
Transition Density, A New Measure of

Activity in Digital Circuits

Farid N. Najm

Semiconductor Process & Design Center
Texas Instruments Inc., MS 369

Dallas, Texas 75265

Abstract

Reliability assessment is an important part of the design process of digital integrated circuits.
We observe that a common thread that runs through most causes of run-time failure is the
extent of circuit activity, i.e., the rate at which its nodes are switching. We propose a new
measure of activity, called the transition density, which may be de�ned as the \average
switching rate" at a circuit node. Based on a stochastic model of logic signals, we also
present an algorithm to propagate density values from the primary inputs to internal and
output nodes. To illustrate the practical signi�cance of this work, we demonstrate how the
density values at internal nodes can be used to study circuit reliability by estimating (1) the
average power & ground currents, (2) the average power dissipation, (3) the susceptibility
to electromigration failures, and (4) the extent of hot-electron degradation. The density
propagation algorithm has been implemented in a prototype density simulator. Using this,
we present experimental results to assess the validity and feasibility of the approach. In
order to obtain the same circuit activity information by traditional means, the circuit would
need to be simulated for thousands of input transitions. Thus this approach is very e�cient
and makes possible the analysis of VLSI circuits, which are traditionally too big to simulate
for long input sequences.

Submitted to the IEEE Transactions on Computer-Aided Design, 1991.



1. Introduction

A major portion of the design time of digital integrated circuits is dedicated to functional

veri�cation and reliability assessment. Of these two, reliability assessment is a more recent

problem whose severity has steadily increased in proportion to chip density. As a result,

CAD tools that evaluate the susceptibility of a design to run-time failures are becoming

increasingly important.

Chip run-time failures can occur due to a variety of reasons, such as excessive power

dissipation, electromigration, hot-electron degradation, voltage drop, aging, and others. In

CMOS logic circuits, the rate at which node transitions occur is a good indicator of the

circuit's susceptibility to run-time failures. For example, both power dissipation and elec-

tromigration in the power lines are directly related to the power supply current which, in

CMOS, is non-zero only during transitions. Hot-electron degradation is related to the MOS-

FETs substrate current, which, for CMOS, is also only signi�cant during transitions. Thus,

the rate at which node transitions occur, i.e., the extent of circuit activity, may be thought

of as a measure of a failure-causing stress. However, there has traditionally been no way of

quantifying this activity because logic signals are in general non-periodic and, thus, have no

�xed switching frequency.

This paper proposes a novel measure of activity that we call the transition density, along

with a simulation technique to compute the density at every circuit node. The transition

density may be de�ned as the \average switching rate," a more rigorous de�nition will be

given in section 2. Preliminary results of this work have appeared in [1].

To further motivate the notion of transition density, consider the problem of estimating

the average power drawn by a CMOS gate. If the gate has output capacitance C and

generates a simple clock signal with frequency f , then the average power dissipated is CV 2
ddf ,

where Vdd is the power supply voltage. In general, since logic signals may not be periodic,

the notion of frequency cannot be used. Instead, one may compute the power as follows. If

x(t) is the logic signal at the gate output and nx(T ) is the number of transitions of x(t) in

the time interval (�T2 ; +T
2 ], then the average power is :

Pav = lim
T!1

Vdd
CVddnx(T )=2

T
=

1

2
CV 2

dd

�
lim
T!1

nx(T )

T

�
(1:1)

In the next section we de�ne the transition density to be the last (limit) term in (1.1).

1



Naturally, one can approximate limT!1 nx(T )=T by simulating the circuit for a \large

enough" number of input transitions while monitoring nx(T ) at every node. The ambiguity

in the phrase \large enough" is precisely the problem with this traditional approach. It

is impossible to determine a priori how long the simulation should be. Furthermore, long

simulations of large circuits are very expensive. However, we will show that, if the transition

densities at the circuit primary inputs are given, they can be e�ciently propagated into the

circuit to give the transition density at every internal and output node. In other words, we

use the limits limT!1 nx(T )=T at the circuit inputs to directly compute the corresponding

limits inside the circuit.

The propagation algorithm involves a single-pass over the circuit and computes the

transition densities at all the nodes. It may be thought of as a simulation of the circuit

in which one studies the density of its internal signals that correspond to input signals

with speci�ed densities; it has been implemented in a prototype density simulator, called

DENSIM. In order to obtain the same circuit activity information by traditional means, the

circuit must be simulated for thousands of input transitions. Thus this approach is very

e�cient and makes possible the analysis of VLSI circuits, which are traditionally too big to

simulate for long input sequences.

It turns out to be highly bene�cial, in terms of the theoretical results to be presented,

to cast the problem in a stochastic (probability theory) setting. Thus, in the following

two sections, we will start with de�nitions of \idealized logic signals," and then present a

stochastic model of logic signals that is essential to the density propagation theorem. Based

on these concepts, we then show in section 4 how the transition density can be e�ciently

propagated from inputs to outputs. In section 5, we study a number of practical applications

of the density concept. Namely, we demonstrate how the density values at internal nodes

can be used to estimate (1) The average power & ground currents, (2) The average power

dissipation, (3) The susceptibility to electromigration failures, and (4) The extent of hot-

electron degradation. Experimental results are presented in section 6, and section 7 contains

a summary and conclusions.

Appendix A presents the existence proofs of the equilibrium probability and transition

density, and appendix B presents a new application for Binary Decision Diagrams (BDDs)

in computing the probability of a Boolean function.

2



2. Ideal Logic Signals

Let x(t); t 2 (�1;+1); be a function of time that takes the values 0 or 1. We use such

time functions to model logic signals in digital circuits. This ideal model neglects waveform

details such as the rise/fall times, glitches, over/under-shoots, etc.

De�nition 1. The equilibrium probability of x(t), to be denoted by P (x), is de�ned as :

P (x)
4

= lim
T!1

1

T

Z +T
2

�T
2

x(t)dt (2:1)

The reason for the name \equilibrium probability" will become clear later on. It is easy

to observe, however, that P (x) is the fraction of time that x(t) is in the 1 state. It is also

the average value of x(t), over all time. Thus, for instance, a 25% duty cycle clock signal,

i.e., one that is high for 1/4th of its period, has P (x) = 0:25. The following proposition

guarantees that the equilibrium probability is always well-de�ned.

Proposition 1. For a logic signal x(t), the limit in (2.1) always exists.

Proof : See appendix A.

The discontinuity points of x(t) represent transitions in the logic signal. Let nx(T ) be

the number of transitions of x(t) in the time interval (�T
2 ;+

T
2 ].

De�nition 2. The transition density of a logic signal x(t); t 2 (�1;+1), is de�ned as :

D(x)
4

= lim
T!1

nx(T )

T
(2:2)

The reason for the name \transition density" will become clear later on. It should be

clear, however, that D(x) is the average number of transitions per unit time. Thus, a 10MHz

clock signal has D(x) = 20 � 106. The power of the P (x) and D(x) concepts is that they

apply equally well to both periodic (clock) and non-periodic signals. In the remainder of

this section, we study the existence of the limit in (2.2).

The time between two consecutive transitions of x(t) will be referred to as an inter-

transition time. Let � be the average value of all the inter-transition times of x(t). Likewise,

let �1 (�0) be the average of the high (low), i.e., corresponding to x(t) = 1 (0), inter-transition

times of x(t). It should be clear that � = 1
2(�0 + �1). In general, there is no guarantee of

the existence of �, �0, and �1. If the number of transitions in positive time is �nite, then we

3



say that there is an in�nite inter-transition time following the last transition, and � =1. A

similar convention is made for negative time. We de�ne �f to be the average of all the �nite

inter-transition times of x(t). In general, there is also no guarantee of the existence of �f .

Proposition 2. Two parts :

(i) If �f exists and is non-zero, then D(x) exists.

(ii) If �0 & �1 exist, and � 6= 0, then D(x) exists and we have :

P (x) =
�1

�0 + �1
and D(x) =

2

�0 + �1
(2:3a; b)

Proof : See appendix A.

In order to guarantee that the density is always well-de�ned, we make the following basic

assumption about every logic signal x(t) :

Basic Assumption : The average �nite inter-transition time �f exists and is non-zero.

Logic signals for which this assumption does not hold are considered pathological, and

are excluded from the analysis. It can be shown (see appendix A) that another more stringent

su�cient condition for the existence of (2.2) is that there be a non-zero lower bound (however

small) on the inter-transition times of x(t). This condition is easily satis�ed in all practical

cases, so that our basic assumption is very mild indeed.

3. The Companion Process of Logic Signals

We will use bold font to represent random quantities. We denote the probability of an

event A by PfAg and, if x is a random variable, we denote its mean (or expected value) by

E[x] and its distribution function by Fx(a)
4

= Pfx � ag.

Let x(t), t 2 (�1;+1), be a stochastic process [2] that takes the values 0 or 1, tran-

sitioning between them at random transition times. Such a process is called a 0-1 process

(see [3], pp. 38{39). A logic signal x(t) can be thought of as a sample of a 0-1 stochastic

process x(t), i.e., x(t) is one of an in�nity of possible signals that comprise the family x(t).

A stochastic process is said to be strict-sense stationary (SSS) if its statistical properties

are invariant to a shift of the time origin [2]. Among other things, the mean E[x(t)] of such

a process is a constant, independent of time, and will be denoted by E[x]. It will be shown

below that a logic signal is always a sample of a SSS 0-1 process.

4



Let nx(T ) denote the (random) number of transitions of x(t) in (�T
2
;+T

2
]. If x(t) is

SSS, then E[nx(T )] depends only on T , and is independent of the location of the time origin.

Proposition 3. If x(t) is SSS, then the mean E[nx(T )=T ] is a constant, independent of T .

Proof : Let t1 < t2 < t3 be three arbitrary points along the time axis. Let n1 be the

number of transitions in (t1; t2], n2 be the number of transitions in (t2; t3], and n3 be the

number of transitions in (t1; t3]. Then n3 = n1 + n2, and E[n3] = E[n1] + E[n2]. Let

T1 = t2� t1 and T2 = t3� t2. Since x(t) is SSS, then E[n1] = E[nx(T1)], E[n2] = E[nx(T2)],

and E[n3] = E[nx(T1 + T2)]. Hence E[nx(T1 + T2)] = E[nx(T1)] + E[nx(T2)]. Since this is

true for arbitrary T1 and T2, it means that, in general, E[nx(T )] = kT , where k is a positive

constant, which completes the proof.

A constant-mean stochastic process x(t) is said to be mean-ergodic [2] if :

lim
T!1

1

T

Z +T
2

�T
2

x(t)dt
1
= E[x] (3:1)

where we have used the symbol \
1
=" to denote convergence with probability 1. The reader is

referred to [2], pp. 188{191, for a discussion of the di�erent stochastic convergence modes.

We reserve the symbol \=" to indicate convergence everywhere for random quantities. It will

be shown below that a logic signal is always a sample of a SSS mean-ergodic 0-1 process.

Let � 2 (�1;+1) be a random variable with the probability distribution function

F
�
(t) = 1=2 for any �nite t, and with F

�
(�1) = 0 & F

�
(+1) = 1. If F

�T
(t) is the uniform

distribution over [�T2 ; +T
2 ], then limT!1 F

�T
= F

�
. Thus, one might say that � is uniformly

distributed over the whole real line R.

We now use � to build from x(t) an important 0-1 process x(t), de�ned as follows.

De�nition 3. Given a logic signal x(t) and a random variable �, uniformly distributed

over R, de�ne a 0-1 stochastic process x(t), called the companion process of x(t), given by :

x(t)
4

= x(t+ �) (3:2)

For any given t = t1, x(t1) is the random variable x(t1 + �) - a function of �. Thus the

stochastic process x(t) is well-de�ned. Intuitively, x(t) is a family of shifted copies of x(t),

each shifted by a value of the random variable �. Thus, not only is x(t) a sample of x(t),

but we also have the following.

5



Proposition 4. If x(t) is the companion process of a logic signal x(t), then the following

\convergence everywhere" results are true :

lim
T!1

1

T

Z +T
2

�T
2

x(t)dt = P (x) (3:3)

lim
T!1

nx(T )

T
= D(x) (3:4)

Proof : To prove (3.3), we need to show that, for any given �nite �1 2 R, the di�erence

�P
4

= 1
T

R +T
2
�T
2

x(t+ �1)dt�
1
T

R +T
2
�T
2

x(t)dt tends to zero as T !1. This can be written as :

�P =
1

T

Z +T
2
+�1

�T
2
+�1

x(t)dt�
1

T

Z +T
2

�T
2

x(t)dt =
1

T

Z +T
2
+�1

+T
2

x(t)dt�
1

T

Z �T
2
+�1

�T
2

x(t)dt (3:5)

Since x(t) 2 f0; 1g, then j�P j �
j�1j

T
must go to 0 as T !1.

Likewise, to prove (3.4) we must show that the di�erence �D
4

= 1
T
f\the number of

transitions in (�T2 + �1;
+T
2 + �1]" � \that in (�T2 ; +T

2 ]"g, goes to 0 as T !1. Notice that :

nx(T � 2j�1j)

T
�
nx(T )

T
� �D �

nx(T + 2j�1j)

T
�
nx(T )

T
(3:6)

If x(t) has a �nite number of transitions, then limT!1 nx(T � 2j�1j) = limT!1 nx(T ) <1,

and limT!1�D = 0. Otherwise, notice that 1=D(x) = limT!1(T � 2j�1j)=nx(T � 2j�1j) =

limT!1 T=nx(T � 2j�1j). Rewriting this as limT!1 nx(T � 2j�1j)=T = D(x) shows that �D

must go to 0 as T !1.

Since this is true for any �1 2 R, then the convergence is everywhere, in the sense that

every value of � will lead to convergence.

Theorem 1. The companion process x(t) of a logic signal x(t) is SSS and mean-ergodic

with E[x] = Pfx(t) = 1g = P (x) and :

E

�
nx(T )

T

�
= D(x) (3:7)

Proof : At t = 0, we have E[x(0)] = E[x(�)]. An interesting property of � is that if a is

a constant then a+ � has the same distribution as �. Indeed, if Fa+�(t) is the distribution

function of a+ �, then Fa+�(t) = Pfa+ � � tg = Pf� � t� ag = 1=2 = F
�
(t). Therefore,

6



since t + � and � are identically distributed, we have E[x(t + �)] = E[x(�)], which means

that x(t) is a constant-mean process with :

E[x(t)] = E[x(0)] = E[x(�)]; for any time t: (3:8)

LetRa be a subset of the real lineR de�ned byRa
4

= ft 2 R : x(t) = 1; x(t+a) = 1g. It is

clear that Pfx(�) = 1; x(�+ a) = 1g = Pf� 2 Rag. Likewise, Pfx(t+ �) = 1; x(t+ �+ a) =

1g = Pft + � 2 Rag. However, since � and t + � are identically distributed, the two

probabilities Pf� 2 Rag and Pft+ � 2 Rag must be equal, which leads to :

Pfx(t) = 1;x(t+ a) = 1g = Pfx(0) = 1;x(a) = 1g = Pf� 2 Rag; for any time t: (3:9)

Consequently, the joint distribution of x(t) and x(t + a), i.e., Fx(t);x(t+a)(x1; x2), is inde-

pendent of t, and depends only on a, which makes x(t) wide-sense stationary [2] (WSS).

By extending this argument to a1; : : : ; an, it follows that Fx(t);x(t+a1);:::;x(t+an)(x1; : : : ; xn) is

independent of t, and x(t) is strict-sense stationary (SSS).

To prove mean-ergodicity, and in view of (3.3), it su�ces to show that E[x] = P (x).

Consider the random variable �T
4

= 1
T

R +T
2
�T
2

x(t)dt. From (3.3) we have limT!1 �T = P (x),

where this is convergence everywhere. Therefore limT!1 E[�T ] = P (x). By linearity of the

expected value operator, this can be rewritten :

lim
T!1

1

T

Z +T
2

�T
2

E[x(t)]dt = P (x) (3:10)

But E[x(t)] is a constant. Therefore the left hand side of (3.10) is simply E[x], and mean-

ergodicity follows, with E[x] = Pfx(t) = 1g = P (x).

To complete the proof, we will prove (3.7) by repeating the argument used for �T .

By (3.4), the random variable nx(T )=T converges everywhere to D(x). Therefore its mean

must also converge to D(x). Since, by proposition 3, its mean is a constant, independent of

T , then (3.7) follows.

We are now in a position to comment on the names \equilibrium probability" for P (x)

and \transition density" for D(x). For a 0-1 process, Pfx(t) = 1g = E[x(t)]. Thus, by (3.3)

and since x(t) is mean-ergodic, P (x) is the constant probability that x(t) = 1. The name

\equilibrium probability" is inspired from the special case when the inter-transition times

of a 0-1 process x(t) are independent exponentially distributed random variables. In that

7



case, the process is the well-known two-state continuous-time Markov process (see [2], pp.

392{393) whose state probability tends to an equilibrium value for t!1, at which time it

becomes SSS (see [4], pp. 272{273).

By (3.7), D(x) is the expected \average number of transitions per unit time," which we

compactly refer to as \transition density." This name is inspired by the density of random

Poisson points (see [2], page 58). If a large number of points are chosen on the time axis

at random, then the \number of points in a given interval" is a random variable with a

Poisson distribution whose density parameter � is the \expected number of points per unit

time." The points that we are concerned with in this paper are the time points at which

transitions occur, but we make no assumption about their distribution. The remark about

Poisson points is meant only to motivate the terminology.

4. Density Simulation

A digital circuit provides a mapping from the logic signals at its primary input nodes to

those at its internal and output nodes. In the following, we use the term \internal nodes"

to refer to the primary output nodes as well as other proper internal circuit nodes.

If we consider the companion process of each such logic signal, the circuit may be seen

as mapping stochastic processes at its inputs to similar processes at its internal nodes.

The statistics (such as density and probability) of the internal processes are completely

determined by those at the primary inputs. In fact, we will demonstrate in this section that

the density and probability of internal processes can be e�ciently computed from those at

the primary inputs.

We assume that the primary input processes are mutually-independent. Therefore, since

these inputs are individually SSS, they are also jointly SSS. In terms of the underlying logic

signals x(t), this assumption means that the signal values are not correlated, so that if one

of them is 1, then the average fraction of time that another is 1 (or 0) is unaltered.

Given the density and probability values of the companion processes at the primary

inputs, we will present an algorithm to propagate them into the circuit to derive the cor-

responding values at internal nodes. We consider the circuit to be an interconnection of

logic modules, each representing a certain (combinational) Boolean function and possessing

certain delay characteristics. The propagation of density and probability will then proceed

8



on a per-module basis from primary inputs to primary outputs, a process that we refer to

as density simulation.

4.1. Propagation through a single module

Consider a multi-input multi-output logic moduleM , whose outputs are Boolean functions

of its inputs, as shown in Fig. 1. M may be a single logic gate or a higher level circuit

block. We assume that the inputs to M are mutually-independent companion processes.

The validity of this assumption will be discussed in section 4.2.

M

Figure 1. Logic Module M.

We use a simpli�ed timing model of circuit behavior, as follows. We assume that an

input transition that does get transmitted to an output node is delayed by a propagation

delay time of �p. Di�erent propagation delays may be associated with di�erent input-output

node pairs. Implicit in this model is the simplifying assumption that the propagation delay

is independent of the values at other inputs of M .

In e�ect, we decouple the delays inside M from its Boolean function description by

introducing a special-purpose delay block to model the delays between every pair of input &

output nodes, as shown in Fig. 2. The blockM 0 is a zero-delay logic module that implements

the same Boolean function as M .

Since the input signals are SSS, then the output of the delay block has the same statistics

as its input, and therefore has the same probability and density. As for the zero-delay module

M 0, we now consider the problem of propagating equilibrium probabilities and transition

densities from its inputs to its outputs.

9



(non-zero-delay)

(zero-delay)

M

M’

Delay

Figure 2. Decoupling of delays.

Since P (x) = Pfx(t) = 1g (by theorem 1) and M 0 has zero delay, then the problem of

propagating equilibrium probabilities through it is identical to that of propagating signal

probabilities through logic circuits, which has been well-studied [5]{[9]. Since the internal

structure of M 0 is not known, the problem is actually even more generic than that, and

can be expressed as \given a Boolean function f(x1; : : : ; xn) and that each xi can be high

with probability P (xi), what is the probability that f is high?" Any number of published

techniques can be used to solve this problem. However, we have chosen (for reasons that will

become clear below) to investigate a new approach based on Binary Decision Diagrams [10,

11] (BDDs) which have recently become popular in the veri�cation and synthesis areas.

Appendix B describes how we use BDDs to compute the probability of a Boolean function.

We consider next the density propagation problem. Recall the concept of Boolean Dif-

ference : if y is a Boolean function that depends on x, then the Boolean di�erence of y with

respect to x is de�ned as :

@y

@x

4

= yjx=1 � yjx=0 = y(x)� y(x) (4:1)

where � denotes the exclusive-or operation. Note that, if x is an input and y is an output

of M 0, then @y=@x is a Boolean function that does not depend on x, but may depend on all

other inputs of M 0. Therefore, @y=@x and x are independent. A crucial observation is that

if @y=@x is 1, then a transition at x will cause a (simultaneous) transition at y, otherwise

10



not. Since the input processes are SSS, then @y=@x is also SSS; in fact it is a companion

process with equilibrium probability P (@y=@x). We are now ready to prove the following :

Theorem 2. If the inputs xi(t); i = 1; : : : ; n, of a zero-delay logic module are indepen-

dent companion processes with transition densities D(xi), then the densities at its outputs

yj(t); j = 1; : : : ;m are given by :

D(yj) =
nX
i=1

P

�
@yj

@xi

�
D(xi) (4:2)

Proof : Let tik; k = 1; 2; : : : ;nxi(T ), be the sequence of transition time points of xi(t) in

(�T2 ; +T
2 ]. Consider the sequence of random variables

@yj
@xi

(tik); k = 1; 2; : : : ;nxi(T ), de�ned

for every input-output pair (xi;yj) of M 0.

Since
@yj
@xi

(t) is SSS and independent of xi(t), then P
n
@yj
@xi

(tik) = 1
o
= P

�
@yj
@xi

�
is the

same for any k. Therefore,
@yj
@xi

(tik); k = 1; 2; : : : ;nxi(T ), is a sequence of identically-

distributed (not necessarily independent) random variables, with mean P
�
@yj
@xi

�
.

Since
@yj
@xi

(tik) = 1 if and only if the kth transition of xi(t) is transmitted to yj(t), then

the number of transitions of yj(t) in (�T2 ; +T
2 ] is given by :

nyj(T ) =

nX
i=1

nxi
(T )X

k=1

@yj

@xi
(tik) (4:3)

Taking the expected value of both sides gives :

E
h
nyj(T )

i
=

nX
i=1

E

2
4
nxi

(T )X
k=1

@yj

@xi
(tik)

3
5 (4:4)

Since
@yj
@xi

(t) is independent of xi(t), and if n is some positive integer, then :

E

�
@yj

@xi
(tik)

���� nxi(T ) = n

�
= E

�
@yj

@xi
(tik)

�
= P

�
@yj

@xi

�
(4:5)

Using [2], p. 183, these facts lead to :

E
h
nyj(T )

i
=

nX
i=1

P

�
@yj

@xi

�
E
�
nxi(T )

�
(4:6)

which, dividing by T and using (3.7), leads to the required result (4.2).

11



If the Boolean di�erence is available, then evaluating P
�
@yj
@xi

�
is no more di�cult than

evaluating the probability of a Boolean function knowing those of its inputs. Note that if

M is a 2-input AND gate, with inputs x1 & x2, and output y, then P
�

@y
@x1

�
= P (x2). In

more complex situations, the \compose" and \xor" functions of the BDD package [11] can

be used to evaluate the Boolean di�erence using equation (4.1). The BDD-based algorithm

given in the appendix (for computing the probability of a Boolean function) can then be

used to compute P
�
@yj
@xi

�
.

4.2. Global propagation strategy

The assumption was made at the beginning of the previous sub-section that the inputs

to a module are independent. Even though this is true at the primary inputs (as we have

assumed), it may not be true for internal nodes. Circuit topologies that include reconvergent

fanout and feedback will cause internal nodes to be correlated, and destroy the independence

property. This problem is central to any circuit analysis based on a statistical representation

of signals, and can usually be taken care of by using heuristics that trade-o� accuracy for

speed [5-9].

Based on our previous experience with the propagation of probability waveforms [12],

we have found that, if the modules are large enough so that tightly coupled nodes (such

as in latches or small cells) are kept inside the same module, then the coupling outside the

modules is su�ciently low to justify an independence assumption. While this does take into

account the correlations inside a module, it may create inaccuracies because internal delays

are lumped together. Furthermore, performance may be sacri�ced because the BDDs can

become too large. Section 6 will investigate this speed-accuracy trade-o�.

5. Practical Applications

Once the density at every internal node has been computed, these values can be used in a

post-processing step to investigate various circuit properties. We present here four di�erent

applications of the density concept in CMOS circuits.

5.1. Average power/ground bus currents

Consider the problem of computing the average current in the power or ground bus branches.

We will consider only the case of the power bus, since that of the ground bus is identical.

12



A convenient approximation is to view the bus as an interconnection of lumped resistors,

with lumped capacitors to ground, i.e., a linear RC network. Some nodes of this network

are connected to the external Vdd power supply, while others (referred to as contacts) are

connected to the various circuit components, e.g. CMOS gates, drawing power supply cur-

rent. Let ik(t); k = 1; 2; : : : ; n; be the various current waveforms that the circuit draws at

these contact nodes. Let ij(t); j = 1; 2; : : : ;m; be the various current waveforms in the bus

branches. The bus can now be viewed as a linear time-invariant (LTI) system whose outputs

ij(t) are related to its inputs ik(t) by the convolutions :

ij(t) =
nX

k=1

hjk(t) � ik(t) =
nX

k=1

+1Z
�1

hjk(r)ik(t� r)dr; j = 1; : : : ;m (5:1)

where hjk(t) are the impulse response functions, and \�" denotes the convolution operation.

Let Ij
4

= limT!1
1
T

R +T
2
�T
2

ij(t)dt be the average current in the jth bus branch. Combining

this with (5.1) and exchanging the order of the integrals, we get :

Ij =
nX

k=1

hjk(t) � Ik; j = 1; : : : ;m (5:2)

where we have made use of the fact that limT!1
1
T

R +T
2

�T
2

ik(t � r1)dt is equal to Ik
4

=

limT!1
1
T

R +T
2
�T
2

ik(t)dt for any given r1. The proof of this is identical to that of equation (3.3)

and assumes the existence of an arbitrary, but �nite, upper bound on ik(t).

In other words, if the time-averages of the contact currents are themselves applied at

the contacts, and the bus is solved (i.e., simulated) as a resistive network (DC solution), the

resulting branch currents are the required time-averages of the bus currents. To complete the

solution, we will now express the time-average contact currents Ik in terms of the transition

densities inside the circuit.

LetD(x) be the transition density at the output node x of a CMOS gate that draws power

supply current i(t) whose time-average is I. Furthermore, letCn (Cp) be the total capacitance

from x to the ground (power) bus connection. These capacitances are the sum of (i) any

lumped capacitance tied to the gate output, (ii) MOSFET drain and source capacitances

in the gate output stage, and (iii) MOSFET gate capacitances in any logic gates driven

by x. As such, they are related to both load capacitance and transistor strength. It has

13



been established [13] that a good estimate of the supply current i(t) can be obtained by

looking only at its capacitive charging/discharging component. Since the charge drawn from

the supply whenever the gate switches low-to-high (high-to-low) is VddCn (VddCp), it follows

that :

I
4

= lim
T!1

1

T

Z +T
2

�T
2

i(t)dt = lim
T!1

1
2nx(T )VddCn +

1
2nx(T )VddCp

T
=
VddC

2
D(x) (5:3)

where C
4

= Cn + Cp is the total capacitance at the output node.

Equations (5.3) and (5.2) provide an e�cient technique for computing the average current

in every branch of the bus, given the transition densities at all circuit nodes. It is signi�cant

that this requires only a single DC simulation of the resistive network representing the power

bus; no transient simulation is required, and the bus capacitance is irrelevant.

5.2. Average power dissipation

As a direct consequence of the above results, it should be clear that the overall average

power dissipation is given by Pav =
1
2V

2
dd

P
CiD(xi), summing over all circuit nodes xi.

5.3. Electromigration failures

Electromigration [14, 15] is a major reliability problem caused by the transport of atoms

in a metal line due to the electron 
ow. Under persistent current stress, this can cause

deformations of the metal, leading to either short or open circuits. The time-to-failure is

a lognormally-distributed random variable. It is usually characterized by the median (or

mean) time-to-failure (MTF) [15], which depends on the current density in the metal line.

The models for MTF prediction under pulsed-DC or AC current stress are still controver-

sial. Some recent models [16] predict that, at least under pulsed-DC conditions, the average

current is su�cient to predict the MTF, as follows :

MTF =
A

I2
(5:4)

where A is a parameter that does not depend on the current and I is the average current.

However, other recent studies [17] show that the situation is much more complicated.

In any case, even if I is not su�cient by itself to estimate the MTF, it represents a �rst

order approximation of the current stress in the wire. Thus equations (5.2) and (5.3), based

14



on the transition density, provide the required average current values I, and help identify

potential electromigration problems in the power/ground bus branches.

5.4. Hot electron degradation

As MOSFET devices are scaled down to very small dimensions, certain physical mechanisms

start to cause degradation in the device parameters, causing major reliability problems. One

such mechanism is the injection of \hot electrons" (or in general hot carriers) into the MOS

gate oxide layer [14]. Trapping of these carriers in the gate insulator layer causes degradation

in the transistor transconductance and/or threshold voltage.

It is widely accepted that the MOSFET substrate current is a good indicator of the

severity of the degradation. In fact one can write an expression for the \age" of a transis-

tor (i.e. how far it is down the degradation path) that has been operating for time T as

follows [18] :

Age(T ) =

Z +T
2

�T
2

Ids

WH

�
Isub

Ids

�m
dt (5:5)

where Ids(t) & Isub(t) are the MOSFET drain-to-source & substrate currents, W is the

channel width, and H and m are parameters that do not depend on the transistor currents.

In order to see how this can be used in a CMOS circuit, consider a MOSFET in a CMOS

inverter whose output node is x. It can be shown that the both Isub(t) and Ids(t) are non-

zero only when the inverter is switching (this also holds for any CMOS gate). Whenever

the inverter switches, it generates two current pulses Isub(t) and Ids(t). The pulses resulting

from di�erent switching events are identical except for a dependence on the rise/fall at the

inverter input. If one assumes a certain nominal rise/fall time at the input, then using (5.5)

one can compute the incremental aging due to 0 ! 1 and 1 ! 0 transitions at the inverter

output, call these Alh and Ahl. Then (5.5) may be written :

Age(T ) = (Alh +Ahl)
nx(T )

2
(5:6)

Degradation due to hot-carriers takes years to manifest itself. In other words, T and nx(T )

are very large, which (using (2.2)) permits the approximation nx(T ) � TD(x), and leads to :

Age(T ) =

�
Alh +Ahl

2

�
TD(x) (5:7)

15



Thus, if CMOS gates are pre-characterized to estimate the incremental damage to their

transistors due to a single output transition, then the transition density provides the means

to predict transistor aging over extended time periods using (5.7).

6. Experimental Results

We have implemented this approach in a prototype density simulator, called DENSIM, that

takes a description of a circuit in terms of its Boolean modules and gives the transition density

at every node. It also accepts values for transition density and equilibrium probability at the

primary inputs. Our current implementation is restricted to combinational (non-feedback)

circuits. Every Boolean module should be an instance of a model from a simulation library

built by a separate model compiler called MODCOM. MODCOM uses an input speci�cation in

the form of Boolean equations to build a BDD representation of the module outputs and the

relevant Boolean di�erences, and stores this in a model �le that DENSIM can use.

We present below the results of a number of test cases that were used to investigate

the accuracy and e�ciency of this technique. In order to assess the accuracy of the results,

we have devised a test by which randomly-generated logic waveforms are fed to the circuit

primary inputs and propagated into the circuit (by logic simulation based on the BDDs).

The logic simulator uses assignable non-zero delays, scaling them based on the fanout load

at every module output. The input waveforms must have the same probability and density

values given to DENSIM, and are generated as follows. Starting with P (x) and D(x) values,

we solve for �0 and �1 from (2.3a, b). We then use (arbitrarily) an exponentially distributed

random number generator to produce sequences of inter-transition times that have the means

�0 and �1 (the theory presented above holds for any distribution of inter-transition times).

Starting from arbitrary initial values, the waveforms are built using these sequences. From

the logic simulation results, we estimate the average number of transitions per unit time for

every circuit node. For a large number of input transitions, this number should converge to

the transition density, according to equation (2.2). We also estimate the fraction of time that

the signal spends in the high state and check if that converges to the equilibrium probability,

in accordance with (2.1).

In the �rst few test cases to be presented, the modules were chosen to contain all recon-

vergent fanout. Thus all signals are independent and the results from DENSIM should agree

16



exactly with those from logic simulation. We will then move on to other test cases where

signal correlation does become an issue and will study the speed-accuracy trade-o� involved.

As a �rst test case, consider a single logic module with 8 inputs and one output that

implements the Boolean function : Z = ABFD+CFD+ABHD+CHD+ABFG+CFG+

ABHG+CHG+AFE+ADE+CFE+CDE. Using input values of P = 0:5 and D = 2:0,

DENSIM gives P (Z) = 0:476562 and D(Z) = 3:71875. The results of the logic simulation

run, showing the correct convergent behavior at the output Z, are shown in Fig. 3.

Figure 3. Density and probability convergence plot at node Z.

The horizontal axis in this �gure is the cpu time elapsed during the logic simulation

run, and the vertical axis is the cumulative values of density and probability at the output

node. The two horizontal dashed lines are the values of density and probability computed by

DENSIM and the vertical dashed line indicated by the arrow shows the total cpu time required

by the DENSIM run. The other vertical line indicates the cpu time required to observe 1000

logic transitions at node Z.

The second test case is the 4-bit ALU/function generator SN54181 from the TI TTL

data book. This circuit has 75 logic gates and is shown in Fig. 4.

If we consider the whole circuit as a single Boolean module, then the e�ects of all internal

node correlations are taken care of, and the DENSIM results should, again, be exact. It takes

17



Figure 4. ALU / function generator circuit.

MODCOM 6.53 cpu seconds (SUN SparcStation 1) to build and store the 6092-node BDD

model in this case, and DENSIM requires 0.84 cpu seconds (SUN) to run on it. The DENSIM

results for the two output nodes F3 and X are shown in Figs. 5 and 6, respectively.

Figure 5. Results for node F3 of the ALU.

The preceding test cases show that, even for single-module circuits, computing the den-

18



Figure 6. Results for node X of the ALU.

sity values using DENSIM instead of traditional logic simulation is accurate, much faster, and

avoids lengthy simulations involving thousands of logic transitions. This observation will be

further enforced by the results presented below.

Moving on to multi-module circuits, consider a 32-bit binary ripple adder. In this case,

we chose the full-adders to be our Boolean modules. This again leads to a situation where all

reconvergent fanout and signal correlation is inside the modules, and where DENSIM results

should be exact. DENSIM takes only 0.46 cpu seconds (SUN), as opposed to the 5 minutes

required for the logic simulation results to converge, as shown in Figs. 7 and 8, respectively.

An interesting feature of the result in Fig. 7 is the prolonged \
at" part of the curve

around 1000 transitions. This illustrates the point made in the introduction that it is im-

possible to tell before hand exactly when a logic simulation run should be terminated. In

this case, if one were monitoring the density values from logic simulation with the intention

of terminating the run when the density \converged to something," one might terminate the

run at 1000 transitions, getting the wrong result.

We now move on to a consideration of the e�ects of signal correlation caused by recon-

vergent fanout. As pointed out in sub-section 4.2, one can accurately handle these e�ects by

keeping all reconvergent fanout within the Boolean modules. However, since large BDDs are

19



Figure 7. Results for node n2 of the adder.

Figure 8. Results for node n129 of the adder.

expensive to build and maintain, this can become impractical and leads to a speed-accuracy

trade-o�. To illustrate this point, we again consider the ALU circuit in Fig. 4. We partition

the circuit into the 19 smaller modules shown in the �gure and examine the resultant density

20



values at all nodes that are module outputs. By comparing these to the values obtained from

the single-module run on this circuit, we get the error histogram shown in Fig. 9. In this

case there was a less than 29% loss in accuracy for a 15X gain in speed.

Figure 9. Error histogram for the ALU.

For a further comparison, we ran a logic simulation on the ALU using its gate-level

representation, and compared the resulting densities to those observed in the above 19-

module run. The error histogram in this case is shown in Fig. 10. All but one of the

densities are within 23%. The single point of poor agreement is at node AB which is a

reconvergent node for all four ALU outputs F0{F3.

Finally, we present some results obtained for the ISCAS-85 benchmark circuits [19]. In

this case we used a \lowest-level partitioning" in which every logic gate was represented as

a separate Boolean module. This provides the fastest, but potentially the least accurate,

DENSIM run. The 10 ISCAS circuits, their sizes, and the total DENSIM cpu time (on a

CONVEX c240) are shown in Table 1.

The execution times are excellent, taking under 10 seconds even for the largest circuit.

As for the accuracy, it becomes exceedingly di�cult to assess for large circuits, because

the BDDs become unacceptably large. Even though BDDs for the these circuits have been

built by other researchers, the BDDs that we require are much larger because they must

21



Figure 10. Second error histogram for the ALU.

Table 1. Execution time results for the ISCAS-85
benchmark circuits.

Circuit Size Total Time

Name (# gates) (cpu sec.)

c432 160 0.52

c499 202 0.58

c880 383 1.06

c1355 546 1.39

c1908 880 2.00

c2670 1193 3.45

c3540 1669 3.77

c5315 2307 6.41

c6288 2406 5.67

c7552 3512 9.85

include the Boolean function at every internal node as well as the output nodes, along with

all the associated Boolean di�erence terms. Thus we are reduced to having to assess the

accuracy by obtaining a best-possible estimate of the densities from long logic simulation

runs. Even then, it is practically impossible to examine the density plot for every internal

22



node to determine whether the run was long enough for it to converge. Based on several

test cases, however, we found that an average of 1000 transitions per input node seems to be

enough to approximate most node densities. Such logic simulation runs were performed on

all 10 circuits. In order to tabulate the results, we show the average density values (averaged

over all circuit nodes) in Table 2.

Table 2. Average density results for the ISCAS-85 benchmark
circuits. Time is in cpu seconds.

Circuit Avg. Density Avg. Density (time) %Error

Name (DENSIM) (logic simulation)

c432 3.46 3.39 (62.8) +2.1%

c499 11.36 8.75 (241.1) +29.8%

c880 2.78 3.25 (131.7) -14.5%

c1355 4.19 6.18 (407.9) -32.2%

c1908 2.97 5.01 (463.9) -40.7%

c2670 3.50 4.00 (618.5) -12.5%

c3540 4.47 4.49 (1082.0) -0.4%

c5315 3.52 4.79 (1616.0) -26.5%

c6288 25.10 34.17 (31057.0) -26.5%

c7552 3.85 5.08 (2713.0) -24.2%

The third column in the table also lists the total cpu time required (on the CONVEX)

to �nish the logic simulation run in each case. Even for the smallest circuits, such long

simulation runs meant that hundreds of thousands of internal events had to be simulated.

Comparing the execution times between tables 1 and 2 clearly demonstrates the speed ad-

vantage of this approach (e.g. 5.67 sec. versus 8 hrs. 38 mins. for c6288). As for the average

density values, the agreement is very good for c432 & c3540, acceptable for c880 & c2670,

and poor for the other circuits. These results highlight the need to better account for signal

correlation if one is to obtain consistently good results in the general case.

In general, the problem of estimating equilibrium probabilities, let alone transition den-

sities, is NP-hard. As a result, no single e�cient solution will work well in all cases. The

partitioning strategy in general cases, and the speed-accuracy trade-o�, are the focus of our

continuing research e�orts in this area.

23



7. Summary and Conclusions

To summarize, we have observed that a common thread that runs through most causes of

run-time failure is the extent of circuit activity, i.e., the rate at which its nodes are switching.

We have de�ned a new measure of circuit activity, called the transition density. Based on

a stochastic model of logic signals, we have also presented an algorithm to propagate the

density from the primary inputs to internal nodes.

To illustrate the practical signi�cance of these results, we have considered four ways

in which the density values can be used to study circuit reliability by estimating (1) the

average power & ground currents, (2) the average power dissipation, (3) the susceptibility

to electromigration failures, and (4) the extent of hot-electron degradation. We have also

presented experimental results that demonstrate the practical signi�cance and power of this

approach. We envision that the computation of density values inside the circuit can be used

as a pre-processing step, and the resulting information applied to these and possibly other

reliability problems.

Acknowledgement

I would like to acknowledge the support of Dr. J-H. Chern and Dr. P. Yang at Texas

Instruments. I am also thankful to Dr. P. K. Mozumder, also at Texas Instruments, for

many fruitful technical discussions. Finally, thanks are due to Karl Brace of Carnegie-

Mellon university for providing the BDD package, and to the Microelectronics Center of

North Carolina (MCNC) for supplying the ISCAS-85 benchmark circuits.

24



Appendix A

Existence of P (x) and D(x)

A.1. Existence of P (x)

Recall the de�nition (2.1) of the equilibrium probability : P (x)
4

= lim
T!1

1
T

+T
2R
�T
2

x(t)dt. For

convenience, we also repeat the statement of proposition 1 :

Proposition 1. For a logic signal x(t), the limit in (2.1) always exists.

Proof : Let xT
4

= 1
T

R T

0 x(t)dt be the time-average of x(t) over [0; T ]; it su�ces to show

that limT!1 xT always exists. Notice that xT 2 [0; 1] and :

dxT

dT
(T ) =

x(T )

T
�
xT

T
(A:1)

Since both x(T ) and xT are bounded, then limT!1
dxT
dT

(T ) = 0. By the mean value theorem,

for any � > 0, there exists a 
 2 [T; T +�] such that xT+� � xT = dxT
dT

(
)�. Therefore :

lim
T!1

fxT+� � xT g = � lim

!1

dxT

dT
(
) = 0 (A:2)

which means that limT!1 xT exists.

A.2. Existence of D(x)

Recall the de�nition (2.2) of the transition density : D(x)
4

= lim
T!1

nx(T )
T

. We also recall

a few other de�nitions : The time between two consecutive transitions of x(t) is called an

inter-transition time. � is the average value of all the inter-transition times of x(t). �1

(�0) is the average of the high (low), i.e., corresponding to x(t) = 1 (0), inter-transition

times of x(t). It should be clear that � = 1
2 (�0 + �1). In general, there is no guarantee

of the existence of �, �0, and �1. If the number of transitions in positive time is �nite,

then we say that there is an in�nite inter-transition time following the last transition, and

� = 1. A similar convention is made for negative time. �f is the average of all the �nite

inter-transition times of x(t). In general, there is also no guarantee of the existence of �f .

It should be clear, however, that if � exists, then �f also exists and �f = �. We are now

ready to prove proposition 2, which we restate for convenience :

25



Proposition 2. Two parts :

(i) If �f exists and is non-zero, then D(x) exists.

(ii) If �0 & �1 exist, and � 6= 0, then D(x) exists and we have :

P (x) =
�1

�0 + �1
and D(x) =

2

�0 + �1
(A:3a; b)

Proof : (i) Suppose that �f 6= 0 exists. We �rst dispose of the special case when x(t) has a

�nite number of transitions. In that case, lim
T!1

nx(T ) is a �nite integer value, and D(x) = 0.

Another special case is when x(t) has an in�nite number of transitions in only one time

direction. Without loss of generality, consider that x(t) = 0 for all t < t0. If we build

another signal x0(t) so that x0(t) = x(t), for t > t0, and x0(t) = x(t0 + (t0 � t)), for t < t0,

then x0(t) has an in�nity of transitions in both time directions and it can be shown that

D(x) = 1
2D(x

0). Thus, the existence of D(x) is covered by the general case of a signal with

an in�nity of transitions in both time directions, to be considered next.

In the general case of an in�nity of transitions in both time directions, x(t) cannot have

an in�nite inter-transition time, so that �f = �. It will simplify the discussion below to

refer to � rather than �f . Consider Fig. A1 where, for every T , t1 is the time of the last

transition of x(t) before �T=2, t2 is that of the �rst transition after �T=2, t3 is that of the

last transition before +T=2, and t4 is that of the �rst transition after +T=2.

t1 t2 t3 t4

+T/2-T/2 T

t

Figure A1. Existence of D(x).

There are nx(T ) transitions between �T=2 and +T=2, including t2 and t3. Thus there

are (nx(T )� 1) inter-transition time intervals between t2 and t3. Since limT!1 nx(T ) =1,

26



we have :

� = lim
T!1

t3 � t2

nx(T )� 1
= lim

T!1

�
nx(T )

nx(T )� 1

�
t3 � t2

nx(T )
= lim

T!1

t3 � t2

nx(T )
(A:4)

Likewise :

� = lim
T!1

t4 � t1

nx(T ) + 1
= lim

T!1

t4 � t1

nx(T )
(A:5)

We now observe that t3 � t2 � T � t4 � t1, which gives :

lim
T!1

t3 � t2

nx(T )
� lim

T!1

T

nx(T )
� lim

T!1

t4 � t1

nx(T )
(A:6)

Using (A.4) and (A.5), we see that limT!1
T

nx(T )
= � exists. Since � = �f 6= 0, then

D(x) = 1=� exists.

(ii) If �0 and �1 exist, and � = (�0 + �1)=2 is non-zero, then �f exists and is non-zero

and (2.2) exists. Existence of �0 and �1 also means that x(t) has no in�nite inter-transition

times, so that D(x) = 1=�, and we directly get (A.3b) :

D(x) =
2

�0 + �1
(A:7)

To obtain (A.3a), let n1(T ) be the number of (whole) 1-pulses of x(t) in (�T2 ; +T
2 ]. It

is easy to verify that
���n1(T )� nx(T )

2

��� � 1, which gives limT!1
n1(T )
T

= 1
2D(x). Consider

Fig. A2 where, for every T , t1 is the time of the last 0! 1 transition of x(t) before �T=2, t2

is that of the �rst 0! 1 transition after �T=2, t3 is that of the last 1! 0 transition before

+T=2, and t4 is that of the �rst 1! 0 transition after +T=2.

t1 t2 t3 t4

+T/2-T/2 T

t

Figure A2. Deriving the expression for P (x).

27



By de�nition of �1, we have :

lim
T!1

1

n1(T )

Z t3

t2

x(t)dt = �1 (A:8)

and :

�1 = lim
T!1

1

n1(T ) + 2

Z t4

t1

x(t)dt = lim
T!1

�
n1(T )

n1(T ) + 2

�
1

n1(T )

Z t4

t1

x(t)dt (A:9)

which gives :

lim
T!1

1

n1(T )

Z t4

t1

x(t)dt = �1 (A:10)

We now observe that
R t3
t2
x(t)dt �

R +T
2
�T
2

x(t)dt �
R t4
t1
x(t)dt, which gives :

lim
T!1

1

n1(T )

Z t3

t2

x(t)dt � lim
T!1

1

n1(T )

Z +T
2

�T
2

x(t)dt � lim
T!1

1

n1(T )

Z t4

t1

x(t)dt (A:11)

Using (A.8) and (A.10), we see that limT!1
1

n1(T )

R +T
2
�T
2

x(t)dt = �1. Since limT!1
n1(T )
T

=

1
2D(x), we �nd that :

�1 = lim
T!1

T

n1(T )

1

T

Z +T
2

�T
2

x(t)dt =
2

D(x)
P (x) (A:12)

which leads to (A.3a) :

P (x) =
�1

�0 + �1
(A:13)

and the proof is complete.

In order to illustrate how mild the condition of proposition 2 is, one can prove another

(more stringent) su�cient condition for the existence of D(x), namely, that there exist

a non-zero lower-bound �x > 0 on the inter-transition times. The proof is as follows :

Consider the logic signal x�(t) built as follows : x�(t) is 0 everywhere, except on intervals

of width �x centered at every transition time-point of x(t), where it is 1. It is clear that����nx(T )� 1
�x

R +T
2
�T
2

x�(t)dt

���� < 1. Therefore :

lim
T!1

nx(T )

T
=

1

�x
lim
T!1

1

T

Z +T
2

�T
2

x�(t)dt (A:14)

By proposition 1, and since �x > 0, the density exists. This condition can be easily satis�ed

in all practical cases.

28



Appendix B

Using BDDs for Probability Propagation

We will brie
y review the concept of a Binary Decision Diagram [10, 11] (BDD) and

then present a new application for BDDs as tools for computing the probability of a Boolean

function.

x3

x2

x1

0
1

1

0

1

0

10

Figure B1. Example BDD representation.

Consider the Boolean function y = x1 � x2 + x3, which can be represented by the BDD

shown in Fig. B1. The Boolean variables xi are ordered, and each level in the BDD corre-

sponds to a single variable. Each level may contain one or more BDD nodes at which one

can branch in one of two directions, depending on the value of the relevant variable. For

example, suppose that x1 = 1, x2 = 0, and x3 = 1. To evaluate y, we start at the top node,

branch to the right since x1 = 1, then branch to the left since x2 = 0, and �nally branch to

the right since x3 = 1 to reach the terminal node \1". Thus the corresponding value of y

is 1.

The importance of the BDD representation is that is is canonical, i.e., that it does not

depend on the Boolean expression used to express the function. In our case, if the function

29



was expressed as y = x3 + x1 � (x2 + x3) (an equivalent representation), it would have the

same BDD. BDDs have been found to be an e�cient representation for manipulating Boolean

functions, both in terms of memory and execution time. For example, checking if a Boolean

function is satis�able can be done in time that is linear in the number of variables.

Let y = f(x1; : : : ; xn) be a Boolean function. We will show that, given signal proba-

bilities for the variables xi, and that these variables are independent (random variables),

then the probability of the function f can be obtained in linear time (in the size of its BDD

representation). By Shannon's expansion :

y = x1fx1 + x1fx1 (B:1)

where fx1 = f(1; x2; : : : ; xn) and fx1 = f(0; x2; : : : ; xn) are the cofactors of f with respect

to x1. Since x1x1 = 0, then :

P (y) = P (x1fx1) + P (x1fx1) (B:2)

Since the cofactors of xi do not depend on xi, and since all variables are independent, then :

P (y) = P (x1)P (fx1) + P (x1)P (fx1) (B:3)

This equation shows how the BDD is to be used to evaluate P (y). The two nodes that

are descendants of y in the BDD correspond to the cofactors of f . The probability of the

cofactors can then be expressed in the same way, in terms of their descendants. Thus a depth-

�rst-traversal of the BDD, with a post-order evaluation of P (�) at every node is all that is

required. We have implemented this using the \scan" function of the BDD package [11].

References

[1] F. Najm, \Transition density, a stochastic measure of activity in digital circuits," 28th
ACM/IEEE Design Automation Conference, pp. 644{649, June 17{21, 1991.

[2] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 2nd Edition. New
York, NY: McGraw-Hill Book Co., 1984.

[3] E. Parzen, Stochastic Processes, San Francisco, CA: Holden-Day Inc., 1962.
[4] D. R. Cox & H. D. Miller, The Theory of Stochastic Processes, New York: John Wiley

& Sons Inc., 1968.
[5] K. P. Parker and E. J. McCluskey, \Probabilistic treatment of general combinational

networks," IEEE Transactions on Computers, pp. 668-670, June 1975.

30



[6] S. C. Seth, L. Pan, and V. D. Agrawal, \PREDICT - probabilistic estimation of dig-
ital circuit testability," IEEE 15th Annual International Symposium on Fault-Tolerant
Computing, pp. 220-225, June 1985.

[7] J. Savir, G. S. Ditlow, and P. H. Bardell, \Random pattern testability," IEEE Transac-
tions on Computers, pp. 79{90, January 1984.

[8] G. Markowsky, \Bounding signal probabilities in combinational circuits," IEEE Trans-
actions on Computers, pp. 1247{1251, October 1987.

[9] S. Ercolani, M. Favalli, M. Damiani, P. Olivo, and B. Ricc�o, \Estimate of signal probabil-
ity in combinational logic networks," 1989 IEEE European Test Conference, pp. 132{138,
1989.

[10] R. E. Bryant, \Graph-based algorithms for Boolean function manipulation," IEEE
Transactions on Computer-Aided Design, pp. 677{691, August 1986.

[11] K. S. Brace, R. L. Rudell, and R. E. Bryant, \E�cient implementation of a BDD pack-
age," 27th ACM/IEEE Design Automation Conference, pp. 40{45, June 1990.

[12] F. N. Najm, R. Burch, P. Yang, and I. N. Hajj, \Probabilistic simulation for reliability
analysis of CMOS VLSI circuits," IEEE Transactions on Computer-Aided Design, pp.
439{450, April 1990.

[13] H. J. M. Veendrick, \Short-circuit dissipation of static CMOS circuitry and its impact
on the design of bu�er circuits," IEEE Journal of Solid-State Circuits, vol. SC-19, no. 4,
pp. 468{473, Aug. 1984.

[14] M. H. Woods, \MOS VLSI reliability and yield trends," Proc. of the IEEE, vol. 74, no.
12, Dec. 1986.

[15] J. R. Black, \Electromigration failure modes in aluminum metallization for semiconduc-
tor devices," Proc. of the IEEE, vol. 57, no. 9, Sep. 1969.

[16] B. K. Liew, N. W. Cheung, and C. Hu, \Electromigration interconnect lifetime under AC
and pulsed DC stress," IEEE International Reliability Physics Symposium, pp. 215{219,
April 1989.

[17] J. S. Suehle and H. A. Scha�t, \Current density dependence of electromigration t50 en-
hancement due to pulsed operation," IEEE International Reliability Physics Symposium,
pp. 106{110, April 1990.

[18] C. Hu, \Reliability issues of MOS and bipolar ICs," IEEE International Conference on
Computer Design, pp. 438{442, 1989.

[19] F. Brglez and H. Fujiwara, \A neutral netlist of 10 combinational benchmark circuits and
a target translator in Fortran," IEEE International Symposium on Circuits and Systems,
pp. 695{698, June 1985.

31


