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Asymptotic Waveform Evaluation for Timing 
Analysis 

LAWRENCE T. PILLAGE, MEMBER, IEEE,  A N D  RONALD A. ROHRER, FELLOW, I E E ~  

Abstract-For digital system designs the propagation delays due to 
the physical interconnect can have a significant, even dominant, impact 
on performance. Timing analyzers attempt to capture the effect of the 
interconnect on the delay with a simplified model, typically an RC tree. 
For mid-frequency MOS integrated circuits the RC tree methods can 
predict the delay to within 10 percent of a SPICE simulation and at 
faster than lOOOx the speed. With continual progress in integrated cir- 
cuit processing, operating speeds and new technologies are emerging 
that may require more elaborate interconnect models. Digital bipolar 
and high-speed MOS integrated systems can require interconnect 
models which contain coupling capacitors and inductors. In addition, 
to enable timing verification at the printed circuit hoard level also re- 
quires general RLC interconnect models. Asymptotic Waveform Eval- 
uation (AWE) provides a generalized approach to linear RLC circuit 
response approximations. The RLC interconnect model may contain 
floating capacitors, grounded resistors, inductors, and even linear con- 
trolled sources. The transient portion of the response is approximated 
by matching the initial boundary conditions and the first 2q-1 moments 
of the exact response to a lower order q-pole model. For the case of an 
RC tree model a first-order AWE approximation reduces to the RC tree 
methods. 

I. INTRODUCTION 
ITH FINER feature sizes and higher signal speeds, 
systems that are designed to be digital may evi- 

dence aspects of analog behavior in their interconnect, 
which become the ultimate determinants of performance. 
Timing analyzers [ 11-[4] and timing simulators [5], 161 
attempt to capture the effect of the interconnect on the 
delay to produce reliable timing verification. For many 
MOS circuits, timing analyzers [ 11, [3] are often able to 
predict the interconnect delay with a simplified model, 
typically an RC tree [7], to within 10 percent of a SPICE 
[8] simulation prediction. RC trees are RC circuits with 
capacitors from all nodes to ground, no floating capaci- 
tors, no resistor loops, and no resistors to ground. The 
signal delays through an RC tree are often estimated using 
a form of the Elmore delay [9], which provides a domi- 
nant time constant approximation for monotonic step re- 
sponses. 

To enable the timing verification of bipolar circuits, the 
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interconnect model may need to include grounded resis- 
tors [ 101 and inductors [ 1 11 which are not compatible with 
RC trees. Even for MOS circuits at particularly high 
speeds, the effects of coupling capacitance may need to 
be included in the delay estimate. Particularly at the 
printed circuit board level, input voltage rise time can 
dominate the timing of a net thus precluding the use of 
step response approximations for delay estimation. More- 
over, for generality, a solution is required when there are 
nonequilibrium initial conditions so that the delays due to 
charge sharing effects can be predicted. 

RLC circuits with nonequilibrium initial conditions may 
have response waveforms which are nonmonotonic. A 
single time constant approximation with the Elmore delay 
is not generally applicable for such circuits. Two time 
constant models have been shown to improve the accu- 
racy [12], where they too have been applied to RC tree 
monotone response approximations. Asymptotic Wave- 
form Evaluation (AWE) provides a generalized approach 
to waveform estimation for RLC circuits with initial con- 
ditions and nonzero input signal risetimes. The RLC cir- 
cuits may contain floating capacitors, grounded resistors, 
inductors, and linear controlled sources. The transient re- 
sponse of an RLC circuit is approximated by matching the 
initial boundary conditions and the first 2q-1 moments of 
the actual response to a lower order q-pole model. For the 
case of an RC tree driven by a step input, a first-order 
AWE approximation is equivalent to the methods which 
employ Elmore’s delay expression. 

Section I1 begins with a discussion of previous work in 
delay estimation for timing analysis. The RC tree methods 
which employ Elmore’s delay expression are briefly re- 
viewed. For a more detailed summary of the previous 
work refer to [ I  11. Next, AWE is described in general in 
terms of state variable analysis. The state variable for- 
mulation is used only to explain AWE as applied in gen- 
eral to RLC circuits. Then in Section IV the practical pro- 
cedural steps of AWE are described and related to the RC 
tree methods. Finally, examples of AWE are provided for 
a variety of RLC interconnect circuit models, followed by 
our concluding remarks in Section VI. 

11. RC TREE METHODS 
A typical approach to timing analysis of MOS inte- 

grated circuits is to divide the design into stages, with 
each stage consisting of a gate output and the interconnect 
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path which it drives. A simple example of a stage is shown 
in Fig. 1. The RC tree approach to delay estimation of 
this stage models the MOSFETs in terms of linear ap- 
proximate resistors and capacitors determined as func- 
tions of their process parameters and the voltage changes 
which are to appear across their gates [ l l ,  [3l, [5l, [6l. 
The interconnect is modeled by an RC tree network. An 
RC tree is an RC network with a capacitor from each node 
to ground, no floating capacitors, no resistor loops, and 
no resistors to ground. The MOS circuit delay is then es- 
timated in terms of the delay through the RC tree model. 
The more popular methods of estimating the delay through 
these linear RC trees will be reviewed in this section. 

2.1. Delay Estimation for Linear RC Trees 
There are many definitions of delay given the actual 

transient response. The most straightforward is the time 
at which the output transient rises to 50 percent of its final 
value, as shown in Fig. 2. Elmore [9] proposed an expres- 
sion for approximating the time, TD, at which the transient 
step response would reach 50 percent of its final value for 
monotonic waveforms. Elmore’s expression approxi- 
mates the mid-point of the monotone step response wave- 
form by the mean, or first moment, of the impulse re- 
sponse: 

W 

To = tu dt. (1)  

Since v ( t )  is monotone, its first derivative, the impulse 
response, will always be of the form of a probability den- 
sity function as shown in Fig. 2. The mean of the distri- 
bution given by i, ( t )  is a good approximation for the 50- 
percent point of the transient portion of U ( t )  . For an RC 
tree, Elmore’s expression can be applied since the step 
response waveforms are always monotone [7]. 

The Elmore delay provides a single value for the delay 
estimate, To. Such an estimate does not consider the logic 
thresholds of actual MOS device. To do so requires find- 
ing an approximating response waveform and determining 
the time at which the logic threshold is crossed [l 13. The 
Elmore delay, or first moment of the impulse response, is 
also a good approximation for the dominant time constant 
of the step response [ 1 11. Penfield and Rubenstein [7] ap- 
plied the Elmore delay as a dominant time constant ap- 
proximation to determine the nominal delay from a single 
exponential function with T i ‘  as the pole. 

u ( t )  = v ( w ) ( 1  - e P r l T D ) .  ( 2 )  

The Elmore delay can be found by inspection as a sum- 
mation of series path resistance and shunt capacitance val- 
ues when the circuit is restricted to the configuration of 
an RC tree [7], [ l l ] .  The Elmore delay expressed as a 
summation of R’s and C’s can also be bounded for worst- 
and best-case responses [7], [14]. As in the original [9], 
only step inputs are considered and initial conditions are 
assumed to be zero. 

interconnect 

rc tree model 

Fig. 1 .  RC tree model of a simple logic stage 

+ 4 

v ( t ’  I 

Fig. 2. Example of a monotonic step response and its derivative. 

2.2. Grounded Resistors 
RC tree methods were extended to circuit configura- 

tions which contain loops of resistors [ 111. The Elmore 
delay for these RC meshes is calculated and applied as 
before. To enable delay evaluation for bipolar circuits, 
the RC tree models were further extended to include 
grounded resistors. Resistance to ground requires that the 
steady state be obtained and that the delay value be scaled 
by the magnitude of the voltage transition. This extension 
has been presented in [lo], [15], [16] independently, all 
of which result in an expression similar to 

2.3. Nonequilibrium Initial Conditions 
Lin and Mead [ 5 ]  extended the Elmore definition to 

evaluate the delay for nonmonotone step response wave- 
forms. The circuit configurations were again restricted to 
RC meshes but now equilibrium initial conditions, which 
generate nonmonotone response waveforms, were ad- 
missable. The nonmonotone response waveforms were not 
predicted, but only a delay value was obtained. 

Chu and Horowitz [12], [17] developed a two-pole 
model for analysis of RC meshes with similar nonequi- 
librium initial conditions to consider charge sharing ef- 
fects. Consistent with Elmore’s definition, however, only 
monotone response waveforms were considered. 

2.4.  Comments on Previous Work 
These RC tree approaches to timing estimation have 

been used successfully for timing analysis [1]-[3] and 
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timing simulation [5], [6] of low- to mid-frequency MOS 
digital integrated circuits. The single time-constant and 
double time-constant models provide good delay esti- 
mates for RC tree paths when driven by step inputs; higher 
order approximations may be required, however, when 
inductance and floating capacitance effects are not negli- 
gible. Although nonequilibrium initial conditions are con- 
sidered for the one- and two-pole models, they are valid 
for a limited set of conditions and may be unable to pro- 
vide a means of handling the nonmonotone waveforms 
which may result in general. 

111. ASYMPTOTIC WAVEFORM EVALUATION (AWE) 
Timing analysis of more general digital circuits may 

require models more elaborate than RC trees driven by 
single step inputs. Analysis of RLC interconnect circuit 
models with initial conditions and nonmonotone response 
waveforms requires a more comprehensive waveform es- 
timator. AWE is a generalized approach to approximating 
the waveform response of linear circuits with multiple step 
and ramp input signals and unrestricted nonequilibrium 
initial conditions. 

3.1. The A WE Approximation 
AWE is most conveniently explained in general in terms 

of the differential state equations for a lumped, linear, 
time-invariant circuit: 

x = A x + B u  (4 1 
where x is the n-dimensional state vector and U is the m- 
dimensional excitation vector. In all but the most patho- 
logical cases such a circuit description exists [ 181. Once 
AWE is explained in general, the results will be particu- 
larized to the more familiar RC tree circuits for compari- 
son with the present practices of delay estimation from 
the previous section. 

Suppose that the particular excitation is of the form 

up(t) = uo + u , t ,  t I to ( 5 )  
where uo and u I  are constant m-dimensional vectors. In 
general the form of up ( t )  need not be confined to such 
simple signals, but rather could assume any form of input 
excitation for which a particular solution can easily be 
obtained. Inputs that are polynomials in time or sums of 
complex-valued exponentials can in theory be as easily 
accommodated as the step/ramp combination in expres- 
sion ( 5 ) .  For present purposes this simple class of input 
excitations is considered because it is adequate for the in- 
vestigation of delay and rise time effects. 

For the excitation up, ( 5 ) ,  the differential-state equa- 
tions (4) has the particular solution 

xp(t) = -A-'Buo - AP2BuI  - A - ' B u I t .  (6)  

The A-matrix may not be singular for this particular so- 
lution to exist. This condition is equivalent to specifying 
that the circuit in question have a unique and well-defined 
dc solution when all of its capacitances are open-circuited 
and all of its inductances are short-circuited. This is not 

an unreasonable restriction for most of the circuits for 
which delay estimation may be of interest. There are sit- 
uations, however, when a node is isolated such that it is 
connected to the supply voltage only through capacitors. 
The steady-state solution for these floating nodes must be 
determined by the charge conservation equation. Assum- 
ing for now that there are no floating nodes in the circuit, 
we complete the solution of (4) with the homogeneous 
equation: 

now with the initial condition 

xh = h h  (7 )  

( 8 )  ~ ~ ( 0 )  = x0 + A - I B U ~  + A - ~ B U ~  

xh(S) = (SI - A)-IXh(O). 

where xo is the initial state at time zero. The Laplace 
transform solution of the homogeneous equation is 

( 9 )  

To approximate this solution, x h ( s )  is first expanded in 
a Maclaurin series 

X ~ ( S )  = -A-I(Z + A-lS + AP2S2 + . * * )  xh(0) 

( 10) 
and as many moments as necessary or desirable are 
matched in terms of lower order approximating functions. 
The justification for such a moment matching approach 
follows from the Laplace transform definition 

I-" " .  P" 
1 

X(s) = lo e-sfx( t )  dt = c - ( - s ) ~  1 tkx(t )  dt 
k = O  k! 0 

since it has long been established that the time moments: 

provide excellent measures of delays, rise times, etc. [9], 
[ 191. Focusing for now on a specific component of xh (s  ) , 
say the ith, its initial conditions and first 2q - 1 moments 

It is these moments that are matched to a lower order 
frequency-domain function of the form 

kl k2 k4 Z;(s)=-+-+ * * *  +- 
$ - P I  s - P 2  s - Py 
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where p I  through p q  are the complex approximating poles 
and k l  through k9 their appropriate residues. In other 
words, the time-domain moments are to be matched to 
those of an approximating function of the form 

4 

I =  I 
i, ( t )  = c kreP". (15) 

Under the assumption that the moments (13) can be 
generated easily-more on this when computational con- 
siderations are discussed-what remains now is to solve 
for the time constants and their corresponding residues. 
Expanding each of the terms in (14) into a series about 
the origin, and upon inclusion of the initial conditions, 
the following set of nonlinear simultaneous equations for 
the ith state variable is obtained: 

- ( k l  + k2 + - - a  + k q )  = [ m - , ] ,  

h 

(16)  
A solution for the approximating poles and residues from 
this set of nonlinear equations could proceed in terms of 
Newton-Raphson [20] or a similar iteration method. The 
complexity of these indirect solution methods, however, 
is not fixed, but varies with the problem. Moreover, heu- 
ristics are needed to monitor the iteration step size to con- 
trol convergence. 

Instead of attempting to solve the nonlinear equations 
given by (16), we will reformulate the problem to allow 
for direct solution of the approximating poles and resi- 
dues. The set of equations in (16) can be summarized in 
matrix form as 

- V k  = [ m , ] ,  (17) 

V A - q k  = [ m h ] ,  (18) 
and 

where m, represents the low-order moments ( -  1 ,  0, 
. * * , q - 2 ) ,  mh represents the high-order moments ( q  
- 1, q,  * - , 2q - 2 ) ,  A-'  is a diagonal matrix of the 
reciprocal complex poles, and V is the well-known Van- 
dermonde matrix [2 11 : 

1 

P 1' I! P c2  

1 

P Z '  

P 2-2 

. . .  

. . .  

. . .  

1 

P q  

P q  

- I  

- 2  

It follows then from (17) that 

and 

Since the Vandermonde matrix is the modal matrix for a 
system matrix in companion form [ 191, (2 1) is equivalent 
to 

ATqm, = mh ( 2 2 )  

where 

L - a ,  -a,  -a2 . . .  

with the coefficients normalized so that aq = 1. This ma- 
trix is characterized as A,' rather than A ,  because its ei- 
genvalues are the reciprocals of the approximating poles 
for the original system (4). It is shown in [22] that the set 
of simultaneous nonlinear equations (22) for the coeffi- 
cients a, through aq - , , a,, can be written recursively to 
yield the following set of linear equations: 

m - ,  m, . . -  mq-2 

m, ml mq- I 

m q P 2  m q - l  m 2 q - 3 -  

(24)  

It is in terms of a, that we can form a characteristic 
polynomial 

a, + a l p - '  + a 2 p - 2  + * * * + a 9 - I p - 9 + 1  + p - 9  = O 

( 2 5 )  

the roots of which are the reciprocals of the desired poles. 
If the poles are not distinct, the Vandermonde matrix is 

by definition singular. For such cases the residues must 
be found using an expression other than (20). For the case 
of a double pole given a second-order approximation: 

Expanding the terms in (26) into a series about s = 0: 

) 2 ( s ) = $ ( l + - + , + , +  2s 3s2 4s3 - . *  

PI PI PI PI 
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From (27) it is apparent that the poles and residues are time invariant circuit takes the following form [IS]: 
related to the moments by 

The C and L submatrixes are symmetric diagonally dom- 
More generally, for an r-order root, the approximate res- 
idues are related to the approximate poles by 

inant descriptions of the capacitance and inductance por- 
tions of the circuit. If there are no capacitance-voltage 

- 
- 1  r ( - 1 ) r -  1 . . .  ( - o r  

- 1  
P - r  P - ( - I )  * * *  P 

( r  - l ) !  
( r  - 2 ) !  

p - ( r + l )  ~ - ( r )  r! 

( r  - I ) !  
-2 

* *  P 

- 3  
P 

P - r  

(2r - 3 ) !  
- ( Z r - 2 )  . . . P - ( 2 r - l )  

(2r - 2 ) !  
P 

( r  - l ) ! ( r  - l ) !  ( r  - 2 ) ! ( r  - l ) !  
- L 

Expression (24) can still be applied in cases of repeated 
poles to find the approximating characteristic polynomial. 
This expression arises also in the model order reduction 
problem much studied in linear control system theory [23]. 
Typically in control theory the model-order reduction 
problem is stated first in terms of a rational transfer func- 
tion 

(30) 
1 + b l s  + b2s2 + . + b,sm X ( s )  = 
1 + a ,s  + a 2 s 2  + * * + a,s” 

to which a lower order rational transfer function approx- 
imation is sought. For the case of m = n - 1 ,  matching 
the moments from the expansion of (30) to the first m + 
n + 1 circuit moments results in expression (24) [23]. 

To summarize, determining the set of q approximating 
poles and residues from the moments requires first: solv- 
ing a qth-order set of linear equations (24) by Gaussian 
elimination to find a,; then solving for the roots of a, from 
(25) to determine the approximating poles; and finally de- 
termining the residues by solving the q simultaneous lin- 
ear equations from expression (20) (or (29) for the re- 
peated root case). For the low orders of approximation 
that are needed for the intended application of AWE, the 
roots of a, can be obtained explicitly, and the complexity 
of the solutions for (20) and (24) is modest at (3 ( q 3 ) .  In 
such cases the runtime is dominated by the calculation of 
the moments. 

3.2. Complexity 
The computation of the powers of A - ’  to obtain the 

moments (13) may look to be more complicated than it 
actually is. In general the A-matrix for a lumped, linear, 

source loops or no inductance-current source cutsets in 
the circuit, these submatrices reduce, respectively, to di- 
agonal. The H matrix in (31) is merely the hybrid char- 
acterization of the dc circuit that results upon zeroing all 
original independent sources and forming ports appropri- 
ately for the energy storage elements [ 181. 

It follows that A - I  is 

It is advantageous in practice that the energy storage 
matrix need not be inverted to find A - I  since the models 
which result from circuit extraction may include many 
parasitic energy storage elements with large variations in 
magnitude among them. 

The moments are computed recursively: 

m-, = x h ( 0 )  (33)  

and 

m k + l  = A - ’ m k ,  fork = (0, 1 ,  * , 2q - 2 ) .  

( 3 4 )  
The energy storage matrix is sparse, symmetrical, and 

easily applied. So once the H-matrix is LU-factored the 
major task in computing even higher moments is repeated 
forward- and back-substitution of these LU-factors. Even 
the LC-factorization is not formidable. Such an analysis 
must be performed in any case to obtain the steady-state 
solution. Moreover, in the following section it is shown 
that for several interconnect circuit models, RC trees in- 
cluded, the LU factors need not be found at all. 
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3.3. Stability 
Expression (24) is one of many alternative moment 

matching methods that may be employed to obtain the ap- 
proximating poles [23]-[26]. AWE differs from those of 
control system theory in that the zeros are not found di- 
rectly, but rather the residues are obtained in order to ap- 
proximate the time response. More importantly, AWE dif- 
fers in that the particular solution is subtracted a priori 
and only the transient portion of the response is approxi- 
mated. By focusing on the residues and the homogeneous 
response, the lower order approximation can be forced to 
match the initial state, m - I ,  and the finite integral of the 
voltage response, mo. Since the integral of the approxi- 
mating voltage waveform is finite and equal to the exact, 
the final value must also match that of the exact, thus sta- 
bility in guaranteed. 

There are instances when the homogeneous response 
waveform is nonmonotone and a low-order approximation 
cannot match the integral of the voltage, mo. The low- 
order AWE approximation may prove in such cases to 
have no solution, or may result in a positive approximat- 
ing pole. These situations are easily remedied by moving 
to the higher order of approximation necessitated. 

3.4. Accuracy 
The accuracy measure refers to how well the AWE qth- 

order model approximates the nth order circuit response. 
For our purposes, the accuracy is ideally measured by the 
difference between the approximate response waveform 
and the exact output waveform over the time range of in- 
terest. Referring to Fig. 3, the accuracy is a measure of 
the shaded region. 

The error indicated in Fig. 3 can be expressed simply 
in terms of the integral of the squared waveform differ- 
ence: 

Error = 

where G( t )  is the qth-order AWE approximation. Assum- 
ing that all of the approximate poles are real: 

4 

o ( t )  = i =  C I kiefiJ. (36)  

khe relative error can be found by normalizing (35) by 

(37)  

Of course, the exact response is not available for deter- 
mining the error from (35). Instead we intend to approx- 
imate the error term by replacing the exact response in 
(35) with the q + 1 order AWE approximation: 

a+ I 

v ( t )  = 'c kiePit 
i = l  

k 

Fig. 3 .  The shaded region can be used to indicate the accuracy. 

The approximate normalized error expression is 

. (39) 
)? som (:i,# k,eP" - 1 = 1  2 kleP" dt i som (:$: k,eP'.)? dt 

Calculating the error from (39) can be computationally 
intensive when the order of the approximation is large. 
For example, when q is equal to 4, evaluating the numer- 
ator term in (39) may require more than 40 potentially 
complex multiplication and addition operations. To re- 
duce the complexity we solve for an upper bound on the 
numerator term using Cauchy's inequality 1271: 

Error = 

4 +  I 

I ( q  + 1) ,E (kieP" - kief i t t )2 .  (40) 
I =  I 

It follows that 

q + I  m 

r = l  0 
I ( q  + 1) ,E 1 (kieP" - kieP'')2 dt. ( 4 1 )  

Cauchy's formula is exact when the individual exponen- 
tial terms of U ( t )  and G ( t )  match up exactly. Therefore, 
to determine the least pessimistic result from (39), the in- 
dividual v ( t )  and G ( t )  terms should be paired in (41) by 
the poles and residues which lie closest to one another. In 
addition to ordering the poles, there must also be a way 
to match q + 1 terms from v ( t )  with only q terms from 
G ( t )  . The most straightforward approach is to match the 
first q - 1 terms by pole and residue values as describned 
above, leaving only the final three terms vq, uq+ and vq. 
These terms can be matched as before by splitting the vq 
term into two parts and evaluating: 

and 

' 2  som ( k q + , e P 4 + "  - (kq  - k4)ePYf)  dt. (43) 
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Since (40) is valid only for real functions, the integrals 
of the individual differences 

m 

E, = ( k,eP" - ,&,e"')' dt (44) 

must be real numbers. Equation (44) can be shown to re- 
sult in the expression: 

(45) 

When the AWE approximation contains complex pole 
pairs, they are evaluated in pairs so that the individual 
term differences are real functions and Cauchy's inequal- 
ity still applies [22]: 

E = im (kept + k*eP' - ,&eP' - &*ePr) '  dt. (46)  

At times, due to the difference in orders ( q  + 1 versus 
q ) ,  it may be necessary to compare a complex pole pair 
function with a single real pole function. This integral 
difference also results in a real function of the poles and 
residues [22]. 

The error term given by (39) is used only to measure 
the accuracy of the approximation. Instead of attempting 
to bound the response waveforms, which becomes more 
difficult as the approximation order is increased, we ap- 
proximate quickly the accuracy and move to higher orders 
as required. 

3.5.  Frequency Scaling 
In addition to the error associated with the AWE ap- 

proximation, there is also the question of roundoff error. 
When the eigenvalues of A - '  are very small, or very 
large, the powers of A - I ,  and therefore, the moments, 
change very rapidly. The large variation in moment val- 
ues may cause the moment matrix in (24) to become ill- 
conditioned and near singular. For such cases, higher or- 
ders of approximation cannot be obtained unless the mo- 
ment values are scaled. 

As is done classically when working in the frequency 
domain [I91 where values may range from 10' to IO8 Hz 
or more, the frequency is scaled to first find a normalized 
solution, from which the normalized poles are scaled back 
to find the desired approximation. In AWE the normal- 
ization is chosen about the first pole by selecting a scale 
factor of 

m-l  
7 = -  

m0 (47) 

Without frequency scaling, the moment matrix in (24) can 
become numerically unstable before an accurate solution 
may be reached. 

IV. RELATION TO RC TREE METHODS 
To demonstrate that AWE does not imply excessive 

arithmetic, it is applied to the linear RC tree delay esti- 
mation problem from which it evolved. It will be shown 

that in general, a first-order AWE approximation for an 
RC tree yields the Elmore delay as the reciprocal domi- 
nant pole with effort equivalent to that entailed for RC 
trees. 

4.1.  First-Order A WE Approximation 
Finding A - I  from the state equations (4) is equivalent 

to solving for the port voltages of the open-circuit capac- 
itance ports and short-circuit inductance ports [ 181. For 
many circuit configurations, RC trees included, solving 
for these port variables is trivial. 

Consider as an example the RC tree shown in Fig. 4. 
The state equations for this RC circuit can be expressed 
in matrix form as 

V = C- 'GV + c - ' B u ( r )  (48) 

where U ( t )  is a unit step input voltage from 0 to V , , ,  C is 
the diagonal capacitance matrix, and G is the related port 
conductance matrix. The steady state and the moments for 
this circuit can be obtained from the circuit in Fig. 5 ,  
where all the capacitors in Fig. 4 have been replaced by 
current sources. The steady state, or m - I  is obtained by 
setting i, equal to zero in (48) and solving for the capacitor 
voltages. This solution is equivalent to opening all the 
current sources Z in Fig. 5 and obtaining the voltages 
across them. 

The homogeneous solution to (48) is (from (10)) 

V h ( S )  = -G- 'C(z  + G-ICs + G-'C2s2 + * * - )  

. ( -40)). (49)  

The mo moment is obtained by setting U ( t )  equal to zero 
and i, equal to Cv,,(O) and solving for U from (48). This 
solution is equivalent to setting Z in Fig. 5 equal to 
-Cuss (0)  and U ( t )  equal to zero, then obtaining the node 
voltages. Only m - I  and mo are needed for a first-order 
approximation, but succeeding moments could be found 
by similar recursion if higher orders of approximation 
were sought. The next moment, m l ,  can be obtained by 
setting Z equal to Cmo with U ( ! )  = 0 and solving for the 
node voltages, and so on. Thus finding the moments of 
the actual circuit in Fig. 4 is a succession of dc solutions 
to the circuit in Fig. 5 .  The equations describing this dc 
circuit must be formulated and solved only once to deter- 
mine the steady state. Solution for the moments then re- 
quires only changing the dc inputs for the new dc solu- 
tion. 

Since solving for the circuit moments requires only suc- 
cessive dc analyses, in practice the state equations are not 
formulated. Moreover, for simple circuits such as RC 
trees, the steady-state solution is explicit and the first mo- 
ment, or Elmore delay can be determined by a tree walk 
of the circuit graph [7]. A graph representing the circuit 
in Fig. 5 is shown in Fig. 6. The voltage sources and the 
resistors form a spanning tree, i.e., a graph that touches 
all nodes but forms no cycles. In [7] it was shown that 
calculation of the first moment for any node is (3 ( n )  , 

Authorized licensed use limited to: Michigan Technological University. Downloaded on October 29, 2009 at 12:29 from IEEE Xplore.  Restrictions apply. 



PILLAGE AND ROHRER: WAVEFORM EVALUATION FOR TIMING ANALYSIS 359 

R 3  R 4  

R I  R2  

-- -- 
c3 c4 -- c2 - -C l  -- -- 

* 
Fig. 4 .  RC tree example circuit. 

R 3  R 4  

* 
Fig. 5. Capacitors in the circuit of Fig. 4 are replaced by current sources. 

where n is the number of capacitors. The Elmore delay at 
C4 as calculated from the graph is 

T: = ( R I  + R3 + R4) C4 + ( R I  + R 3 )  C 3  

+ RlC2 + RICI. (50)  
A tree walk is viable for RC trees, but does not provide 

for a general analysis of paths with floating capacitance 
or inductance. With AWE, tree link analysis [28] is em- 
ployed to solve for the moments since it enables a solution 
for all circuit topologies. It will be shown for the case of 
an RC tree, however, that tree link analysis provides for 
a generalized tree walk. For the RC tree in Fig. 5, the 
spanning tree in Fig. 6 is equivalent to the fundamental 

R3 

1 

c4 

* 
Fig. 6.  Tree link graph for the RC circuit in Fig. 4. 

The overall solution for the circuit of Fig. 5 can be ob- 
tained easily in terms of either the tree branch voltages or 
the link currents. For an RC tree all of the links (open 
capacitances) are current sources, and therefore, the so- 
lution for the link currents is trivial: 

i, = I .  ( 5 2 )  

The state variables, or link voltages, are then obtained 
from 

v1 = -FTRFZ + FTV, (53) 

where R is a diagonal matrix of the tree branch resis- 
tances, V, is a diagonal matrix of tree branch voltage 
sources, and Z is the vector of link currents for this RC 
tree from (52 ) .  The matrix FTRF does not involve mul- 
tiplication but rather can be formed by inspection of the 
tree link graph, or F matrix, as described in [29], [30]. 
Equation (53) for this circuit is 

~~ ~~ ~ 

tree which uniquely specifies the tree link equations. From 
these equations the circuit moments can also be obtained 
in linear time. The tree link graph in Fig. 6 has the fol- 
lowing fundamental loop/cutset matrix F [28] : 

The m P l  moment, or steady state, can be found from 
(54) by setting Z equal to 0, and solving for the resulting 
explicit expression for q. If U ( t )  is a 5-V step input: 

in this case a vector all entries of which are five. The mo 
moment is obtained by setting Z in (53) equal to Cv,, and 
V, equal to 0 and solving for vl for all the nodes of inter- 
est. Solving vl for all four state variables results in: 

L - R ~ ( c ~  + C2 + C3 + C4) - R3(C3 + C4) - R 4 C 4 ]  LT;J 
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From (54) and (56) it is apparent that finding the Elmore 
delays via tree link analysis is also (3 ( a )  , as is the case 

Once the first two moments rn - I  ( Vss) and rno ( T D )  are 

the node voltages. The homogeneous response at node 
four is approximated by the first-order model 

4.m- for a tree walk. 

determined, a first-order approximation can be made for 3.0(t- 

2.03- 

M W . .  . . . . . 
...- awe-1 . . . ..-. ,... _ -  ...- ..- ,... ._..- 

- '- _. : ,. _ -  .:.:.- 
__."' 

,;. ,'.. 
.I ,' 
I,: 

I .  

I' I : .' 
,/' : , .  

.I .' 
.I : .' 

I .  

= -k l71(1  + ~7~ + ~ ' 7 :  + * ) .  ( 5 7 )  

The first-order AWE step response approximation for the 
voltage at C4 is 

v4 = vp4 + vh4 = s - Se-'/" (60) 
where T~ is equal to the Elmore delay. Equation (60) is 
compared with the SPICE response for this circuit in Fig. 
7. 

We have shown that a first-order AWE analysis is 
equivalent to those RC tree methods that utilize Elmore's 
delay expression. In addition, solving for the rno term at 
C,, or T L ,  by way of tree link analysis was shown to be 
equivalent to a tree walk as described in [7]. More im- 
portantly though, when the path is such that a walk is not 
possible, e.g., it may contain a floating capacitor, it will 
be shown that tree link analysis continues to apply with- 
out loss of generality. 

4.2.  Inexplicit Steady-State Solution 
An explicit solution to the circuit with capacitors re- 

placed by current sources and inductors replaced by volt- 
age sources is also possible for circuit configurations other 
than RC trees. Any RLC circuit for which the tree can be 
specified by only inductors, or the links can be specified 
by only capacitors has a trivial dc solution. For instance, 
the RLC ladder shown in Fig. 8 can be solved explicitly 
since all of the links are capacitors. 

There are cases, such as a resistor to ground with the 
RC tree in Fig. 9 which actually require obtaining the LU 
factors since the steady state is no longer explicit and the 
links are not exclusively capacitors. Irrespective of the 
method used to approximate the transient response wave- 
form, the steady state must be determined a priori. Tree 
link analysis recognizes when the steady-state solution is 
not explicit and formulates the problem to solve for the 
least number of variables. With the capacitors replaced 
by current sources as shown in Fig. 1 1 ,  the tree link graph 

I .  

, .' 
: 

.. I : 

time 
. .  .. , . 

.. . .  : 
.I ..' 

* 
Fig. 8. RLC Ladder which has a trivial steady-state solution. 

R3 R 4  

A A A  
R2 I I 

* 
Fig. 9. RC circuit example with grounded resistor 

for this circuit i s  now as shown in Fig. 10. The resistors 
form a cycle in the graph, hence, one of them, for this 
example, R5 (conductance G5), must be entered as a link. 

The link currents can be found from the loop equations: 

Z, = -GFTRFil + Z, (61) 
where G is the diagonal conductance matrix: 

The first four link current expressions are again explicit, 
and the expression for ZG5 can be obtained with a com- 
plexity of (3 ( n )  . Thus calculation of the steady state and 
first moment with the inclusion of a grounded resistor is 
still linear in circuit size. 

In Section 11, the extension of RC tree methods to in- 
clude the effects of grounded resistance were briefly dis- 
cussed. Essentially the Elmore delay, or first moment, was 
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R3 

R5 

* 
Fig. 10. Tree link graph for the circuit of Fig. 9 when the dc solution is 

not explicit. 

R3 R 4  

AAA 
R I  R2  

R5  

AAA 
R I  R2  I 

I I * 
Fig. 11. Capacitors replaced by current sources in the circuit of Fig. 9. 

scaled by the steady-state voltage as described by (3). 
From (49) it is apparent that the first moment is changed 
not only by the change in steady state, n,, (0)  , as reflected 
by the change in x, (0)  , but also by the change in G -’. 
With R5 = 4 9, the first-order AWE approximation is 
compared with the SPICE response in Fig. 12. 

4.3. Finite Input Rise Time 
Finite input signal voltage rise times can have a signif- 

icant, even dominant impact on the overall response 
waveform. RC tree methods typically apply only to step 
response approximations. Finite input voltage slope ef- 
fects have been considered by adding the input signal rise 
time to the Elmore delay to approximate the overall delay 
[3 11. A more generalized approach for including input rise 
time effects is available with AWE. 

Consider the RC tree in Fig. 4 driven by a 5-V input 
signal with a rise time of 1 ms. Because the RC tree is 
linear, AWE can approximate this circuit response by su- 
perposing the results from positive- and negative-going 
ramp inputs as shown in Fig. 13. Only the positive ramp 
solution needs to be obtained since the negative ramp re- 
sponse has the same solution but is of oppositive sign and 
shifted in time by 1 ms. 

The particular solution at node 4 for the positive-going 
ramp is 

u,(t) = 5 x 103t - 3.5 x io4. (63)  
The first-order AWE approximation for the homogeneous 
solution at node 4 is 

uh(t) = 3.5e-’.667‘. (64) 
The complete response approximation is the combined re- 
sponse from (63) and (64) for the positive and negative 
ramps. 

vin 
$pi=.. . . . . . . 

mlR 
5.00 

. .  
o.oI’.,: : ; :  I : : : : I : : :  : I : :  : ;  i 

0.0 5.00 10.00 15.00 20.00 

Fig. 12. Response for RC tree with grounded resistor of Fig. 9 .  

positive ramp f 

negative ramp / 
Fig. 13. Superposition of two infinite ramps to form a “step with finite 

rise time. ’ ’ 

u ( t )  = u,(t) + u h ( t ) ,  0 5 t 5 1mS (65)  

and 

u ( t )  = u,(t) + uh( t )  - up( t  - 1 m S )  

- uh(t - ImS) ,  t I 1mS. (66)  

Equations (65) and (66) are shown plotted in comparison 
to the SPICE response in Fig. 14. The first-order AWE 
ramp response approximation makes a good prediction of 
the delay. The largest error in this waveform approxima- 
tion occurs near time t = 0. This error is to be expected 
since the AWE approximation is matching the frequency 
expansion about s = O (  t = 00 ) . From Fig. 14 it is ap- 
parent that the AWE approximation starts out with a neg- 
ative slope. In reality, this is not possible for an RC tree 
response when there are equilibrium initial conditions. 
The problem is that the initial boundary conditions for the 
case of a ramp input have not been met completely. For 
the case of a step response approximation the initial 
boundary conditions for the current as well as the voltage 
are met by matching the rn term. To ensure that the 
same is true for a ramp input both the rn and the rn -2 

terms must be matched. Matching the rn - 2  term is tanta- 
mount to ensuring that the first derivative of the approx- 
imate voltage response matches the first derivative of the 
actual voltage response at time t = 0. This extended 
matching guarantees that the initial slope at time t = 0 is 
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time 

0.0 5.0 10.0 15.0 

Fig. 14. First-order AWE approximation of ramp response for the circuit Fig. 15. Second-order step response approximation for the circuit of 
of Fig. 4 .  Fig. 4 .  

of the correct sign. For most timing analysis applications 
the possible error in voltage slope at time t = 0 does not 
affect the delay estimate. However, if necessary, this 
glitch can be removed by proper matching of the m-, 
terms. Moreover, as more positive moments are matched, 
i.e., the order of approximation is increased, the initial 
slope at t = 0 better approaches exact. This phenomenon 
will be demonstrated by several ramp response examples 
in the next section. 

4.4.  Increased Orders of Approximation 
The first-order step response approximation in Fig. 7 

exhibits an error which may be unacceptable for some de- 
lay applications. In [7], what corresponds to a first-order 
AWE response waveform is bounded to what are some- 
times overly pessimistic max/min values. Since with 
AWE higher orders of approximation can be obtained at 
an incremental cost to the first-order approximation, the 
order of approximation is increased until an acceptable 
error term exists. For the first-order approximation, the 
error term as described in Section 111-3.4, is calculated to 
be 36 percent. A second-order approximation for the RC 
tree in Fig. 4 can be obtained upon calculating the next 
two moments. The second-order AWE unit step response 
approximation is compared with the SPICE response in 
Fig. 15. The error term is decreased to 1.6 percent. The 
AWE and SPICE response plots are indistinguishable at 
the resolution shown. Higher orders of approximation are 
obviously desirable for improving the accuracy of the re- 
sponse approximation. More importantly, though, higher 
orders of approximation are necessary for the general han- 
dling of nonmonotone response waveforms arising from 
circuits which contain multiple input signals, nonequili- 
brium initial conditions, floating capacitors, complex 
poles, ect. In the section which follows several examples 
are used to demonstrate AWE’S ability to analyze these 
types of circuit responses. 

V. GENERAL RLC CIRCUIT EXAMPLES 
A first-order AWE approximation has been shown to be 

equivalent to some of the RC tree methods. The benefit 

of AWE is the ability to recognize and handle more com- 
plex interconnect models without loss of generality. In 
this section some linear RLC circuits are used to demon- 
strate the applicability of AWE for solving general linear 
interconnect models. 

5. I ,  MOS Interconnect 
Low- to mid-frequency MOS circuit interconnect can 

be modeled well with an RC tree. The RC tree in Fig. 16 
is a typical example of such a model. Of particular inter- 
est is the widely varying time constants for this circuit. 
Stifcircuits such as this RC tree are normally troublesome 
for circuit [8] and timing [32], [33] simulators; however, 
in AWE the small time constants are not obtained if they 
are not required for the delay estimation. For the case of 
no initial nonzero voltages and a positive input with a 
slope of 1 ns, the first-order AWE approximation for the 
voltage across C ,  is shown and compared with that of 
SPICE in Fig. 17. The error term (from Section 111-3.4) 
is calculated to be 4 . 4  percent. A second-order approxi- 
mation is made by determining the next two moments. 
The second-order approximation is shown in Fig. 18. At 
the resolution shown, this approximation and the SPICE 
response are difficult to distinguish. The error term is de- 
creased to 0.15 percent. 

Higher orders of approximation not only provide an im- 
proved waveform estimate but also enables a measure of 
the accuracy of the first-order approximation. This capa- 
bility is essential for interconnect models in general, since 
there may be complex poles or low frequency zeros which 
render a first-order approximation useless. Moreover, as 
described in Sections 111 and IV, the higher orders of ap- 
proximation are obtained at an incremental cost to the first- 
order estimate. For example, the cost of a second-order 
approximation as compared to the first-order estimate for 
this circuit is shown in Fig. 19. The first-order approxi- 
mation time is the CPU time required to set up the equa- 
tions, find the steady state and mo, and solve for the dom- 
inant pole and residue. The second-order approximation 
incremental CPU time is that required to find the next two 
moments, and the two approximating poles and residues. 
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R2 72 R3 34 R4 96 R5 72 R6 10 R7 120 

+ C l  + c 3  
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Fig. 17. First-order approximation for the voltage at capacitor C ,  in the 
circuit of Fig. 16. 
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timc 
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, , , . , I  

Fig. 18. Second-order approximation for the voltage at capacitor C7 in the 
circuit of Fig. 16. 

timc 

0.0 1 . 1 w  2.- 
o.o 1/ , , , , , , , , I 

Fig. 18. Second-order approximation for the voltage at capacitor C7 in the 
circuit of Fig. 16. 

(RC 1st order tree) - 1 
1 . .  . .  I 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 

CPU seconds 
Fig. 19. CPU time comparison between first- and second-order approxi- 

mation for the circuit of Fig. 16. 

The approximate poles for the first- and second-order 
approximations are given along with the actual poles in 
Table I. The first-order AWE analysis approximates the 
dominant pole at a value very close to the actual dominant 

TABLE I 
APPROXIMATING A N D  EXACT POLES FOR RC TREE EXAMPLE 

no initial conditions I V,(t=0)=5.0 v 1 

-6.6997e11 
-1.1236e12 
-9.1359e12 

I -2.0599e12 
I -1.641ie13 

pole. The second-order approximation finds two poles 
very close to the first two actual poles. In general, as the 
order of the approximation is increased, the approximate 
poles are found to “creep up on” the actual circuit poles 
as demonstrated by this example. 

5.2. Nonequilibrium Initial Conditions 
With AWE arbitrary nonequilibrium initial conditions 

and charge sharing are handled for general RLC circuits. 
The initial state of the circuit may cause charge to be 
shared between capacitors which can affect the delay at 
various nodes. It is well known that the initial state of a 
circuit, xo, can excite or suppress various of its natural 
frequencies [28]. With AWE the moments are functions 
of the initial conditions xo so as to include this effect. The 
dominant pole approximations are, therefore, determined 
by the initial state as well as the circuit elements. With 
the initial voltage of c6 in Fig. 16 equal to 5 V,  the first- 
and second-order approximate poles that result are shown 
in Table I. The AWE approximation for the case of v6 ( t  
= 0)  = 0 shows the two most dominant poles to be very 
near the first two actual poles. With v,(t = 0)  = 5 ,  how- 
ever, the initial conditions introduce a low-frequency zero 
which partially cancels the second pole. The AWE ap- 
proximation finds the two most dominant poles to be near 
the first and third actual poles when v6 ( t = 0)  = 5 .  The 
first- and second-order approximate waveforms deter- 
mined by these approximate poles are shown in Figs. 20 
and 21, respectively. Obviously, a first-order approxi- 
mation, or single exponential function, cannot be used to 
approximate this nonmonotone response. The error term 
for this first-order approximation is 150 percent. The sec- 
ond-order AWE response, which has an error estimate of 
0.65 percent, is indistinguishable from the SPICE re- 
sponse at the resolution of this plot. 

5.3. Floating Capacitors 
Although floating capacitors do not usually appear in 

digital signal paths directly, the charge that may be 
dumped to other paths due to coupling capacitance cannot 
always be neglected. In MOS technologies the floating 
capacitors which model the gate-drain can sometimes sig- 
nificantly affect the delay. For example, consider the RC 
tree circuit in Fig. 16 with a floating capacitor connected 
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. .. , .. r 1.67 : 

Fig. 20. First-order approximation for the response of the circuit in Fig. 
16 with ~ ( ~ ( 0 )  = 5.0. 

time 

0.0 1.Zk-09 2.4oc-09 
: : : : ! : : : : I  

Fig. 21. Second-order approximation for the response of the circuit in Fig. 
16 with v , ~ ( O )  = 5.0. 

R9 48 R10 24 

+ i”l 
T ‘2p 

0.1 p 

R1 10 R2 72 R3 34 R4 96 R5 72 R6 10 R7 120 

1P 

Fig. 22. RC tree of Fig. 16 with a floating capacitor added 

to the output node as shown in Fig. 22.  The second-order The charge dumped onto CI7 is shown in Fig. 24. Note 
approximation for the voltage at C, is shown in Fig. 2 3 .  
The delay, taken to be the point at which a logic threshold 
of 4.0 V is reached, changes from 1.6 to 1.7 ns because 
of charge sharing through CI I to CI2. Notice too, that this 
second-order approximation is not as accurate as the re- 
sponse approximation in Fig. 18. This inaccuracy is re- 
flected in the error term which is now 15 percent with the 
floating capacitance path, as compared to 0.15 percent 
without it. From second- to third-order the error term re- 
duces from 15 to 0.14 percent. 

- .- - 
that since we match the mo term of the actual response, 
the area under these voltage curves, hence, the charge 
transferred, is always exact. 

5.4. Inductors 
For an example of a circuit with complex poles consider 

the analysis of the underdamped RLC circuit in Fig. 25. 
This circuit is characterized by three pairs of complex 
poles as shown in Table 11. A first-order AWE approxi- 
mation for a circuit with dominant complex poles pro- 
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Fig. 23. Second-order approximation for the voltage of capacitor C ,  in the 
circuit of Fig. 22. 

-1.0881e9 -2.6125e9j 
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Fig. 24. Second-order approximation for the voltage of capacitor C , *  in 
the circuit of Fig. 22.  

-7.3532e8 +6.7541e9j 

R I  25 L1 lOnH R2 .01 LZ 10nH R3 .01 ~3 I O O ~ H  

-8.194e8 +6.810e9j 
-3.2i8e8 +1.6225e10j 
-3.27863 -1.6225elOj 

* 
Fig. 25. RLC underdamped circuit with complex dominant poles 

TABLE I1 
RLC CIRCUIT POLES A N D  APPROXIMATE POLES 

duces inaccurate results. The nonmonotone homogeneous 
response cannot be modeled by a single exponential func- 
tion. A second-order approximation is required mini- 
mally. 

The input voltage is a 5-V ideal step. A first-order ap- 
proximation produces a single real dominant pole at p = 

-2.833e9. The error term for this first-order approxima- 
tion is large-74 percent. A second-order AWE analysis 
yields the approximating poles shown in Table 11. This 
dominant complex pole pair is near the actual first pole 
pair shown in Table 11. The second-order AWE approxi- 
mation is compared with the SPICE response in Fig. 26. 
At second-order, AWE is able to detect the overshoot but 
there is still a significant waveform difference as com- 
pared to the SPICE response. The error term at second 
order is 22 percent. It is only at fourth order, with the 
approximating poles shown in Table 11, that the error term 
becomes less than 1 percent and all of the response wave- 
form detail is matched. The fourth-order AWE response 
is also shown plotted in Fig. 26. For the most part, this 
approximation is coincident with the SPICE waveform 

The step response at C3 was shown to be dominated by 
two pairs of complex poles. The residues were such that 
both pairs of poles made significant contributions to the 
response waveform. If the input voltage rise time were 
changed from 0 to 1 ns, the residues would be changed 
such that there would be only one complex pole pair dom- 
inating the response. The second-order RLC circuit re- 
sponse to a 5-V input with a 1-ns rise time is compared 
to the corresponding SPICE response in Fig. 27. As in 
the RC tree case, the rise time of the input signal affects 
the error of the approximation. In general, the step re- 
sponse approximation will exhibit the largest error term 
since its transient response is more significant than for the 
case of finite input signal slope. 

plot. 

VI. CONCLUSIONS 
AWE is an efficient approach to waveform estimation 

for linear RLC interconnect circuit models. Floating ca- 
pacitors, inductors, linear controlled sources, finite input 
rise time, and charge sharing are all easily addressed in 
terms of AWE at any level of detail by merely increasing 
the order of the approximation. Because of its generality 
AWE should be applicable both to bipolar circuitry and 
printed circuit board level interconnect as well as to MOS 
circuit and interconnect timing estimation. 
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Fig. 27. AWE second-order approximation for the RLC circuit in Fig. 25 
with a I-nS/input voltage rise time. 
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