

Asymptotic Waveform Evaluation for Timing Analysis

L. W. Pillage and R. A. Rohrer

Zebang Zhou

Delay

- The most fundamental way to compute delay is to develop a physical model of the circuit of interest, write a differential equation describing the output voltage as a function of input voltage and time, and solve the equation.
- The solution of the differential equation is called the *transient response*, and the *delay* is the time when the output reaches *VDD* /2

Elmore delay

The step response e(t) at some node in a circuit (and its derivative e'(t)) is shown in left picture.

(a)

(b)

(c)

The time coordinate of the centroid of e'(t) is the Elmore delay T_D

$$T_D = \int_0^\infty t e'(t) dt$$
$$= \int_0^\infty [1 - e(t)] dt$$

Elmore delay

The Elmore delay to node n_i in the RC tree is:

Asymptotic Waveform Evaluation

Moment of a transfer function

 $F(s) = \int_0^\infty f(t)e^{-st}dt$ The Laplace transform of a transfer function

$$F(s) = \int_{0}^{\infty} f(t) \left[1 - st + \frac{s^{2}t^{2}}{2!} - \frac{s^{3}t^{3}}{3!} + \cdots \right] dt \quad \text{MacLaurin series expansion} \\ = \int_{0}^{\infty} f(t)dt - s \int_{0}^{\infty} tf(t)dt + s^{2} \int_{0}^{\infty} \frac{t^{2}}{2!}f(t)dt - s^{3} \int_{0}^{\infty} \frac{t^{3}}{3!}f(t)dt + \cdots \\ = m_{0} + m_{1}s + m_{2}s^{2} + m_{3}s^{3} + \cdots \\ F(s) = m_{0} + \sum_{i}^{\infty} m_{i}s^{i}$$

Moment matching

Pade's approximation:

对于正整数m,n, 函数f(x)在[m,n]阶的帕德逼近为 $R(\mathbf{x}) = \frac{\sum_{j=0}^{m} a_j x^j}{1 + \sum_{k=1}^{n} b_k x^k} = \frac{a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m}{1 + b_1 x + b_2 x^2 + \dots + b_n x^n}$ 且f(0)=R(0), f'(0)=R'(0), 即 $f^n(0) = R^n(0)$ Let $m_0 + m_1 s + m_2 s^2 + \dots \equiv \frac{a_0 + a_1 s + \dots + a_{q-1} s^{q-1}}{1 + b_1 s + \dots + b_q s^q}$ $(m_0 + m_1 s + m_2 s^2 + \dots) \cdot (1 + b_1 s + \dots + b_q s^q) \equiv a_0 + a_1 s + \dots + a_{q-1} s^{q-1}$ $m_0 + (m_1 + m_0 b_1)s + (m_2 + m_1 b_1)s^2 + \dots \equiv a_0 + a_1 s + a_2 s^2 \dots$ s^{0} : $a_0 = m_0$ $s^1: \qquad a_1 = m_1 + m_0 b_1$ s^2 : $a_2 = m_2 + m_1 b_1 + m_0 b_2$ $s^{q-1}: a_{q-1} = m_{q-1} + m_{q-2}b_1 + \cdots + m_1b_{q-2} + m_0b_{q-1}$

MNA matrix

MNA matrix: (G + sC)X = E

G / **C:** constant matrices (depend on the values of the RLC elements)

- **X:** vector of unknowns
- **E:** excitation vector

Represent **X** in terms of its moments

$$\mathbf{X} = \mathbf{m}_0 + \mathbf{m}_1 s + \mathbf{m}_2 s^2 + \mathbf{m}_3 s^3 + \cdots$$

When the excitation is $\delta(t)$, we have $E = E_0$ in the s domain

$$(G+sC)(\mathbf{m}_0+\mathbf{m}_1s+\mathbf{m}_2s^2+\cdots)=\mathbf{E}_0$$

$$(G+sC)(\mathbf{m}_0+\mathbf{m}_1s+\mathbf{m}_2s^2+\cdots)=\mathbf{E}_0$$

$$Gm_0 + (Gm_1 + Cm_0)s + (Gm_2 + Cm_1)s^2 + \dots = E_0$$

 $\boldsymbol{G}\boldsymbol{m_0} = \boldsymbol{E_0} \quad (i=0)$

The solution of Equation is identical to that of the original system when an impulse excitation is applied, and is set **s** to zero.

$$Gm_i = -Cm_{i-1} \quad (\forall i \ge 1)$$

This equation corresponds to the original excitation is set to zero, and a new excitation of $-Cm_{i-1}$ is applied instead. Implies that the original circuit is modified as follows:

- 1. All voltage sources are short-circuited and current sources open-circuited.
- 2. Each capacitor is replaced by a current source of value $Cm_{i-1}(V_c)$, where $m_{i-1}(V_c)$ is the $(i-1)^{th}$ moment of the voltage V_c across the capacitor.
- 3. Each self or mutual inductance \mathbf{L}_{ij} is replaced by a voltage source of value $\mathbf{L}_{ij}\boldsymbol{m}_{i-1}(\boldsymbol{I}_j)$ on line *i*, where $\mathbf{m}_{i-1}(\boldsymbol{I}_j)$ is the $(i-1)^{th}$ moment of the current through inductor *j*.

Example circuit

Moment calculation for a simple RC line

An example of an RC line.

Let $R = 1\Omega, C = 1F$ $m_q = [v_1 v_2 v_3 v_4 v_5 i_v]^T$

• Finding m_0 i.e. $Gm_0 = E_0$ (i = 0)

All capacitors are open-circuited, and the voltage source is replaced by a delta function in the time domain. (corresponds to a unit source in the *s* domain)

It is easily verified that no current can flow in the circuit. (a)

Therefore, the voltage at each node is 1.

$$\mathbf{m}_0 = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}^T$$

• Finding m_1 i.e. $Gm_i = -Cm_{i-1}$ ($\forall i \ge 1$)

Capacitors is now replaced by a current source of value $C_i m_0(V_i)$ V_s

The current in each branch can be calculated as the **sum of all downstream currents**

So the voltage at each node:

$$\mathbf{m}_1 = \begin{bmatrix} 0 & -4 & -7 & -9 & -10 & -4 \end{bmatrix}^T$$

• Finding m_2 , m_3

	m_0	m_1	m_2	m_3
v_1	1	0	0	0
v_2	1	-4	30	-246
v_3	1	-7	56	-462
v_4	1	-9	75	-622
v_5	1	-10	85	-707
i_v	0	-4	30	-246

Pade's approximation:

$$s^{0}: a_{0} = m_{0}$$

$$s^{1}: a_{1} = m_{1} + m_{0}b_{1}$$

$$s^{2}: a_{2} = m_{2} + m_{1}b_{1} + m_{0}b_{2}$$

$$s^{3}: a_{3} = m_{3} + m_{2}b_{1} + m_{1}b_{2} + m_{0}b_{3}$$

$$a_{0} = 1$$

$$a_{1} = b_{1} - 10$$

$$0 = b_{2} - 10b_{1} + 85$$

$$0 = -10b_{2} + 85b_{1} - 707$$

AWE second- and fourth-order approximations for the step response of a RLC circuit

Limitations of AWE

- 1 The Pade approximations can be numerically unstable (higher moments becomes ill conditioned).
- *Pade via Lanczos process* (improved numerical stability, but more computationally expensive)

[Time: $O(nm\log n)$, Space: $O(m^2)$ for m Order]

② Can not guarantee passivity

- **Passive Reduced-order Interconnect Macromodeling Algorithm** (PRIMA).
- Arnoldi algorithm
- Pole Analysis via Congruence Transformations (PACT) [Time: O(n^{1.5}), Space: O(nlogn)]

References

- S. Sapatnekar, *Timing*. New York: Springer-Verlag, 2004
- L. W. Pillage and R. A. Rohrer, "*Asymptotic waveform evaluation for timing analysis*", IEEE Trans. CAD, vol. 9, no. 4, pp. 352-366, Apr. 1990.
- L. T. Pillage, X. Huang and R. A. Rohrer, "*AWEsim: Asymptotic Waveform Evaluation for Timing Analysis*", 26th ACM/IEEE Design Automation Conference Proceedings, pp. 634-637, 1989.
- C. L. Ratzlaff and L. T. Pillage, "*RICE: Rapid interconnect circuit evaluation using AWE*," IEEE Trans. Comput.-Aided Design. Circuits Syst., vol. 13, no. 6, pp. 763–776, Jun. 1994.
- P. Feldmann and R. W. Freund, "*Efficient linear circuit analysis by Padé approximation via the Lanczos process*", Proc. EURO-DAC, pp. 170-175, 1994.
- K. J.Kerns, A.T.Yang, "Stable and Efficient Reduction of Large, Multiport RC Networks by Pole Analysis via Congruence Transformations(PACT)" IEEE. Trans. Computer-Aided Design, vol. 16, 1997.
- I. M. Elfadel and D. D. Ling, "*Zeros and passivity of Arnoldi-reduced-order models for interconnect networks*", Proc. 34th Design Automation Conf., pp. 28-33, 1997-June.
- L. Miguel Silveira, Mattan Kamen, Ibrahim Elfadel and Jacob White, "*A coordinate-transformed Arnoldi algorithm for generating guaranteed stable reduced-order models of RLC circuits*", Comput. Methods Appl. Mech.., vol. 169, no. 3–4, pp. 377-390, Feb. 1999.
- S. Aaltonen, J. Roos, "*Simple reduced-order macromodels with PRIMA*", Electronics Circuits and Systems 2002. 9th International Conference on, vol. 1, pp. 367-370 vol.1, 2002.

