
Timing Analysis with known False Sub Graphs
Krishna P. Belkhale *

belkhale@ ambit.com
AMBIT, Sunnyvale, CA 94086

Abstract - In this paper we formulate the problem of
timing analysis with known false sub graphs. This problem
is important when we want the timing analysis system to
take into account false path information that is supplied
either by the user or by another program, and supply ac-
curate timing information to optimization programs such
as placement and wiring. We present an efficient algorithm
for the problem.

Introduction

Static timing analysis algorithm, as described in [I], is
currently a widely used mechanism for efficiently verifying
the timing behavior of circuits.. The algorithm computes
the arrival time of signals in a forward pass through the
timing graph. The second step involves propagating the
required times computed at the latches in a backward pass
through the graph. At the end of two passes each vertex in
the timing graph has a computed arrival time AT and re-
quired arrival time RAT. The quantity slack SLK is then
computed as RAT - AT. This gives a good local measure
of the magnitude of the timing violation.

The problem with the static timing analysis procedure
described above is that it does not take logic into account.
Thus some of the paths that are considered by the algo-
rithm may not be logically realizable. These paths are of-
ten referred to as false paths. Such paths must be detected
and eliminated from consideration from the timing analy-
sis. This problem has been studied extensively by many
researchers, and various interesting algorithms for false
path detection and elimination have been discovered
[2,3,4,5,6,71.

In this paper, we formulate and analyze a new problem of
timing analysis given a set of false sub graphs. The notion
of false sub graphs is more general than the notion of false
paths as we can simultaneously remove the consideration
of multiple paths.

This problem is useful for a variety of reasons. In many
cases, users do have an idea that certain paths reported by
the timing system are really false. This formulation allows
the users to convey this information to the timing system
resulting in a more meaningful analysis. As will be shown
in Section 2, the ability to remove entire sub graphs from
consideration from timing is a powerful feature.

* The work was done while the author was at IBM

1063-6757/95 $04.00 0 1995 IEEE

Alexander J. Suess
IBM, East Fishkill, New York 12533

ajsuess @vnet.ibm.com

A second reason for looking into this problem is that
though techniques described in [2,3,4,5,6,7] solve the
problem of determining the true delay of the circuit, they
do not determine slacks at all points in the design. These
slacks are a useful input to physical optimization programs,
such as placement and wiring. Our problem formulation
and solution, with the false sub graphs as input, allows us
to still maintain the notion of slacks in the design. The
false sub graphs may either be provided by the user or de-
termined automatically. An interesting problem arises in
this context. The determination that a given path is false
depends on both logic and temporal factors. Thus, a false
path may not stay false through a physical optimization
process. For a common definition of a false path, the loose
criterion defined in [4], one could prove that removing the
false paths from consideration during a series of physical
optimization steps (note the false paths were determined at
the start of optimization) will only result in an analysis that
does not underestimate the delays in the circuit. Thus, the
result of the analysis is still useful and the actual false paths
need not be re-determined during the optimization process.

The outline of the paper is as follows. In Section 2, we
formulate the problem of timing analysis with known false
sub graphs. In Section 3, we describe an algorithm for
solving the problem. In Section 4, we describe some im-
plementation results. In Section 5, we give the conclu-
sions.

2 Problem specification

In this section, we formulate the problem of timing
analysis with known false sub graphs. For our discussion,
we assume that the timing model of a circuit is a graph.
The graph is assumed to be acyclic. The edges of the
graph are associated with the delays.

Let Fr, ..., Fk be k false sub graphs, which are sub graphs
of G. We define the sets Bi, El, 1 5 i 5 k, which are re-
ferred to as the begin set and end set respectively, as fol-
lows.

Definition 1 The begin set Bi is the set of vertices x in
each sub graph F, such that there are edges in the sub
graph that start from x but there are none that end in x.
Similarly, the end set Ei is the set of vertices x in each sub
graph F, such that there are edges in the sub graph that
end in n but none that start from x.

736

http://ambit.com
mailto:vnet.ibm.com

The problem considered in this paper can be defined as
follows. Am example is illustrated in Figure 1 .

Definition 2 The problem of liming the graph G with false
sub graphs FI, ..., Fb consists of computing the timing
quantities AT, RAT and SLK for all the vertices in G, while
disregarding some paths from the analysis. The paths to
be disregarded are the set of all paths in G, which have a
sub path in some Fi, that starts at a vertex in Bi and ends
in a vertex in Ei.

In the definition above, if the false sub graphs are speci-
fied by the user, then there is a necessity for making the
user Specification easier. One mechanism involves specify-
ing Fi as a set of ordered pair of vertices. An ordered pair
(vl, v,) implies the inclusion of all the edges and vertices in
G, that lie on a path from V I to v,, into Fi. The sub graph
Fi can be specified as a collection of such ordered pairs.
Note that this specification in some cases may be the same
as specifying all the edges in Fi, resulting in no compres-
sion in specification. For example in Figure 1, F1 cannot
be specified as { (v l , v7)] as this will result in the inclusion
of the diagonal edges. Instead, it needs to be specified as a
set of seven ordered pairs corresponding to the seven edges
of the graph. However, in many cases this will allow com-
pact user specification of false sub graphs. For example,
consider the standard false path situation as shown in Fig-
ure 2. Assuming the control path delays are small, all
paths leading from the I , pin of the first multiplexer MUXl
to the I , pin of the second multiplexer MUXz are false. This
is because the control signal setting that allows the propa-
gation at the first pin will block the propagation at the sec-
ond pin. This situation can be specified by using a single
ordered pair. The false sub graph is represented by the set
{ (MUX*/I , , MUX2/I1)}.

3 Algorithm for the problem

The overall approach of the algorithm is the same as de-
scribed in [l], except that the timing information com-
puted at a node is now more complex. The algorithm
computes multiple arrival and required times at a node.
The different arrival and required times at a node are dis-
tinguished based‘ on a set attribute. The set attribute is a
subset of the set (1, ..., k } , where k is the number of input
false sub graphs. In other words, the set attribute is an
element of the power set of (1, ..., k } . For example, with k
= 2, the possible values for the set attribute are { }, { 1 },
{ 2] , and { 1, 2). The set attribute value gives the set of
false sub graphs the signal has come through.

At a node in the graph, some of the elements of the power
set are associated with timing information. The actual
elements that have associated timing information at a node

is determined by the algorithm, which is described below.
We will use the notation AT(v, s), RAT(v, s), SLK(v, s) to
denote the respective timing quantities at node v for the
element s of the power set.

We first describe the arrival time propagation phase of the
algorithm. The required time propagation is essentially the
inverse of the arrival time propagation. Once these are
calculated at a node v, the slack is obtained by first com-
puting SLK(v,s) = RAT(v,s) - AT(v,s) for all s, where s is
an element of the power set with a valid time at the node.
The slack at the node is then computed as the minimum of
the quantities SLK(v,s) for all elements s of the power set at
the node.

The arrival time propagation phase is a breadth first ap-
proach starting at the primary inputs. The arrival time at
the primary inputs are based on user assertions. These
times are taken to be associated with the null set 0. A
node v is processed for arrival time computation only if all
the edges incident to v come from vertices whose arrival
time information has already been computed. Since the
timing graph G is acyclic, this algorithm will result in the
computation of arrival times at all nodes in the graph. The
arrival time processing at node v is described below, fol-
lowing some definitions.

Definition 3 For every node v in G, we define the set
BG(v) to be the set of all false sub graphs for which the
vertex v is a element in the begin set. In other words,
BG(v) = (ilv E B,}. Similarly, we define EG(v) to be the
set of all false sub graphs for which the vertex v is in the
end set. In other words, EG(v) = (ilv E &}.

Definition 4 For every edge e in G, we define the set
IN (e) to be the set of all indices of false sub graphs that
contain e.

Algorithm 1

arrivalgrocess (v) {
for each edge e c (U, v) (

for each element s (in power set)
with valid time at U do {

s’ t (s U BG (U)) n IN (e)
if (s’ n EG (v) = 0 (

AT(v, s’) c max(AT(u,s) + delay(e), AT (vJ’))
I

1
I

I

737

An element set indicates the set of false sub graphs the
arriving signal has propagated through. The algorithm
above takes each arrival time at the source of an edge and
derives the sink arrival time and the sink element set. The
sink element set is obtained by taking the source element
set and performing a union with BG (source) , followed by
intersection with IN (edge). The union operation signifies
the new false sub graphs that begin at the source point.
The intersection operation signifies that the sink element
set cannot contain indices of false sub graphs that do not
contain the edge e. If the sink element set contains an in-
dex of a false sub graph that ends at vertex v, then the
propagated arrival time is ignored. This condition is
checked by determining if s’ and EG (sink) have a valid
intersection. If they do not, then the arrival time at the sink
is updated to the maximum
of the computed arrival time and the previously computed
result (which is taken as - 00 if there is none before). The
required arrival time computation proceeds in a reverse
manner to the arrival time propagation. The complete
algorithm result for the example in Figure 1 is shown in
Figure 3.

The performance of the algorithm depends heavily on the
number of elements of the power set that are associated
with valid times at a node. In the most general case, the
number of elements at a node v is bounded above by 2,
where f is the number of false sub graphs that contain v.
This bound will be reached only when there are varied
patterns of intersections between the false sub graphs. If all
the false graphs are really just false paths, we can prove the
following theorem.

Theorem 1 If all the false sub graphs are just false paths,
then the number of elements with valid times at a node v is
at most J where f is the number of false paths that go
through v.

Proof: Let s be an element with a valid time at node v.
Among all the false path indices in set s, let i be the index
of a false path whose sub path subi, till node v is the long-
est. It can be seen that the sub paths of the other false paths
in set s till node v are also sub paths of subi. Also, if a false
path, with index x, has a sub path starting from its start
vertex till node v which is a sub path of subi, then the index
x must be an element of set s. Based on the above observa-
tions the set s is totally determined by the index of the false
path with the maximum sub path. Since there are onlyf
choices for this index, there can be only f different set ele-
ments at the node.

place a false sub graph may be exponential in terms of the
size of the false sub graph.

4 Implementation Results

The algorithm for timing analysis with known false sub
graphs has been implemented as part of a timing analysis
program. The performance results of the algorithm are pre-
sented for a two dimensional array of blocks as shown in
Figure 4. Each of the blocks in the circuit has two inputs
and two outputs. The timing graph for a block connects
each of the inputs to the outputs by direct edges. The re-
sults presented in this section are for a mesh of size 100,
with number of edges in the timing graph equal to 60,200.

I I I I I
Total False

30,000
60,000
90,000

120,000
150,000
180,000
210,000
240,000

Per Path

0
159
3 14
463
609
760
919

1063
1218
1357

0.0
188.7
191.1
194.4
197.0
197.4
195.9
197.6
197.0

199.0

Time

51.4

74.2
86.4

107.5

Table 1: Performance for false paths on 100 by 100 mesh

In Table 1, we give the execution time for timing analysis
for varying number of false paths. The times are in sec-
onds on a IBM RSf6000 processor. The false paths were
randomly generated by walking backwards randomly from
outputs of the mesh to the inputs of the mesh. The first
column gives the total number of false path edges that were
asserted. This is just the count of the total number of edges
in each false path. The second column gives the number of
false paths. The third column gives the average number of
edges in a false path, which can be derived from the first
two columns. The fourth column gives the execution time
of the timing analysis algorithm. The table shows the per-
formance of the algorithm from 0 false path edges to
270,000 false path edges (which is more than 4 times the
original timing graph size). The table shows that the per-
formance is fairly linear in the range.

It should be noted that the above theorem does not imply
that it is advantageous to deal only with false paths. This is
because the number of false paths that are needed to re-

738

'otal False
Idges Paths

0
30,000
60,000
90,000

120,000
150,000
180,000
21 0,000
240,000
270,000

0
29
54
80

107
133
153
169
194
217

4vg. Edges
'er Sub Grapl

-

0.0
1034.5
1111.1
1125.0
1121.5
1127.8
1176.5
1242.6
1237.1
1244.2

Time

-
12.6
19.3
29.6
43.2
52.6
65.3
73.2
87.0

103.6
120.0 -

Table 2: Performance for false sub graphs on 100 by 100
mesh

In Table 2, we give the execution time for timing analysis
for varying number of false sub graphs. The false sub
graphs were randomly generated by walking backwards
randomly from outputs of the mesh to the inputs of the
mesh. Instead of going backwards on only one edge to a
point, a secondary edge was also traced back on certain
points. These points were chosen randomly based on an
input probability. The first column gives the total number
of false path edges that were asserted. This is the total of
the number of edges in the individual false sub graphs. The
second column gives the number of false sub graphs. The
third column gives the average number of edges in a false
sub graph, that can be derived from the first two columns.
The fourth column gives the execution time of the timing
analysis algorithm. The table shows the performance of
the algorithm for the identical range of false path edges as
in Table I. The overall performance matches the perform-
ance shown in Table 1. It should be noted that although
the two tables contain similar results for matching numbers
of false edges, the sub graph results are more impressive
because they suppress many more false paths. This is be-
cause a siib graph is, in general, equivalent to many indi-
vidual paths, but a sub graph specification uses far fewer
edges.

5 Conclusions

References

71

R. B. Hitchcock, "Timing Verification
and Timing Analysis Program", Proc. of the
19th ACMLEEE DAC 1982, pp. 594-604.

D. H. C. Du, S. H. C. Yen, and S. Ghanta, "On the
General False Path Problem in Timing Analysis",
Proc. of the 26th Design Automation Conference
1989, pp. 555-560.

P. McGeer and R. K. Brayton, "Efficient
algorithms for computing the longest viable path
in a combinational network", Proc. of the 26th
Design Automation Conference 1989, pp. 561-
567.

H. C . Chen, D. H. C. Du, "Path Sensitization in
Critical Path Problem", ZEEE Trans. on CAD
Feb. 1993, pp. 196-207.

S. T. Huang, T. M. Parng, and J. M. Shyu,
"A Polynomial-Time Heuristic Approach to
Approximate a Solution to the False Path
Problem",
Conference 1993, pp. 118-122.

Proc. of the 30th Design Automation

H. Chang, and J. A. Abraham, "VIPER: An
Efficient Vigorously Sensitizable Path Extractor",
Proc. of the 30th Design Automation Conference
1993, pp. 112-1 17.

P. McGeer and R. K. Brayton, "Integrating
Functional and Temporal Domains in Logic
Design", Norwell, MA: Kluwer Academic, I99 1.

.cknowledgements:

The authors acknowledge valuable discussions with
Mr. Jitendra Apte, Mr. Rajesh Gupta and Mr. Deepak
Sherlekar on the applicability of the problem in physical
design.

We formulated the problem of timing analysis with
known false sub graphs and presented an algorithm for
solving the problem. Furthermore, we described some
performance results of the implementation, which showed
the effectiveness of the problem formulation and solution.

739

(delay for all edge!

v l & l
v 2 c

Timing graph G

V

Fig. 1. Timing graph and false sub graphs. Fig. 2. A standard false path test case.

Fig. 3: Arrival Time and Required Time propagation (N = No RAT)

outputs

Inputs
Fig. 4. Two dimensional Mesh.

740

