic cells can all be
extracted from the layout with parasitics for accurate wakeup rush current and charge-
up time analysis.



APPENDIX B UPF Command Syntax

This chapter describes the syntax for selected UPF commands referenced in the text.

Excerpts from the “Unified Power Format(UPF) Standard, Version 1.0” reproduced by
permission of Accellera. Copyright(c) 2006-2007 by Accellera. Accellera does not
warrant or represent the accuracy or content of the excerpted material, and expressly
disclaims any express or implied warranty. Accellera Standards excerpts are supplied
“AS1IS.”

The full standards document in its entirety can be found under www.accellera.org.
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B.1 add_pst state
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Define the states of each of the supply nets for one possible state of the design

Purpose
add_pst_state state_name
-pst table_name
Syntax -state supply states
state_name The power state.
-pst table_name The power state table (PST) to which this state
applies.
-state supply states The list of supply net state names , listed in the cor-
responding order of the -supplies listing in the
Arguments create_pst command.
Return a 1 if successful or a O if not.
Return
value

The add_pst_state command defines the states of each of the supply nets for one
possible state of the design.

It is an error if the number of supply state_names is different than the number of supply
nets within the PST.

Syntax example:

create pst pt -supplies { PN1 PN2 SOC/OTC/PN3 }
add_pst_state sl -pst pt -state { so8 s08 =08 }
add pst state s2 -pst pt -state { so8 s08 off }
add pst state s3 -pst pt -state { s08 509 off }
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B.2 connect_supply net

Purpose Connect a supply net to supply ports and/or pins
connect_supply_net net name
[-ports /ist] [-pins list]
[<-cells /ist |-domain domain_name>)
[<-rail_connection rail type|-pg_type pg type>1*
Syntax [-vet vet_name]
net_name The name of the supply net.
-ports list A list of ports to connect.
-pins /ist A list of pins on cells to connect.
-cells /ist A list of cells to use for -rail_connection or -
pg_type.
-domain domain_name The domain to use for -rail_connection or -
pg_type.
-rail_connection The rail type (for older libraries).
rail_type
-pg_type pg type The power/ground pin type.
-vet vet_name A VCT defining how values are mapped from UPF
Arguments to an HDL model or from the HDL model to UPF.
Return Return the fully qualified name of the supply net if successful or a O if not.
u
value

Any ports, pins, cells, supply nets, or domains are referenced relative to the current
UPF scope .

The connect_supply_net command provides an explicit connection of a supply net to
any port and overrides (has higher precedence than) the auto-connection semantics
that might otherwise apply. —domain or -cells is required when the -rail_connection or
-pg_type options are specified.

Use:
-ports to connect to supply ports;
-pins to connect to pins on library cells;

-cells to connect to all pins of the appropriate type (power or ground) on the
specified cells;
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—rail_connection to connect to pins having this (rail) type; only use this if the
-cells or -domain options are specified;

—pg_type to connect only to pins having this power/ground type (the pin type
defined in the library model is used for determining the connection); only use
this if the -cells or -domain options are specified;

-vet to indicate for every HDL port to which the port is connected, the supply
net state shall be converted if it is being propagated into the HDL port, or the
HDL port value shall be converted if it is being propagated onto the supply
net. -vet is ignored for any connections of the supply net to pins or supply
ports defined in UPF.

The following also apply.

The —ports and —pins options are mutually exclusive with the —cells, —~domain,
-rail_connection, and -pg_type options.

The -rail_connection and -pg_type options are mutually exclusive with each
other.

A supply net can only be connected to a port, pin, or cell in the same extent as
the domain of that supply net.

It is an error if ner_name has not been previously created; in this case, a 0 shall
be returned.

It is an error if any design element specified in this command does not exist.

It is an error if the value conversions specified in the VCT do not match the
type of the HDL port.

Syntax examples:

connect_supply net v09 -ports {VDD U18/v9 U21/v9}

connect_ supply net pdl _vdd

-ports pll inst/vdd
-vet upf2vlog vdd
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B.3 create power domain

Define a power supply distribution network for a set of design elements
Purpose
create_power_domain domain_name
[-elements /is?]
[-include_scope]
Syntax [-scope instance name]
domain_name The new power domain; this shall be a simple (non-
hierarchical) name.
-elements /ist Use this set of design elements in the power
domain.
-include_scope Include the scope of the domain in the extent of the
power domain.
-scope instance_name  Create the power domain within this logic hierarchy
Arguments scope.
Return the fully qualified name of the domain (from the current scope) that is
Return . .
value created or a null string if the power domain is not created.

The create_power_domain command defines a power supply distribution network,
usually for a list of design elements in the power domain. A power domain is a logical
grouping of one or more design elements. A power domain shall have one primary
power net and one primary ground net. A power domain may have additional supply
nets, supply ports, and/or switches.

A power domain is functional only if the primary power and ground supply nets are
specified.

—elements (or the add_domain_elements command) specifies the complete set of
design elements contained within the power domain, i.e., those instances and all their
children (unless specified otherwise).

— list 1s specified respective to the current scope; it is not influenced by the
—scope argument.

If —include_scope is also specified, the scope of the domain is included in the
extent of the domain.

— When neither —elements nor —include_scope is specified, the power domain
consists of the current scope and any of its children not specified (as ele-
ments) in another create_power_domain command.
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—scope specifies the scope, i.e., the instance, where the domain shall be created. This
scope is the current scope for this command; it defines the domain boundary within
the logic design. If —scope is not specified, the power domain shall be created within
the current scope.

Syntax examples:
create power domain PD1 -elements {top/Ul}

set_scope /top/Ul
create_power domain PD2
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B.4 create power switch

Purpose

Define a switch in the power domain

Syntax

create_power_switch switch name
-domain domain_name
-output_supply_port {port name supply net name}
{-input_supply_port {port name supply net name}}*
{-control_port {port name net_name}}*
{-on_state {state_name input_supply port {boolean_function}}}*
[-on_partial_state {state_name input_supply port {boolean_function}}]*
[-ack_port {port name net_name [{boolean_function}]}]*
[-ack_delay {port name delay}]*
[-off_state {state name {boolean_function}}1*
[-error_state {state name {boolean_function}}]*

Arguments

switch_name

The name of the switch instance to create; this shall
be a simple name.

-domain domain_name

The domain containing the switch.

-output_supply_port
port_name
supply net_name

The output supply port of the switch and the net
where this port connects.

-input_supply_port
port_name
supply net name

The input supply port of the switch and the net
where this port is connected.

-control_port
{port_name net_name}

A control port on the switch and the net where this
control port connects.

-on_state {state_name

input_supply port
{boolean_function}}

A named state, the input_supply port for which this
is defined, and its corresponding Boolean function.

-on_partial_state
{state_name
input_supply port
{boolean_function}}

A named state, the input_supply port for which this
is defined, and its corresponding Boolean function.

ack_port {port name
net_name

[{boolean_function}]}

A named state, the input_supply port for which this
is defined, and its corresponding Boolean function
where the switch is in a current-limited state.

-ack_delay {port name
delay}

The acknowledge port on the switch and the signal
net where this port connects. Optionally, a boolean
function can also be specified.

-off_state {state name
{boolean_function}}

The acknowledge port and delay on the switch
where this port connects.
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-error_state Any error states, which if defined on the switch can
{state_name be flagged during simulation or analysis.
{boolean_function}}

Return the full path name of the created switch if successful or a null string if
Return not.
value

The create_power_switch command defines an instance of a power switch in the
power domain. The switch is created within the scope of the power domain. The
switch is either on or off.

The switch is on if the value on the control port(s) equals an “on” state Boolean
expression; this drives the output port to the “on” state. If a value is specified on the
input supply port, then that value is driven on the output supply port.

If the switch is not on, it is off, and an “off” state is driven onto the output port. Some
“off” states can be identified as error states. The simulation semantics for these error
states is tool dependent.

If a boolean_function is specified for —ack_port, the result of boolean function is driven
on —ack_port’s port name delay time units after a control port transition. Otherwise, a
logic 1 shall be driven on the port name delay time units after the switch is closed and
a logic 0 shall be driven delay time units after the switch is opened. delay (default is 0)
may be specified as a unit-less natural integer or as a Verilog time unit. If specified as
a natural integer, the time unit shall be the same as the simulation precision.

Any -ack_port, -on_state, or -error_state boolean functions shall be SystemVerilog
Boolean expressions.

The following also apply.

— It is an error if a specified control port does not exist. The existing connectiv-
ity of the control ports is unmodified.

— All states not covered by three states (on, off, and error) are anonymous error
states.

— Each state name shall be unique.
— Any conflicting state definition is an error.

— No synthesis semantics are associated with any Boolean function, except the
mapped switch has to provide that functionality.

Syntax example:
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create power switch swl

-domain PD_SODIUM

-output_supply port {vout VN3}

-input supply port {vinl VN1}

-input_supply port {vin2 VN2}

-control port {ctrl small ON1}

-control port {ctrl large ON2}

-control port {ss SUPPLY SELECT}

-on_state {partial sl vinl {ctrl small & !ctrl large & ss}}
-on_state {full sl vinl {ctrl small & ctrl large & ss}}
-on_state {partial s2 vin2 {ctrl small & !ctrl large & !ss}}
-on_state {full s2 vin2 {ctrl small & ctrl large & !ss}}
-error_state {no small {!ctrl small & ctrl large}}

B.S create pst

Create a power state table with a specific ordering of supply nets

Purpose

create_pst table name
Syntax -supplies /ist

table_name The power state table name (PST).

-supplies Jist The list of supply nets or ports to include in each
Arguments power state of the design.
Return Return the name of the power state table if it is created or the null string if not.
value

The create_pst command creates a PST, using a specific order of supply nets.

A power state table is used for implementation — specifically for synthesis, analysis,
and optimization. It defines the legal combinations of states, i.e., those combinations
of states that can exist at the same time during operation of the design.

The power state table has no simulation semantics. It is tool-dependent whether
simulation tools report an error if an illegal (unspecified) combination of states

occurs.

It is an error if a specified supply net has not already been created.

Syntax example:

create pst MyPowerStateTable -supplies {PN1 PN2 SOC/OTC/PN3}
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B.6 create supply net

Create a power or ground supply net
Purpose P g PPy
create_supply_net net name
-domain domain_name
Syntax [-reuse] [-resolve <unresolved | one_hot | parallel>]
net_name The name of the supply net; this shall be a simple
(non-hierarchical) name.
-domain domain_name The domain in whose scope the supply net is to be
created.
-reuse Extend net_name as a supply net within
domain_name. No new nets are created.
-resolve <unresolved | A resolution mechanism which determines the state
one_hot | parallel> and voltage of the supply net from the state and
voltage values supplied by each of the individual
Arguments switches. The default is unresolved.
Return the fully qualified name (from the current scope) of the created net or a
Return . .
value null string if the net is not created.

The create_supply_net command creates a supply net. The net is defined for the power
domain, created in the logic hierarchy at the same scope as domain name, and
propagated through implicitly created ports and nets through the logic hierarchy as
required .

The following also apply.

— It is an error if domain _name does not indicate a previously created power
domain.

—  When -reuse is specified, it is an error if nez_name does not already exist.

— When -resolve unresolved is specified, this supply net only allows a single
driver.

Syntax example:

create supply net v09
-domain PD1
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B.7 create supply port

Create a port on a power domain

Purpose
create_supply_port port name
[-domain domain _name]
Syntax [-direction <in | out>]
port_name The name of the supply port. Hierarchical names
are allowed, unless
-domain is also specified.
-domain domain_name The domain where this port defines a supply net
connection point.
Arguments | -direction <in |out>  The direction of the port. The default is in.
Return the fully qualified name (from the current scope) of the created port or
Return . .
value a null string if the port is not created.

The create_supply_port command defines a supply port at the scope of the power
domain when -domain is specified, or at the current scope if -domain is not specified.

-direction defines how state information is propagated through the supply network as
it is connected to the port. If the port is an input port, the state information of the
external supply net connected to the port shall be propagated into the domain.
Likewise, for an output port, the state information of the internal supply net connected
to the port shall be propagated outside of the domain.

It is an error if port_name creates a name conflict in the logic hierarchy or specifies a
previously created port.

It is an error if domain_name does not indicate a previously created power domain.

Syntax example:

create supply port VN1
-domain PD1

reg/wire, Bit, Logic
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B.8 set domain_supply net

Set the default power and ground supply nets for a power domain

Purpose
set_domain_supply_net domain_name
-primary_power_net supply net name
Syntax -primary_ground_net supply net name
domain_name The domain where the default supply nets are to
applied.

-primary_power_net  The primary power supply net.
supply net_name

-primary_ground_net The primary ground net.
Arguments | supply net name

Return 1 if it succeeds and O if it fails.
Return

value

The set_domain_supply net command associates the default power and ground supply
nets to the logic elements of the power domain.

The primary power and ground nets are the default nets connected to the logic elements
(or inferred cells) of the power domain. These power and ground nets are used for all
the elements in the power domain. At the gate level, this means all power/ground pins
of all the inferred gates are connected to the primary power/ground nets, unless
specified otherwise in a connect_supply_net, set_retention, or set_isolation command.

It is an error if domain_name does not indicate a previously created power domain.
It is an error if domain_name already contains a primary power and ground net supply.

Syntax example:

set domain supply net PD1
-primary power net PGl
-primary ground net PGO
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Specify the elements in the domain to isolate using the specified

Purpose strategy
set_isolation isolation_name
-domain domain_name
<-isolation_power_net net name | -isolation_ground_net net name |
-isolation_power_net net_name -isolation_ground_net net_name | -
no_isolation>
[-elements /ist] [-clamp_value <0 | 1 | latch | Z>] [-applies_to <inputs |
Syntax outputs | both>]
isolation_name Isolation strategy name.
-domain domain_name The domain for which this strategy is applied.
<-isolation_power_net The supply net(s) used to supply the isolation logic
net_name | inferred by this strategy. Does not isolate the port,
-isolation_ground_net pin, or design element specified in the elements list.
net_name |
-isolation_power_net
net_name
-isolation_ground_net
net_name |
-no_isolation>
-elements /ist A list of design elements, input ports/pins, output
ports/pins, and nets to which this strategy is
applied.
-clamp_value The value to which the input or output shall be
<0|1]latch | Z> clamped. The default is 0.
-applies_to <inputs | Whether the domain’s input ports, output ports, or
Arguments | outputs | both> both are isolated. The default is outputs.
Return 1 if it succeeds and O if it fails.
Return
value

The set_isolation command specifies the elements in the domain to isolate using the
specified strategy — the isolation enable signal common to all, clamp value, and

location.

—isolation_supply_nets can specify a single power net, a single ground net, or both. If
only an isolation power net is specified, then the primary ground serves as the
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isolation ground. If only an isolation ground net is specified, then the primary power
net serves as the isolation power.

At least one of -isolation_power_net or -isolation_ground_net shall be specified, unless
-no_isolation is specified. If only -isolation_power_net is specified, the primary ground
net shall be used as the isolation ground supply. If only -isolation_ground_net is
specified, the primary power net shall be used as the isolation power supply. If both
are specified, then these options specify the supply nets to use as the isolation power
and ground nets.

The isolation power and ground nets are automatically connected to the implicit
isolation processes and, when -clamp_value is latch, to the isolation value register
described in section 5 of the full specification or to the power and ground pins of an
isolation cell if an isolation cell is explicitly mapped with the map_isolation_cell
command. The switched off and on semantics for the implicit isolation process and
isolation register, if present, are as described in section 5 of the full specification.

If there are multiple isolation strategies for one domain then, per strategy, —elements
can be used to specify the elements to isolate. If —elements is specified, the elements
shall be in the domain_name. If —elements directly specifies a port by name (not
implicitly, by specifying the port’s instance or an ancestor of that instance), then the
isolation strategy shall apply to that port regardless of whether that port’s mode
matches the one specified by the —applies_to option. When —elements is not specified,
this is equivalent to using the elements list that defines the power domain.

-clamp_value can be:
— logic 0
— logic 1
— latch (the value of the non-isolated port when the isolation signal becomes
active)
— logic Z

The following also apply.
— This command never applies to inout ports.

— If -no_isolation is specified, then all the ports specified in -elements, explicitly
or implicitly, and matching the -applies_to (mode) shall not be isolated.

— Itis an error if -no_isolation is specified with any other arguments other than -
domain, -elements, or
-applies_to.

— It is an error if more than one power or ground net is specified.

— It is an error if multiple isolation strategies specify the same design element,
pins, ports, or nets.
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Syntax example:

set isolation outputs only
-domain PD1
-isolation_power_net VDDbackup
-clamp_value 1
-applies to outputs

B.10 set_isolation_control

Specify the control signals for a previously defined isolation strategy

Purpose
set_isolation_control isolation_name
-domain domain_name
-isolation_signal signal name
[-isolation_sense <high | low>]
Syntax [-location <self | parent | sibling | fanout | automatic>)

isolation_name Isolation strategy name.

-domain domain_name The domain where the strategy applies.

-isolation_signal The signal that causes the specified element to drive
signal_name its clamp value.

-location <self | parent Where the isolation cells are placed in the logic
| sibling | fanout | hierarchy. The default is automatic.
Arguments | automatic>

Return 1 if it succeeds and 0 if it fails.
Return

value

The set_isolation_control command allows the specification of the isolation control
signal and sense separate from the set_isolation command for those situations where
the isolation strategy is known, but the control signals are not known until later.

Excepting the set_isolation_control command is executed within the current scope, and
the addition of the —location option, the semantics here are equivalent to having
specified the isolation control signal and sense with the set_isolation command.

—location defines where the isolation cells are placed in the logic hierarchy.
a)  self — the isolation cell is placed inside the model/cell being isolated.

b)  parent — the isolation cell is placed in the parent of the cell /model being iso-
lated.
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c) sibling — a new sibling is created into which the isolation cells are placed.

d) fanout — isolation occurs at all fanout locations (sinks) of the port being iso-
lated.

€) automatic — the implementation tool is free to choose the appropriate loca-
tions (the default).

Syntax example:

set isolation outputs only
-domain PD1
-isolation_power_net VDDbackup
-clamp value 1

-applies to outputs

set isolation control outputs only
-domain PD1

-isolation signal cpu iso
-isolation sense low

-location parent
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B.11 set level shifter

Purpose Specify a level shifter strategy
set_level_shifter level shifter name
-domain domain_name
[-elements /ist] [-applies_to <inputs | outputs | both>]
[-threshold value] [-rule <low_to_high | high_to_low | both>]
Syntax [-location <self | parent | sibling | fanout | automatic>] [-no_shift]
level shifter_name Level shifter strategy name (used only for report-
ing).
-domain domain_name The domain for which this strategy is applied.
-elements /ist A list of design elements, pins, ports, or nets to
which this strategy is applied.
-applies_to <inputs | Whether the domain’s input ports, output ports, or
outputs | both> both are level shifted. The default is both.
-threshold value The voltage threshold (in volts) for determining
when level shifters are required. The default is 0.
-rule <low_to_high | Which type of level shifters are required. The
high_to_low | both> default is both.
-location <self | par- Where the level shifter is placed in the logic hierar-
ent | sibling | fanout|  chy. The default is automatic.
automatic>
-no_shift Can be specified with the —elements option to pre-
vent the insertion of level shifters on the specified
Arguments ports/pins and nets.
Return 1 if it succeeds and 0 if it fails.
Return
value

The set_level_shifter command can be used to set a strategy for level shifting during
implementation. Level shifters are the placed on signals that have sources and sinks
operating at different voltages, as their associated design elements are connected to
different supply nets. If a level shifter strategy is not specified on a particular power
domain, the default level shifter strategy consists of all elements in the power domain
and uses the default strategy settings.

If —elements is specified, the elements shall be in the domain_name. If —elements is used
to specify a port or pin, a level shifter is inserted on that port regardless of any
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-threshold or -rule specifications. The -threshold specification defines how large the
voltage difference between the driver and sink needs to be before level shifters are
inserted. Normally, this threshold is determined from the cell libraries; use this option
to override the library values.

—rule can be low_to_high, high_to_low, or both. If low_to_high is specified, signals
going from a lower voltage to a higher voltage get a level shifter when the voltage
difference exceeds that specified by —threshold. If high_to_low is specified, signals
going from a higher voltage to a lower voltage get a level shifter when the voltage
difference exceeds that specified by —threshold. If both is specified, it is equivalent to
having specified both rules in the strategy.

—location defines where the level shifter cells are placed in the logic hierarchy. All
necessary supplies need to be available in the specified location.

a)  Self — the level shifter cell is placed inside the model/cell being shifted.

b) Parent — the level shifter cell is placed in the parent of the cell /model being
shifted.

c) Sibling — a new sibling is created into which the level shifter cells are placed.
d) Fanout — level shifter occur at all fanout locations (sinks) of the port being
shifted.

e) Automatic — the implementation tool is free to choose the appropriate loca-
tions.

The following also apply.
— This command never applies to inout ports.

— It is an error if the specified location is not within the logic design starting at
the design root.

Syntax example:

set_level shifter shift up
-domain PowerDomainZ
-applies to outputs
-threshold 0.02
-rule both
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B.12 set _retention

Specify which registers in the domain need to be retention registers and set the
Purpose save and restore signals for the retention functionality

set_retention retention_name
-domain domain_name
<-retention_power_net net name | -retention_ground_net net name
-retention_power_net net_name -retention_ground_net net name>
Syntax [-elements /is?]

retention_name Retention strategy name (used only for reporting).

-domain domain_name The domain for which this strategy is applied.

<- The supply net(s) used to supply the retention regis-

retention_power_net ters inferred by this strategy.

net_name |

-retention_ground_net

net_name |

-retention_power_net

net_name

-retention_ground_net

net_name>

-elements /ist A list of objects in the power domain: design ele-

ments, named processes, or sequential reqg or sig-

Arguments nal names to which this strategy is applied.

Return 1 if it succeeds and 0 if it fails.
Return

value

The set_retention command specifies which registers in the domain need to be
retention registers and identifies the save and restore signals for the retention
functionality. Only the registers implied in the elements list shall be provided
retention capabilities. If a design element is specified, then all registers within the
design element acquire the specified retention strategy. If a process is specified, then
all registers inferred by the process acquire the specified retention strategy. If a reg,
signal, or variable is specified and that object is a sequential element, then the implied
register acquires the specified retention strategy. Any specified reg, signal, or
variable that does not infer a sequential element shall not be changed by this
command.

At least one of -retention_power net or -retention_ground_net shall be specified. If
only -retention_power_net is specified, the primary ground net shall be used as the
retention ground supply. If only -retention_ground_net is specified, the primary power



286 Low Power Methodology Manual

net shall be used as the retention power supply. If both are specified, then these
options specify the supply nets to use as the retention power and ground nets.

The retention power and ground nets are automatically connected to the implicit save
and restore processes and shadow register or to the power and ground pins of a
retention cell when that retention cell is explicitly mapped with the map_retention_cell
command. The switched off and on semantics for the implicit save and restore
processes and shadow register are as described in section 5 of the full specification.

If -save_signal is specified, then -restore_signal shall be specified. If -save_signal is not
specified, then -restore_signal shall not be specified. If the save and restore signals are
not specified, then they shall be specified in a set_retention_control command.

If —elements is specified, the elements shall be in the domain _name. When —elements is
not specified, this is equivalent to using the elements list that defines the power
domain.

The following also apply.

— It is an error if domain _name does not indicate a previously created power
domain.

— It is an error if more than one power or ground net is specified.

Syntax example:

set retention my retention
-domain PDA
-retention power_net volt_high
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B.13 set _retention_control

Specify the control signals and assertions for a previously defined retention
Purpose strategy
set_retention_control retention_name
-domain domain_name
-save_signal {{net name <high | low | posedge | negedge>}}
-restore_signal {{net name <high | low | posedge | negedge>}}
[-assert_r _mutex {{net name <high | low | posedge | negedge>}} |*
[-assert_s_mutex {{net name <high | low | posedge | negedge>}}]*
Syntax [-assert_rs_mutex {{net name <high | low | posedge | negedge>}}]*
retention_name Retention strategy name (used only for reporting).
-domain domain_name The domain for which this strategy is applied.
-save_signal save net  The signal that causes the register values to be
saved into the shadow registers.
-restore_signal The signal that causes the register values to be
restore_net restored from the shadow registers.
-assert_r_mutex The restore signal for assertion.
{{net_name <high | low
| posedge | negedge>}}
-assert_s_mutex The save signal for assertion.
{{net_name <high | low
| posedge | negedge>}}
-assert_rs_mutex Both signals (save and restore) for assertion.
{{net_name <high | low
Arguments | | posedge | negedge>}}
Return 1 if it succeeds and 0 if it fails.
Return
value

The set_retention_control command allows the specification of the retention control
signal and sense separate from the set_retention command for those situations where
the retention strategy is known, but the control signals are not known until later. As
the assertions are related to the save and restore signals, they can also be specified
with this command.

Excepting the set_retention_control command is executed within the current scope, the
semantics here are equivalent to having specified the retention control signals, senses,
and assertions with the set_retention command.
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The set_retention command can also be used to specify any assertion options. Each
option creates one or more assertions, which verification tools can trigger when the
indicated RTL signals are active simultaneously. If -assert_rs_mutex does not specify
a list of signals, this indicates the save and restore signals themselves are mutually
exclusive.

The following also apply.
— The save signal shall be an existing net, port, or pin in the design.

— The restore signal shall be an existing net, port, or pin in the design.

Syntax example:

set retention my retention strategy
-domain PDA

set retention control my retention strategy

-domain PDA

-save_signal {power controller inst/save 1 high}
-restore_signal {power controller_ inst/restore 1 low}
-assert_rs mutex {clock a posedge}

B.14 set _scope

Specify the current UPF scope
Purpose peetty P

set_scope instance
Syntax —Seop

instance The instance that becomes the current scope upon
Arguments completion of the command.

Returns the current scope prior to execution of the command as a full path
Return string relative to the current design top if successful and the null string if it
value fails (e.g., if the instance does not exist).

If the set_scope command is called with no arguments or the UPF scope is not set, the
scope is set to the top-level design.

If instance is ., the scope remains at the current instance. If instance is . ., the context
is moved up one level in the instance hierarchy. If instance begins with /, the scope
returns to the instance whose name follows the /, relative to the design top.
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Syntax examples:
set_scope foo/bar

set_scope



Glossary

Power Domain: A collection of design elements that share a single primary supply
connection and, at least conceptually, share a common power strategy.

Isolation: Isolation is a technique for controlling the behavior of a signal that is
driven by a powered down power domain. Isolation consists of driving the signal to a
known state - 1, 0, or latching it to a previous value when the power domain is pow-
ered down.

Retention: Retention is a technique for retaining the state value of registers in a pow-
ered down power domain.

Isolation Cells: Cells (gates) that perform the isolation function in a design. Also
knows as clamp cells or clamps.

Level Shifters: Cells (typically buffers) that translate inputs with one voltage swing
to an output with a different voltage swing.

Retention Register: A register than extends the functionality of a normal register
(flip-flop) with the ability to retain its memory during power down, assuming an
appropriate second (always on) supply as well as save and restore signaling.

Shadow Register: The section of a retention register retains the register state during
power down. Also known as a balloon registers (due to the topology of some imple-
mentations).

Power Switch: At the RTL and architectural level, a power switch allows the power
to a power domain to be switched on or off (also known as power gated).
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Switching Network: Physically, the power switch is implemented as a switching net-
work of transistors. Also known as a switching fabric.

Switching Transistor: The individual switching transistor that makes up the switch-
ing network. Also know as a sleep transistor.
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