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Abstract - In this paper we formulate the problem of 
timing analysis with known false sub graphs. This problem 
is important when we want the timing analysis system to 
take into account false path information that is supplied 
either by the user or by another program, and supply ac- 
curate timing information to optimization programs such 
as placement and wiring. We present an efficient algorithm 
for the problem. 

Introduction 

Static timing analysis algorithm, as described in [I], is 
currently a widely used mechanism for efficiently verifying 
the timing behavior of circuits.. The algorithm computes 
the arrival time of signals in a forward pass through the 
timing graph. The second step involves propagating the 
required times computed at the latches in a backward pass 
through the graph. At the end of two passes each vertex in 
the timing graph has a computed arrival time AT and re- 
quired arrival time RAT. The quantity slack SLK is then 
computed as RAT - AT. This gives a good local measure 
of the magnitude of the timing violation. 

The problem with the static timing analysis procedure 
described above is that it does not take logic into account. 
Thus some of the paths that are considered by the algo- 
rithm may not be logically realizable. These paths are of- 
ten referred to as false paths. Such paths must be detected 
and eliminated from consideration from the timing analy- 
sis. This problem has been studied extensively by many 
researchers, and various interesting algorithms for false 
path detection and elimination have been discovered 
[2,3,4,5,6,71. 

In this paper, we formulate and analyze a new problem of 
timing analysis given a set of false sub graphs. The notion 
of false sub graphs is more general than the notion of false 
paths as we can simultaneously remove the consideration 
of multiple paths. 

This problem is useful for a variety of reasons. In many 
cases, users do have an idea that certain paths reported by 
the timing system are really false. This formulation allows 
the users to convey this information to the timing system 
resulting in a more meaningful analysis. As will be shown 
in Section 2, the ability to remove entire sub graphs from 
consideration from timing is a powerful feature. 
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A second reason for looking into this problem is that 
though techniques described in [2,3,4,5,6,7] solve the 
problem of determining the true delay of the circuit, they 
do not determine slacks at all points in the design. These 
slacks are a useful input to physical optimization programs, 
such as placement and wiring. Our problem formulation 
and solution, with the false sub graphs as input, allows us 
to still maintain the notion of slacks in the design. The 
false sub graphs may either be provided by the user or de- 
termined automatically. An interesting problem arises in 
this context. The determination that a given path is false 
depends on both logic and temporal factors. Thus, a false 
path may not stay false through a physical optimization 
process. For a common definition of a false path, the loose 
criterion defined in [4], one could prove that removing the 
false paths from consideration during a series of physical 
optimization steps (note the false paths were determined at 
the start of optimization) will only result in an analysis that 
does not underestimate the delays in the circuit. Thus, the 
result of the analysis is still useful and the actual false paths 
need not be re-determined during the optimization process. 

The outline of the paper is as follows. In Section 2, we 
formulate the problem of timing analysis with known false 
sub graphs. In Section 3, we describe an algorithm for 
solving the problem. In Section 4, we describe some im- 
plementation results. In Section 5,  we give the conclu- 
sions. 

2 Problem specification 

In this section, we formulate the problem of timing 
analysis with known false sub graphs. For our discussion, 
we assume that the timing model of a circuit is a graph. 
The graph is assumed to be acyclic. The edges of the 
graph are associated with the delays. 

Let Fr, ..., Fk be k false sub graphs, which are sub graphs 
of G. We define the sets Bi, El, 1 5 i 5 k, which are re- 
ferred to as the begin set and end set respectively, as fol- 
lows. 

Definition 1 The begin set Bi is the set of vertices x in 
each sub graph F, such that there are edges in the sub 
graph that start from x but there are none that end in x. 
Similarly, the end set Ei is the set of vertices x in each sub 
graph F, such that there are edges in the sub graph that 
end in n but none that start from x. 
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The problem considered in this paper can be defined as 
follows. Am example is illustrated in Figure 1 . 

Definition 2 The problem of liming the graph G with false 
sub graphs FI, ..., Fb consists of computing the timing 
quantities AT, RAT and SLK for all the vertices in G, while 
disregarding some paths from the analysis. The paths to 
be disregarded are the set of all paths in G, which have a 
sub path in some Fi, that starts at a vertex in Bi and ends 
in a vertex in Ei. 

In the definition above, if the false sub graphs are speci- 
fied by the user, then there is a necessity for making the 
user Specification easier. One mechanism involves specify- 
ing Fi as a set of ordered pair of vertices. An ordered pair 
(vl, v,) implies the inclusion of all the edges and vertices in 
G, that lie on a path from V I  to v,, into Fi. The sub graph 
Fi can be specified as a collection of such ordered pairs. 
Note that this specification in some cases may be the same 
as specifying all the edges in Fi, resulting in no compres- 
sion in specification. For example in Figure 1, F1 cannot 
be specified as { ( v l ,  v7) ]  as this will result in the inclusion 
of the diagonal edges. Instead, it needs to be specified as a 
set of seven ordered pairs corresponding to the seven edges 
of the graph. However, in many cases this will allow com- 
pact user specification of false sub graphs. For example, 
consider the standard false path situation as shown in Fig- 
ure 2. Assuming the control path delays are small, all 
paths leading from the I ,  pin of the first multiplexer MUXl 
to the I ,  pin of the second multiplexer MUXz are false. This 
is because the control signal setting that allows the propa- 
gation at the first pin will block the propagation at the sec- 
ond pin. This situation can be specified by using a single 
ordered pair. The false sub graph is represented by the set 
{ (MUX*/I , ,  MUX2/I1)}. 

3 Algorithm for the problem 

The overall approach of the algorithm is the same as de- 
scribed in [l], except that the timing information com- 
puted at a node is now more complex. The algorithm 
computes multiple arrival and required times at a node. 
The different arrival and required times at a node are dis- 
tinguished based‘ on a set attribute. The set attribute is a 
subset of the set (1, ..., k } ,  where k is the number of input 
false sub graphs. In other words, the set attribute is an 
element of the power set of (1, ..., k } .  For example, with k 
= 2, the possible values for the set attribute are { }, { 1 }, 
{ 2 ] ,  and { 1, 2).  The set attribute value gives the set of 
false sub graphs the signal has come through. 

At a node in the graph, some of the elements of the power 
set are associated with timing information. The actual 
elements that have associated timing information at a node 

is determined by the algorithm, which is described below. 
We will use the notation AT(v, s), RAT(v, s), SLK(v, s) to 
denote the respective timing quantities at node v for the 
element s of the power set. 

We first describe the arrival time propagation phase of the 
algorithm. The required time propagation is essentially the 
inverse of the arrival time propagation. Once these are 
calculated at a node v,  the slack is obtained by first com- 
puting SLK(v,s) = RAT(v,s) - AT(v,s) for all s, where s is 
an element of the power set with a valid time at the node. 
The slack at the node is then computed as the minimum of 
the quantities SLK(v,s) for all elements s of the power set at 
the node. 

The arrival time propagation phase is a breadth first ap- 
proach starting at the primary inputs. The arrival time at 
the primary inputs are based on user assertions. These 
times are taken to be associated with the null set 0. A 
node v is processed for arrival time computation only if all 
the edges incident to v come from vertices whose arrival 
time information has already been computed. Since the 
timing graph G is acyclic, this algorithm will result in the 
computation of arrival times at all nodes in the graph. The 
arrival time processing at node v is described below, fol- 
lowing some definitions. 

Definition 3 For every node v in G, we define the set 
BG(v) to be the set of all false sub graphs for which the 
vertex v is a element in the begin set. In other words, 
BG(v) = (ilv E B,}. Similarly, we define EG(v) to be the 
set of all false sub graphs for which the vertex v is in the 
end set. In other words, EG(v) = (ilv E &}. 

Definition 4 For every edge e in G, we define the set 
IN (e )  to be the set of all indices of false sub graphs that 
contain e. 

Algorithm 1 

arrivalgrocess ( v ) { 
for each edge e c (U, v) ( 

for each element s ( in power set ) 
with valid time at U do { 

s’ t ( s  U BG (U)) n IN (e )  
if ( s’ n EG (v)  = 0 ( 

AT(v, s’)  c max(AT(u,s) + delay(e), AT (vJ’))  
I 

1 
I 

I 
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An element set indicates the set of false sub graphs the 
arriving signal has propagated through. The algorithm 
above takes each arrival time at the source of an edge and 
derives the sink arrival time and the sink element set. The 
sink element set is obtained by taking the source element 
set and performing a union with BG (source) , followed by 
intersection with IN (edge). The union operation signifies 
the new false sub graphs that begin at the source point. 
The intersection operation signifies that the sink element 
set cannot contain indices of false sub graphs that do not 
contain the edge e. If the sink element set contains an in- 
dex of a false sub graph that ends at vertex v, then the 
propagated arrival time is ignored. This condition is 
checked by determining if s’ and EG (sink) have a valid 
intersection. If they do not, then the arrival time at the sink 
is updated to the maximum 
of the computed arrival time and the previously computed 
result (which is taken as - 00 if there is none before). The 
required arrival time computation proceeds in a reverse 
manner to the arrival time propagation. The complete 
algorithm result for the example in Figure 1 is shown in 
Figure 3. 

The performance of the algorithm depends heavily on the 
number of elements of the power set that are associated 
with valid times at a node. In the most general case, the 
number of elements at a node v is bounded above by 2, 
where f is the number of false sub graphs that contain v. 
This bound will be reached only when there are varied 
patterns of intersections between the false sub graphs. If all 
the false graphs are really just false paths, we can prove the 
following theorem. 

Theorem 1 If all the false sub graphs are just false paths, 
then the number of elements with valid times at a node v is 
at most J where f is the number of false paths that go 
through v. 

Proof: Let s be an element with a valid time at node v. 
Among all the false path indices in set s, let i be the index 
of a false path whose sub path subi, till node v is the long- 
est. It can be seen that the sub paths of the other false paths 
in set s till node v are also sub paths of subi. Also, if a false 
path, with index x, has a sub path starting from its start 
vertex till node v which is a sub path of subi, then the index 
x must be an element of set s. Based on the above observa- 
tions the set s is totally determined by the index of the false 
path with the maximum sub path. Since there are onlyf 
choices for this index, there can be only f different set ele- 
ments at the node. 

place a false sub graph may be exponential in terms of the 
size of the false sub graph. 

4 Implementation Results 

The algorithm for timing analysis with known false sub 
graphs has been implemented as part of a timing analysis 
program. The performance results of the algorithm are pre- 
sented for a two dimensional array of blocks as shown in 
Figure 4. Each of the blocks in the circuit has two inputs 
and two outputs. The timing graph for a block connects 
each of the inputs to the outputs by direct edges. The re- 
sults presented in this section are for a mesh of size 100, 
with number of edges in the timing graph equal to 60,200. 

I I I I I 
Total False 

30,000 
60,000 
90,000 

120,000 
150,000 
180,000 
210,000 
240,000 

Per Path 

0 
159 
3 14 
463 
609 
760 
919 

1063 
1218 
1357 

0.0 
188.7 
191.1 
194.4 
197.0 
197.4 
195.9 
197.6 
197.0 

199.0 

Time 

51.4 

74.2 
86.4 

107.5 

Table 1: Performance for false paths on 100 by 100 mesh 

In Table 1, we give the execution time for timing analysis 
for varying number of false paths. The times are in sec- 
onds on a IBM RSf6000 processor. The false paths were 
randomly generated by walking backwards randomly from 
outputs of the mesh to the inputs of the mesh. The first 
column gives the total number of false path edges that were 
asserted. This is just the count of the total number of edges 
in each false path. The second column gives the number of 
false paths. The third column gives the average number of 
edges in a false path, which can be derived from the first 
two columns. The fourth column gives the execution time 
of the timing analysis algorithm. The table shows the per- 
formance of the algorithm from 0 false path edges to 
270,000 false path edges (which is more than 4 times the 
original timing graph size). The table shows that the per- 
formance is fairly linear in the range. 

It should be noted that the above theorem does not imply 
that it is advantageous to deal only with false paths. This is 
because the number of false paths that are needed to re- 
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'otal False 
Idges Paths 

0 
30,000 
60,000 
90,000 

120,000 
150,000 
180,000 
21 0,000 
240,000 
270,000 

0 
29 
54 
80 

107 
133 
153 
169 
194 
217 

4vg. Edges 
'er Sub Grapl 

- 

0.0 
1034.5 
1111.1 
1125.0 
1121.5 
1127.8 
1176.5 
1242.6 
1237.1 
1244.2 

Time 

- 
12.6 
19.3 
29.6 
43.2 
52.6 
65.3 
73.2 
87.0 

103.6 
120.0 - 

Table 2: Performance for false sub graphs on 100 by 100 
mesh 

In Table 2, we give the execution time for timing analysis 
for varying number of false sub graphs. The false sub 
graphs were randomly generated by walking backwards 
randomly from outputs of the mesh to the inputs of the 
mesh. Instead of going backwards on only one edge to a 
point, a secondary edge was also traced back on certain 
points. These points were chosen randomly based on an 
input probability. The first column gives the total number 
of false path edges that were asserted. This is the total of 
the number of edges in the individual false sub graphs. The 
second column gives the number of false sub graphs. The 
third column gives the average number of edges in a false 
sub graph, that can be derived from the first two columns. 
The fourth column gives the execution time of the timing 
analysis algorithm. The table shows the performance of 
the algorithm for the identical range of false path edges as 
in Table I. The overall performance matches the perform- 
ance shown in Table 1. It should be noted that although 
the two tables contain similar results for matching numbers 
of false edges, the sub graph results are more impressive 
because they suppress many more false paths. This is be- 
cause a siib graph is, in general, equivalent to many indi- 
vidual paths, but a sub graph specification uses far fewer 
edges. 

5 Conclusions 

References 

71 

R. B. Hitchcock, "Timing Verification 
and Timing Analysis Program", Proc. of the 
19th ACMLEEE DAC 1982, pp. 594-604. 

D. H. C. Du, S. H. C. Yen, and S. Ghanta, "On the 
General False Path Problem in Timing Analysis", 
Proc. of the 26th Design Automation Conference 
1989, pp. 555-560. 

P. McGeer and R. K. Brayton, "Efficient 
algorithms for computing the longest viable path 
in a combinational network", Proc. of the 26th 
Design Automation Conference 1989, pp. 561- 
567. 

H. C .  Chen, D. H. C. Du, "Path Sensitization in 
Critical Path Problem", ZEEE Trans. on CAD 
Feb. 1993, pp. 196-207. 

S. T. Huang, T. M. Parng, and J. M. Shyu, 
"A Polynomial-Time Heuristic Approach to 
Approximate a Solution to the False Path 
Problem", 
Conference 1993, pp. 118-122. 

Proc. of the 30th Design Automation 

H. Chang, and J. A. Abraham, "VIPER: An 
Efficient Vigorously Sensitizable Path Extractor", 
Proc. of the 30th Design Automation Conference 
1993, pp. 112-1 17. 

P. McGeer and R. K. Brayton, "Integrating 
Functional and Temporal Domains in Logic 
Design", Norwell, MA: Kluwer Academic, I99 1. 

.cknowledgements: 

The authors acknowledge valuable discussions with 
Mr. Jitendra Apte, Mr. Rajesh Gupta and Mr. Deepak 
Sherlekar on the applicability of the problem in physical 
design. 

We formulated the problem of timing analysis with 
known false sub graphs and presented an algorithm for 
solving the problem. Furthermore, we described some 
performance results of the implementation, which showed 
the effectiveness of the problem formulation and solution. 
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Fig. 1. Timing graph and false sub graphs. Fig. 2. A standard false path test case. 

Fig. 3: Arrival Time and Required Time propagation (N = No RAT) 
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Fig. 4. Two dimensional Mesh. 

740 


