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Improving the Accuracy of Circuit Activity Measurement

Bhanu Kapoor

Integrated Systems Laboratory, Texas Instruments, Dallas, TX 75243

Abstract

A novel measure of activity in digital circuits, called
transition density, along with an e�cient algorithm to
compute the density at every circuit node, has been pro-
posed in [1]. However, the e�ciency of this algorithm
is achieved at the cost of accuracy in the density values.
This leaves much to be desired for its use in applications
which require more accurate activity measurements at
each node in the circuit e.g., circuit optimization prob-
lems with a low power goal.

The complexity of this problem lies in computing the
Boolean di�erence probabilities at each node of the cir-
cuit. In this paper, an e�cient algorithm for computing
these probabilities is described. This allows the activity
measurements, within a circuit partition, to be carried
out in a more e�cient manner compared to the well
known approach of computing these probabilities.

Larger circuit partitions, where each node within a
partition is solved accurately with respect to that par-
tition, result in more accurate activity measurements.
An e�cient circuit partitioning algorithm, with the goal
of maximizing the number of correlated nodes within
each partition, has been developed. This allows more
accurate measurements compared to a randomly se-
lected set of partitions. These methods have been in-
corporated in an improved simulator for circuit activity
measurement. Some results obtained on the ISCAS85
benchmark circuits are included.

I. INTRODUCTION

With the emergence of battery-operated applica-
tions that demand intensive computation in a portable
environment, power analysis and optimization has be-
come one of the most important tasks to be solved by
computer-aided design tools. It has become a require-
ment that integrated circuits have limited power dissi-
pation and an accurate simulation of power dissipation
has therefore become highly desirable.

Power dissipation in integrated circuits is closely re-
lated to the choice of technology, circuit design, logic
design, and the choice of architecture [5]. One of the
major reasons for CMOS technology to become a major
force in the current VLSI is that the power dissipation
in CMOS circuits is signi�cantly lower than in other
technology circuits at comparable speeds. However,
with the tremendous increase in the number of devices
in VLSI and an ever-increasing number of portable ap-
plications requiring low power and high throughput, it
has become increasingly more important to reduce the
power dissipation.

Power dissipation in a CMOS circuit is directly re-
lated to the extent of switching activity of the internal
nodes in the circuit. A direct and simple approach of
estimating power is to simulate the circuit. Several
circuit simulation based techniques have appeared in

the literature [3][4]. Given the speed of circuit simula-
tion, these techniques cannot be used to simulate large
circuits for long-enough input vector sequences to get
meaningful power estimates.

Recently, other approaches have been proposed [1][8]
that require the user to specify typical behavior at the
circuit inputs using probabilities. These may be called
weakly pattern dependent. These techniques allow the
user to cover a large set of possible input patterns with
little e�ort. However, in order to achieve good accu-
racy, one must model the correlations between internal
node values, which can be very expensive.

The use of symbolic simulation in order to produce
a set of Boolean functions representing conditions for
switching at each gate in the circuit has been proposed
in [10]. A Monte Carlo simulation based technique has
been proposed in [7]. The circuit is simulated for a
large number of input vectors while gathering statistics
on the average power. It is based on the approximation
that the average power is distributed normally over a
�nite time.

In this paper, the transition density concept [1] is
revisited. An excellent feature of this concept is that
it allows measurements to be carried out in a pattern
independent way. If some knowledge about the behav-
ior of the input patterns is known then it can be taken
into account by appropriate modi�cation of the input
probability values.

The complexity of this problem lies in computing
the Boolean di�erence probabilities at each node of the
circuit. In this paper, an e�cient approach for com-
puting these probabilities has been described. Larger
circuit partitions, where each node within a partition is
solved accurately with respect to that partition, result
in more accurate activity measurements. An e�cient
circuit partitioning algorithm has been developed with
the goal of maximizing the number of correlated nodes
within each partition. These methods have been incor-
porated in an improved simulator for circuit activity
measurement. Some results obtained on the ISCAS85
benchmark circuits are included.

II. TRANSITION DENSITY SIMULATION

A novel measure of activity in digital circuits called
the transition density has been proposed [1] along
with an algorithm to compute density at every circuit
node. Transition density may be de�ned as the average
switching rate at a circuit node. To brie
y review the
idea of transition density, consider the average power
drawn by a CMOS gate. Let D be the transition den-
sity at the gate output, i.e., the average number of tran-
sitions per second. If the gate has output capacitance
C to the ground, then the average power dissipated is
given by:

Paverage = 0:5 �C � Vdd
2 �D (1)



where Vdd is the power supply voltage. The power dis-
sipation due to the through current during switching
in CMOS [5] has been ignored.

It is possible to simulate the circuit for a large num-
ber of input transitions and �nd an approximate value
for D. It is impossible to determine a priori how long
the simulation should be carried on to get a reasonably
good value as the number of possible input transitions
grow exponentially with number of inputs. However,
in [1], it is shown that if the transition density at the
circuit primary inputs are given then they can be prop-
agated into the circuit to give the transition density at
every internal and output node.

The density propagation procedure works as follows:
Let P (x) denote the equilibrium probability of a logic
signal x(t), de�ned as:

P (x)
�
= lim

T!1

Z + T
2

�T
2

x(t)dt (2)

This gives the fraction of time a signal is high. It has
been shown [1] that, if y = f(x1; x2; :::; xn) is Boolean
function and the inputs xi's are independent, the den-
sity of output y is given by the following expression
expression:

D(y) =
nX
i=1

P

�
@y

@xi

�
D(xi) (3)

where @y

@x
is the Boolean di�erence of y with respect to

x and is de�ned as:

@y

@x

�
= yx=1 � yx=0 (4)

where � is the logical exclusive-or operation. Given the
probability and density values at the primary inputs
of a logic circuit, a single pass over the circuit, using
Equation 3, gives the density values at every node.

As an example, consider the simple case of an OR
gate: y = x1 + x2.

@y

@x1
= x2 � 1 = x2;

@y

@x2
= x1 � 1 = x1

D(y) = P (x2)D(x1) + P (x1)D(x2)

D(y) = D(x1) +D(x2)� P (x2)D(x1) � P (x1)D(x2)

In more complex Boolean functions, Ordered Binary
Decision Diagrams (OBDD) [2] can be used as an ef-
�cient tool to carry out the probability computation
[1].

III. INACCURACIES IN DENSITY SIMULATION

The algorithm suggested in [1] uses the lowest level
partitioning of a circuit to propagate the transition
density values. Each gate in the circuit forms a parti-
tion. Due to the correlation amongst various signals in
a circuit, a result of reconvergent fanout structures in
the circuit, such a method can either underestimate or
overestimate the density value at a node. This can be
illustrated using two simple examples:
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Figure 1: A case of overestimation

Fig. 1 shows an interconnection of NOR gates illus-
trating a case of overestimation. The primary inputs
are assigned a transition density value of 2.0 eps (events
per second) and a equilibrium probability of 0.5. The
density value at node y, computed using the lowest
level partitions, is 4.33 eps.

Equation 3 suggest an upper bound on the value of
transition density at any node, given by:

Dmax(y) �
nX
i=1

D(xi) (5)

Thus, the upper bound on the value of density at node
y is 4.0 eps. However, the correct value of density at
node y is 2.0 eps. Even if the algorithm ensures that
D(y) � Dmax(y), the transition density value at node
y is overestimated by 100%.

Fig. 2 shows a situation where the density value is
underestimated at node y. The computed density value
is 1.0 eps, and the correct value is 1.5 eps. In this case,
the density value at node y has been underestimated
by approximately 33%.
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Figure 2: A case of underestimation

The errors in estimation can get worse with increas-
ing depth of a circuit. If the goal of computation is to
estimate the average value then the errors due to over-
estimation and underestimation may cancel each other
and the average value may appear reasonably accurate.
However, this poses a severe problem in using such a
tool in solving certain circuit optimization problems
where a reasonably accurate estimation of activity is
desired at each node. An example of fanout manipula-
tion, to reduce the power dissipation of a circuit under
a delay constraint, explains this point clearly:

3.1 Role of Accuracy in Circuit Optimization
The average power dissipation of a circuit is given by:

Paverage =
1

2
Vdd

2

nX
i=1

CiDi

where Ci is the capacitance and Di is the transition
density at node i in a given circuit. In this discussion,
we assume that the capacitance at a node has a linear
dependence on the fanout of the node. Fig. 3 shows a
general combinational network with two fanout nodes,
i and j, such that the density estimation algorithm
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Figure 3: An example of power optimization

overestimates the density value at node i and underes-
timates the value at node j. Let the fanout at the two
nodes be fi.

Let the estimated transition densities be given by:

Di(est) = D + �D; Dj(est) = D � �D

Let the true value of densities be given by:

Di(act) = D � �D; Dj(act) = D + �D

Node i is overestimated and node j is underestimated,
each by 2 � �D. We have assumed equal amounts of
error for the sake of simplicity. The total power dissi-
pation PT of the circuit is given by:

PT (est) = PT (act) = Pr + 2 � � �D � fi

where Pr is the power dissipation of the rest of the
circuit and � is a constant having the dimensions of
C � V 2

dd. It should be noted here that the total and
the average power dissipation of the circuit remains
una�ected despite the error.

Let us assume that node i and node j appear on the
critical path this circuit. Consider an algorithm, opti-
mizing power under delay constraint, decides to move
the bu�er from node j to node i. This decreases the
fanout of node i and increases the fanout of node j.
Let the change in fanout at both the nodes be �fi.
The delay is assumed to remain the same. The power
dissipation estimate for the new circuit is given by:

PT (est) = �(D+�D)(fi��fi)+�(D��D)(fi+�fi)+Pr

It is assumed that the same bu�er has been moved to
the new position, and there is no change in the power
dissipation due to this exchange. The estimated power
shows a decrease of 2 � �D � �fi.

PT (est) = 2 � � �D � fi � 2 � � � �D � �fi + Pr

However, consider the change in the actual power of
the circuit:

PT (act) = �(D��D)(fi��fi)+�(D+�D)(fi+�fi)+Pr

PT (act) = 2 � � �D � fi + 2 � � � �D � �fi + Pr

The transformation which was supposed to decrease
the power dissipation of the circuit by an amount
2 � � � �D � �fi, ended up increasing the power dissi-
pation by the same amount. The error is proportional
to the change in fanout. A power optimization tool,
working with such inaccuracies, can increase the power
dissipation of the circuit rather than decreasing it. This
simple example suggests a need for more accurate com-
putation.

An e�cient method for computing the Boolean dif-
ference probabilities is described next.

IV. BOOLEAN DIFFERENCE PROBABILITIES

A simple method to compute the Boolean di�erence
probabilities is based on Equation 4. However, when
we deal with larger functions, this approach becomes
rather ine�cient. At every node in a given circuit,
one must compute the OBDD of the node, use two
RESTRICT operations [2] for each xi to compute yxi=1
and yxi=0 and an APPLY operation [2] for each xi to
compute yxi=1 � yxi=0. This may be viewed as a top-
down method because �rst the OBDD at a node must
be created and then the OBDD can be used to compute
the di�erence probabilities.

There is an inherent problem with this top-down
approach of computing the di�erence probabilities. It
does not make use of the work already done to compute
the di�erence probabilities of the child nodes of a node
being considered. The OBDDs required to compute
the di�erence probabilities can be computed in a re-
cursive fashion, just like the APPLY operation creates
the OBDDs. It improves the e�ciency of computation
in producing maximally reduced OBDDs, on a need to
compute basis. A new operation over OBDDs, called
the DIFFERENCE operation, has been de�ned.

4.1 The DIFFERENCE Operation:
The DIFFERENCE operation generates Boolean dif-
ference functions by applying algebraic operations to
other functions. Given argument functions F (x) and
G(x), their Boolean di�erence with respect to x, and
the binary Boolean operator < op >, (e.g., AND or

OR), it returns the function @(F (x)<op>G(x))

@x
. The DIF-

FERENCE operation is used to construct an OBDD
representation of Boolean di�erence of each gate out-
put, with respect to a variable it depends on, according
to the gate operation and using the OBDDs created for
its inputs. Each DIFFERENCE operation can be im-
plemented as a sequence of APPLY operations.

Following properties of the Boolean di�erence op-
eration are used to enable the recursive computation:
X = (x1; x2; :::; xi; :::; xn)

@F(X)

@xi

=
@F(X)

@xi

(6)

@(F (X)G(X))

@xi

= F (X)
@G(X)

@xi

� G(X)
@F(X)

@xi

�

@F (X)

@xi

@G(X)

@xi

(7)

@(F (X) + G(X))

@xi

= F (X)
@G(X)

@xi

� G(X)
@F(X)

@xi

�

@F(X)

@xi

@G(X)

@xi

(8)

@(F (X) � G(X))

@xi

=
@F (X)

@xi

�

@G(X)

@xi

(9)

Equations 6-9 de�ne the di�erence function for the
outputs NOT, AND, OR, and XOR gates, respectively.
The equations for NAND, NOR, and any complex gate
can be de�ned in a similar fashion.

These equations point out some extremely useful
properties of the DIFFERENCE operation, and can
be used to enable more e�cient computation. These
equations allow the required OBDDs to be constructed
in a bottom-up manner. This implies that the OBDD
for a node in the circuit can be created using the max-
imally reduced OBDDs which have already been com-
puted. Also, only the minimum number of required
OBDDs need to be created. For example, OBDDs for
the nodes which only feed to inverters and XOR gates
need not be created at all. The output node of an in-
verter requires no computation at all if the input node



has already been computed. Also, the OBDDs for the
primary outputs of a circuit need not be created at all.

Each DIFFERENCE operation can be represented
as a sequence of APPLY operations. For example,
Equation 9 can be interpreted as follows:

DIFFERENCE((F (X) XOR G(X)); xi) = APPLY(
@F(X)

@xi

XOR
@G(X)

@xi

)

x1

x2

x3

y1

y2

y3
y

Figure 4: An example combinational circuit

Fig. 4 shows an example illustrating the e�ciency of
the DIFFERENCE operation. For the circuit shown in
Fig. 4, all the OBDDs needed to compute the density
values using the DIFFERENCE operation are shown
in Fig. 5.

x2

0 1
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0 1

0 1
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Figure 5: All the OBDDs created for the circuit in Fig.
4 using the DIFFERENCE operation

However, if the simple method, using Equation 4,
is used then the OBDDs for all the intermediate and
output nodes must be created. On these OBDDs, a
total of 26 RESTRICT and 13 APPLY operations will
be required to compute all the di�erence probabilities.
The OBDDs involved in computation are larger as well.

The e�ciency of the DIFFERENCE operation al-
lows larger partitions to be used in computing the dif-
ference probabilities. This brings us to the problem of
partitioning a circuit to make the density computation
more accurate. If partitions are formed so that each
partition packs more correlated nodes then the accu-
racy of computation will be better than a randomly
chosen set of partitions. The next section describes
such a circuit partitioning algorithm.

V. CIRCUIT PARTITIONING

A combinational circuit is modeled as a directed
acyclic graph, G(V;E). Every edge in this graph is
an ordered pair of distinct vertices. A directed edge
[v, w] leaves v and enters w. If v is a vertex in the
graph then its in-degree is the number of edges [u, v]
and its out-degree is the number of edges [v, w]. Nodes
of indegree 0 are the primary inputs to the circuit, and
nodes of outdegree 0 are the primary outputs of the
circuit. We refer to the sets out(v) = f[v; w] 2 Eg and
in(v) = f[u; v] 2 Eg, for each v 2 V , as out-adjacency
list and in-adjacency list of a vertex, respectively.

The support of a function f , denoted as S(f), is the
set of variables f explicitly depends on. jS(f)j is the
the cardinality of S(f).

The function f is a feasible function if jS(f)j � k,
where k is the maximum allowed number of inputs in
a partition. The function f is an infeasible function if
jS(f)j > k.

A node v in a Boolean network � is minimally infea-
sible if jS(v)j > k and for every node w such that there
exists an edge [w; v], jS(w)j is less than or equal to k.

5.1 Partitioning Algorithm:
The partitioning strategy is of extreme importance
here. The accuracy increases as the size of the par-
tition grows, however, the algorithm will slow down as
larger OBDDs will be created. Also, the memory us-
age increases with the increasing size of partitions. For
large circuits, if care is not taken to keep the size of
the partitions small enough, rapid growth in the size of
the OBDDs can make the computation run into mem-
ory over
ow problems. The strategy for partitioning
should be such that the partitions are kept small while
maximizing the number of correlated nodes within each
partition.

How should we determine the size of a partition?
We know that the number of inputs is the most impor-
tant factor in determining the size of an OBDD. This
is because the size of an OBDD can grow exponentially
with the respect to the number of inputs, for a given
variable ordering. Also, if number of inputs is small,
the size of the OBDD will remain manageable even if
there are large number of gates in a partition. For this
reason, the number of inputs has been chosen as the
parameter to determine the partition size. The circuit
is partitioned in such a way that each partition has a
single output which depends on at most k variables.
These variables are either the primary inputs or the
outputs of the various partitions created by the algo-
rithm. The partitioning algorithm works as follows:

First, the support set of every signal in the network
is computed. At this stage, the support set of a sig-
nal consists of all the primary input signals in its cone
of in
uence. The computation of support sets can be
accomplished using the breadth-�rst search technique.
The breadth-�rst search starts at every primary input
node in turn, and adds that primary input to the sup-
port set of every node that can be reached during the
search. This is a linear algorithm with respect to the
number of nodes in the circuit.

These support sets are then used to �nd the set of
minimally infeasible nodes in the digraph. This simply
requires a single pass over the list of vertices while ex-
amining the size of the support sets of their immediate
children. As some of the children nodes of the mini-
mally infeasible nodes get selected to form partitions,
a new set of minimally infeasible nodes gets created.
This process continues until all the nodes in the circuit
are made feasible.

Once the set of minimally infeasible nodes is found,
the next step makes these nodes feasible. This is ac-
complished by creating a partition on one or more chil-
dren of the node under consideration. At this point, a
heuristic is used to decide which child should be parti-
tioned �rst. This heuristic computes the cost of creat-
ing a partition and the node with the minimum cost is
chosen �rst.

The cost of creating a partition is computed as fol-
lows: For each node in the in-adjacency list of the min-
imally infeasible node, the intersection of its support



set with the support sets of all other nodes in the list
is determined. The cost is the sum of the cardinality
of the sets obtained as a result of various intersections.
The cost of partitioning the child node vi is given by:

C(vi) =
nX

j=1;j 6=i

jS(vi) \ S(vj )j

An example of cost computation is shown in Fig. 6.
Let the maximum partition size be 5, k = 5. Node y
is a minimally feasible node. This node can be made
feasible by creating a partition at either of its three
child nodes (y1, y2, y3). The cost of creating partitions
for the three nodes are 0, 2, and 2 respectively. Node y1
having the minimumcost is chosen to form a partition.
In this example, the transition density values of all the
nodes shown in the �gure will remain accurate despite
partitioning. Such will not be the case if either node
y2 or node y3 is chosen to form the partition.

S(y) = (y1, x4, x5, x6, x7)
S(y1) = (x1, x2, x3)

S(y) = (x1, x2, x3. x4. x5, x6, x7)
S(y3) = (x5, x6, x7)
S(y1) = (x1, x2, x3), S(y2) = (x4, x5, x6)
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Figure 6: An example of partitioning with support sets

Once a partition is created, the support sets of some
of the nodes in the graph is updated. A breadth-�rst
search based technique is used to accomplish this. Only
some of the nodes reachable from the partitioned node
go through the update process. Since the next itera-
tion of computation needs only the minimally infeasi-
ble nodes created as a result of some of the partitions
formed in the current iteration, the update stops at a
node if it becomes an infeasible node. The updating
process also stops at a node if it has already been par-
titioned before. This is because the prior partitioning
at that node has isolated node's support set from the
support set of all nodes reachable from that node.

The circuit partitioning procedure stops when there
are no minimally infeasible nodes left in the graph. The
circuit is now divided into partitions such that each
partition depends on at most k variables. The overall
complexity of the partitioning algorithm is linear for
bounded fanout circuits.

5.2 Overall Algorithm Outline:
The partitioning algorithm, described in Section 5.1,
works in stages. At each stage, the set of currently
minimally infeasible nodes result in a set of partitions.
These sets of partitions are stored in the order of their
formation:

SP = (SP0 ; SP1 ; :::; SPm�1)

where SP0 is the set of partitions whose input nodes
are primary input nodes and SPm�1 is the �nal set of
partitions. The computation of transition density val-
ues can proceed in the order of the elements in this set.

This is because the nodes in the partition set SPj do
not require the density values for any of the nodes in
the partition sets (SPj+1 ; :::; SPm�1). Within each set
SPi , the partitions can be computed in an arbitrary
order. Within each partition, the computation of den-
sity values is carried out in a bottom-up fashion, as
described in Section IV.

Since each partition, within a partition set ready for
computation, can be considered in an arbitrary order,
this suggests an easy adaptation of the algorithm to
parallel methods. This is further aided by the fact that
each partition depends on approximately k variables.
The amount of work needed to compute the transition
densities will be comparable for each partition. This
will allow an uniform distribution of load on each pro-
cessor.

VI. EXPERIMENTAL RESULTS

The algorithms described in this paper have been
implemented in Common LISP running on a SPARC-
Station 10. The program, called CAM, allows a user
to do the trade-o� between speed and accuracy based
on the maximum partition size.

The e�ciency of DIFFERENCE operation-based
computation of Boolean di�erence probabilities allows
fewer and smaller OBDDs to be created. Over a set of
50 small combinational examples, with number of pri-
mary inputs up to 20, this method required 40% fewer
nodes than the straightforward method of computing
Boolean di�erence probabilities. These gains, in gen-
eral, are larger for larger examples. It also speeds up
the computation. The OBDD tool used here did not
have a facility for ordering variables, like [6]. However,
the basic idea behind the circuit partitioning approach
is to keep the number of inputs in each partition small
enough and achieve reasonably accurate results which
can be used in solving power optimization problems.

ISCAS85 benchmark combinational circuits have
been used for experimentation. Table 1 shows the lower
bound on percentage of nodes having 100% accurate
value as a result of choosing a partition of a given size.
The size of the partition is given in terms of maxi-
mum number of input variables for a partition. The
second column contains the size (number of inputs)
of the largest gate in these circuits. This determines
the smallest partition size considered during the exper-
imentation.

The numbers, in Table 1, give the lower bound on
percentage of nodes with accurate value. In reality,
more nodes can have accurate values. This is due to
the fact that not every node is a�ected by reconver-
gent fan-out. As more and more nodes are computed
accurately, the percentage of nodes with smaller in-
accuracies increases as well. The numbers in Table 1
indicates that much more accurate results can be ob-
tained, compared to the lowest level partition, by using
fairly small partitions i.e., the partition size of k. This
appears to be good in most cases, and is excellent in
the case of c1908, c3540, c5315, and c7552. The im-
provements for c6288 and c499 are relatively poor. By
using partitions such that each partition depends on
less than 20 variables, true for the k+ 10 case, a fairly
high percentage of nodes can be precisely estimated.



Table 1: % NODES WITH 100% ACCURACY

Partition Size
ckt k llp k k + 5 k+10
c432 9 11.25 28.12 28.12 58.74
c499 5 19.80 27.72 35.64 59.40
c880 4 14.10 28.45 42.55 51.95
c1355 5 7.32 36.63 48.35 61.53
c1908 8 24.54 62.72 72.84 79.43
c2670 5 13.24 30.34 61.11 74.76
c3540 8 9.04 54.76 60.75 64.95
c5315 9 15.50 70.95 85.00 88.94
c6288 2 10.59 13.08 25.37 43.09
c7552 5 8.68 60.30 75.88 86.16

Table 2 contains the value of average transition den-
sity for these circuits, computed for various partition
sizes. Each primary input was assigned a density value
of 2.0 eps for all the benchmark examples. Column 1
contains the result of logic simulation using an average
of 1000 transitions per input node [1].

For a circuit with n primary inputs, the number of
distinct state transitions, where each state transition
can have a di�erent contribution to the power dissipa-
tion of the circuit, is 2n � (2n� 1). The number of pri-
mary inputs for these circuits range from 32(c6288) to
233(c2670). It is quite likely that only a small fraction
of the possible distinct state-transitions were utilized
during the simulation process. Hence, a comparison
should be made with this fact in mind.

These results point out an interesting fact about the
average transition density values using the lowest level
partition. In some cases, like c7552, the average value
obtained using the lowest level partition is closer to the
value obtained using k+10 size partition than the value
obtained using an intermediate partition size. This can
be explained as follows: At the lowest level partition,
density values for a large number of nodes in the cir-
cuit are being either underestimated or overestimated.
Some of these errors may cancel each other when an
average value is considered. The average value may
look more accurate, there is no reason to believe that
such is the case with values at the individual nodes in
the circuit.

Table 2: AVERAGE DENSITY VALUES

Partition Size
ckt sim llp k k + 5 k+10
c432 3.39 3.46 3.19 3.19 3.00
c499 8.57 11.36 11.36 11.36 11.36
c880 3.25 2.78 3.48 3.40 3.39
c1355 6.18 4.19 6.87 6.87 6.87
c1908 5.01 2.97 4.38 4.90 5.16
c2670 4.00 3.50 3.45 3.52 3.56
c3540 4.49 4.47 4.62 4.62 4.83
c5315 4.79 3.52 3.66 3.88 3.89
c6288 34.2 25.10 23.34 21.84 20.88
c7552 5.08 3.85 4.14 3.84 3.72

Table 3 shows a comparison of the CPU times for
these methods. The run-times, obtained on a SPARC-
station 10, are given in seconds. Row 2 contains the
run-times for the lowest level partition and Row 3 con-
tains the run-times when the partition size is k. The
run-times increase as as the size of the partition in-
crease. However, the real problem with large partition
comes from the memory usage. So far as the run-times
are concerned, much larger OBDDs can be created very
quickly using methods such as [9].

Table 3: CPU TIME COMPARISONS

ckt c432 c499 c880 c1355 c1908
llp 0.28 0.33 0.61 0.85 1.24
k 21.1 12.6 9.7 13.8 15.6

Table 3: CONTINUED ...

ckt c2670 c3540 c5315 c6288 c7552
llp 1.79 2.25 3.33 3.59 4.76
k 21.6 44.9 56.7 9.9 26.7

VII. SUMMARY AND FUTURE WORK

To summarize, we have described a new recursive
approach for computing the Boolean di�erence prob-
abilities using OBDDs. An e�cient circuit partition-
ing algorithm, with the goal of maximizing the num-
ber correlated nodes within each partition, has been
developed. This allows more accurate measurements
compared to a randomly selected set of partitions.

The e�ciency of this system can be further improved
by using an e�cient variable ordering algorithm for
OBDDs. At present, this method is limited to com-
binational circuits only and does not consider glitches.

The algorithms presented here have been incorpo-
rated in an improved simulator for circuit activity mea-
surement. Some results obtained on the ISCAS85
benchmark circuits establish the feasibility and e�-
ciency of the approach.
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