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RICE: Rapid Interconnect
Circuit Evaluation Using AWE

Curtis L. Ratzlaff and Lawrence T. Pillage, Member, IEEE

Abstract— This paper describes the Rapid Interconnect Cir-
cuit Evaluator (RICE) software developed specifically to analyze
RC and RLC interconnect circuit models of virtually any size
and complexity. RICE focuses specifically on the passive inter-
connect problem by applying the moment-matching technique
of Asymptotic Waveform Evaluation (AWE) and application-
specific circuit analysis techniques to yield large gains in run-time
efficiency over circuit simulation without sacrificing accuracy.
Moreover, this focus of AWE on passive interconnect problems
permits the use of moment-matching techniques that produce
stable, pre-characterized, reduced-order models for RC and RLC
interconnects. RICE is demonstrated to be as accurate as a
transient circuit simulation with hundreds or thousands of times
the efficiency. The use of RICE is demonstrated on several VLSI
interconnect and off-chip microstrip models.

1. INTRODUCTION

HE CAPABILITY to accurately predict the delay of sig-

nal paths in today’s high-speed digital integrated circuits
(IC’s) has never been more important. With clock speeds
continuing to increase at all levels of integration, the safety
margin for timing errors is decreasing. Moreover, competitive
pressures in the fast-moving world of high technology have
forced producers of electronic equipment to tighten their
timing tolerances and to push their specifications to the limits
of current technology. This means that accurate timing analysis
of critical signal paths has become crucial to maintaining
quality and remaining competitive.

The delay in signal paths can be attributed to two primary
components—the gate delay and the interconnection delay.
Popular timing analyzers/simulators [2]-[4] have typically
assumed that the on-chip delay was attributed primarily to the
gate driving the total capacitance of the loads and interconnect.
However, designers are discovering that more of the signal
delay is being attributed to the RC effects of the interconnec-
tion. In fact, up to 70 percent of the total delay may now be
attributed to the interconnection alone [1].

The problem of accurate interconnect characterization is
not limited to just VLSI designers. After all, the very fast
devices being developed by VLSI designers are ultimately
being incorporated into board-level designs and/or multichip
modules (MCM’s). In these areas, not only are RC effects
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evident, but inductive effects also begin to appear as anomalies
of overshoot, undershoot, ringing, and signal reflections. With
these effects present, the problem now is to predict the shape of
the signal waveform rather than the delay alone. With high-
speed ECL and GaAs devices often used in the MCM and
board-level designs, interconnect and packaging effects are
dominating factors [4). Transmission line effects on high-speed
digital MCM’s are the norm and traditional timing analyzers
are not equipped to handle these or related effects.

The remainder of this paper focuses on our techniques for
rapid and accurate evaluation of linear interconnect circuit
models composed of R, L, and C components. These tech-
niques have been incorporated into the Rapid Interconnect
Circuit Evaluator (RICE) software developed specifically for
characterization of interconnect circuit models. RICE generally
yields results within 1 percent of a circuit simulator, such
as SPICE [5], but with considerably more efficiency (over
1000% better for moderate to large circuit models). The basic
technique used in RICE is the moment-matching method
of Asymptotic Waveform Evaluation (AWE) [6]1-[8], which
is becoming a popular technique for timing analysis. What
distinguishes RICE from other implementations of AWE is
that it focuses specifically on the passive interconnect problem,
thereby taking full advantage of the regularity of the circuits.
Specifically, path-tracing techniques are used to analyze the
circuit, thus exploiting the simple topologies often encountered
for interconnect models. Furthermore, the passive nature of
interconnect circuits is exploited to ensure stable results.

Section II reviews the various methods that have been
used to characterize the delay in RC interconnects. Section
III briefly reviews the basic AWE theory and technique fol-
lowed by a presentation in Section IV describing, in general,
how circuit moments may be calculated from analysis of a
simple equivalent dc circuit. Section V expands upon this
discussion with a specific example of how RICE computes
the moments for R(L)C tree-like topologies, while Sections VI
and VII introduce extensions to the basic path-tracing method
for handling any RLC topology, including those with loops
of resistors and inductors and floating nodes. Section VIII
briefly discusses how the circuit moments are matched to
the dominant poles and residues that comprise the reduced
interconnect model. Section IX presents the accuracy and
performance results for various circuit topologies.

II. METHODS OF INTERCONNECT CHARACTERIZATION

A variety of methods for the characterization of interconnect
circuit models have been investigated [9]-[11]. Obviously the
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most accurate solution would be to use a circuit simulator
such as SPICE, but this is unreasonably slow and, for very
large interconnect models, may not even be possible. A
solution that has been applied in industry is to develop a
specialized circuit simulator that applies a fixed time-step
approach so that only one circuit-equation factorization is
required [12]. The time-step used in the integration may be
varied to control the accuracy and/or execution-time. This is
significantly faster than a more generalized SPICE approach
[13], but it is still unacceptably slow for moderate-sized
interconnects. Moreover, both SPICE and the fixed time-step
approaches are very sensitive to the stiffness of the circuit
equations, and it is well known that interconnect circuit models
tend to be stiff.

The most common technique encountered for bypassing the
inefficiency of the circuit simulator approach is to model the
interconnect in LSI/VLSI technologies with an RC tree or RC
mesh and then to calculate the Elmore delay [14] for this
model. The Elmore delay corresponds to an approximation
of the time at which the output response of an interconnect
to a step input reaches 50 percent of its final value. The
Elmore delay was the first moment-method to be applied to
the interconnect problem. The Elmore delay, Tp, is the first
time-moment of the impulse response for a unit-step driving
an RC tree or RC mesh:

TD=/ to dt 1)
0

The Elmore delay value may be easily found for an RC tree
with a linear complexity algorithm described in [9]. The value
of Tp, however, may be either pessimistic or optimistic as
an approximation of the interconnect delay. The delay can be
bounded as described in [10], but the bounds are sometimes
too wide.

The Elmore delay may be considered to be a one-pole
or dominant time-constant approximation for RC trees and
meshes where the dominant pole is expressed as TEl. To im-
prove the accuracy and address the problem of nonequilibrium
initial conditions, a two-pole model for analysis of RC meshes
was developed in [15], [16]. It required the calculation of the
first three moments of the impulse response. This method is
generally adequate for RC trees and meshes, but it could not
be applied to circuits with floating capacitances or inductors.

The next extension to the moment-matching techniques
was Asymptotic Waveform Evaluation (AWE) presented in
[6]-[8]. This is a generalized n-th order moment-matching
technique that allows a linear(ized) circuit to be analyzed for
its dominant poles and corresponding residues. The general
idea is to calculate a certain number of time-moments for the
circuit model and then match these moments to the reduced
order model. For example, a linear circuit model containing
hundreds of energy storage elements will in general possess
hundreds of poles in the frequency domain. However, the
transient response of the circuit at any given node is generally
dominated by a very small number (<10) of approximate
poles. The goal in AWE is to locate this set of dominant poles
that may be used to characterize the circuit response(s).

III. A BRIEF OVERVIEW OF AWE

The basic process in AWE is to approximate the transfer
function of a linear circuit model, H(s), by a reduced set of
approximate poles and residues of the form
ki ke, K
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where p; and k; are the poles and residues, respectively, and g
is the order of approximation (number of approximate poles).
This is easily cast to the time-domain equivalent

h(t) = kieP't + kaeP" + -+ + kgePat -3

which is what we seek for timing analysis.

AWE uses moment-matching to uniquely specify the k’s
and p’s in (2) and (3). The moments of Jil (s) are forced to
match the actual circuit moments. In general, we refer to the
i-th moment of any function of time, f(¢), as

sy =58 [T @ @

Applying the definition in (4) to R(t) in (3), the approximate
moments are of the form:
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Thus, for a g-th pole approximation there will be g unknown
poles (p1 - - - pg) and ¢ unknown residues (k; - - - k¢) for a total
of 2q unknowns. The 2¢ equations are
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Note that the right-hand side of these equations are the 2q
actual time-moments for a specific response variable in the
circuit. A response variable may be any voltage or current,
and only those responses of interest need to be solved.
Evaluating (6) to determine the poles and residues can be
done as described in [6]. However, since such a mapping
has been shown to be equivalent to a Padé approximation
[18], it is well known that positive dominant poles can result
even for stable circuits. In RICE, however, the nature of
interconnect circuit models is once again exploited by forcing
stable poles since the circuits are guaranteed to be stable. Three
different approaches were tried and each is briefly covered
in Section XIII. The details on instability and approaches to
avoiding it are too extensive for a thorough coverage here.
More information can be found in [18]-[21].

IV. GENERAL METHOD FOR
CALCULATING THE CIRCUIT MOMENTS

The AWE moment-matching technique depends on two
critical assumptions: 1) the time-moments of the circuit model
can be accurately and efficiently calculated and 2) these
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moments can be matched to the reduced-order approximation.
The elegance of AWE is attributed to the manner in which
moments for a linear circuit are calculated. It requires only
a few successive dc analyses of the circuit model where
capacitors are replaced by dc current sources and inductors
are replaced by dc voltage sources. The process begins by
replacing the input driver with a dc source set equal to the
final value, all capacitors with zero-valued current sources, and
all inductors with zero-valued voltage sources. The resultant
voltages across each capacitor-current source represent the
first generation of capacitor moments. Similarly, the currents
through each inductor-voltage source comprise the first gen-
eration of inductor moments. The succeeding generations of
moments are calculated by setting the driver to zero and
replacing each capacitor and inductor source with the product
of its previous moment and respective value of capacitance or
inductance.

For example, consider the RLC circuit in Fig. 1(a). The first
generation of moments may be calculated by first transforming
this circuit into the dc equivalent shown in Fig. 1(b) and
then performing a dc analysis. The voltages across each
capacitor and currents through the inductors are the first set of
moments. Next, the source values are modified as shown in
Fig. 1(c) and the circuit re-solved. The next set of moments
are again the resulting voltages and currents of the capacitors
and inductors, respectively. The procedure is repeated until the
desired number of moments is calculated.

The reason AWE is inherently much faster than a transient
circuit analysis is because only a few dc analyses are required
to compute all the moments and matching the moments to
the actual poles and residues is efficient for a small number
of poles. A transient analysis, on the other hand, requires
the circuit to be solved at a large number of time steps.
The most competitive transient simulation technique we have
encountered is when a fixed-time step integration algorithm
is applied to a relatively small circuit that is not overly
stiff. Even in this case, AWE out-performs the transient
simulation by a large factor. It is pointless, however, to make
a direct comparison since the numerical integration methods
will depend on the number of time steps taken and the error
due to local truncation. But it is safe to say that the AWE
circuit is generally a simpler circuit to solve and the analytical
transfer function model produced is more valuable that a single
time-domain waveform.

From this discussion it is clear that the primary factor in
guaranteeing efficiency is to employ an efficient dc analysis
algorithm. In general, any sound circuit analysis technique
can be employed. For instance, the implementation of AWE
described in [7] uses modified nodal analysis to solve the
dc circuit. Other techniques are also possible, such as the
use of sparse-tableau, tree/link analysis, and others. However,
we chose to exploit the generally simple topology of most
interconnect circuit models by using a circuit path-tracing
technique. Most interconnect model topologies follow a tree-
like structure such as the RC tree that are ideal for a path-
tracing method. Terman [9] demonstrated how effective it was
for computing the Elmore delay in RC trees. We have extended
this to R(L)C trees and similar topologies. Internodal or cou-

765

(@)

(<)

Fig. 1. (a) RLC circuit example, (b) its equivalent dc circuit for the first
moment generation, and (c) the circuit with source values changed for the
second moment generation.

pling capacitances may be added to the tree structures without
disturbing our definition of a tree-like topology. Furthermore,
extensions have been developed which allow deviations from
a strict tree structure. Instances of resistor loops, floating
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nodes or inductor loops usually have only a minor effect on
performance. In the limit, as the circuit topologies deviate
from the desired tree structure, the algorithms degenerate to an
efficient implementation of nodal analysis. In short, the overall
approach taken in the development of RICE is to allow tree-
like structures to be evaluated in the most efficient manner
possible, while allowing models that deviate from this to
degrade performance by an amount more or less proportional
to the topological complexity.

V. MOMENT COMPUTATION FOR R(L)C TREES

Before describing the basic path-tracing algorithm for
R(L)C trees, we must first define our notion of a tree-like
topology. If a spanning-tree of the circuit model can be
constructed that includes all voltage sources, inductors, and
resistors and excludes all capacitors and current sources, then
the circuit model is strictly tree-like. This is possible for
many interconnect circuit models, particularly those used for
modeling RC delay effects in VLSI circuits. RICE does handle
circuits that do not satisfy the stated conditions, but it must
invoke extensions to the basic algorithm, all of which are
discussed in succeeding sections.

A spanning tree, T, of the connected circuit graph, G, is
defined as a connected subgraph of G that contains all nodes
of G, but contains no loops [23]. The branches in T are called
tree-branches, while all other branches of G (not contained
in T') are called links. By our definition of a strictly tree-like
interconnect circuit, all capacitors (current-sources) must be
links, while all resistors and inductors must be tree-branches.

A. The Basic Path-Tracing Algorithm

Consider the dc equivalent circuit in Fig. 1(b) and (c)
to calculate the time-moments for an AWE analysis. Once
the capacitor-current sources and inductor-voltage sources are
assigned their values from previous moment calculations, a
spanning tree of the circuit graph may be traversed to solve for
the currents and voltages of the dc circuit. A circuit graph and
spanning tree for the circuit is revealed in Fig. 2. A spanning-
tree for the circuit can be efficiently constructed in linear time
using a standard algorithm such as that found in [32]. One
complete traversal of the circuit graph is required to compute
all tree-branch currents and another traversal is required to
yield all node voltages. A similar approach was used in [9] to
compute the Elmore delay for RC trees.

For example, beginning at any leaf node of the graph in
Fig. 2, each node is visited by performing a reverse depth-
first traversal of the spanning tree. As each node is visited, its
incident tree-branch and link currents are summed, excluding
the current of the tree branch from the predecessor node. This
sum becomes the total current for the tree branch from the
predecessor node. The use of a reverse depth-first traversal
guarantees that a node is not visited until the currents for
all branches from descendant nodes are known. The process
is completed when the ground node is encountered. For
each inductor tree-branch, the resulting current is the new
inductor moment to be used in the next moment generation.
The currents of tree-branch resistors and their corresponding

Fig. 2. Graph and spanning tree representation for the RLC circuit in Fig. 1.

resistance values are then used to compute the resistor branch
voltages.

This application of the reverse path-trace is equivalent to
solving the KCL equations A, = 0, where A is the reduced
nodal-incidence matrix [23]. The A-matrix is subdivided into
the tree-branch sub-matrix, A;, and the link-current sub-
matrix, A;. Dummy entries are added to A; to force it to
be the identity matrix. This is equivalent to adding zero-
valued (capacitor) current sources at each node that have no
capacitors, which simplifies the subsequent analysis. With A
organized as described, the following describes the reverse
path-trace:

Atit + Alil =0—1 = —A;IAI'L.[
but A; =150, = —A; i (7

A, is always upper-triangular since tree-branches are ordered
as they would be encountered during a forward traversal of the
spanning tree. Therefore, solution for ¢; can be achieved by a
back-substitution using the link currents, 4;, as the right-hand-
side (RHS). This is, in fact, what is achieved during the reverse
path-trace. We do not explicitly build the A matrix; however,
we do construct the circuit graph and find a spanning tree that
can be considered equivalent to constructing and ordering A
as described.

Next, beginning at the ground node, a forward depth-first
traversal of the tree is performed to visit each node. The
voltage of each node is computed by subtracting the voltage of
the predecessor tree-branch from the predecessor node voltage.
The use of the forward traversal guarantees a node is not
visited until the voltage of its predecessor is known. The
node voltages are then used to compute the voltage of each
capacitor, which becomes the new moment for each capacitor
used in the next moment generation. This application of the
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forward path-trace is equivalent to solving the KVL equations

A? Vg
AT _ AT _
v, = vp Where =|--|andwvy = |- -
T
A[ vy
Az—' UVt
s0 |-~ |vn=|--| = ATv, = v; and AT v, = v,
A;T v

but AIT =1sov, =u ®)

where v, are the node voltages and v; the (capacitor) link
voltages. AT is guaranteed to be lower-triangular, therefore a
forward substitution operation may be applied to the lower-
triangular system to solve for the node voltages. Again, the
matrix is not explicitly built and performing the forward path-
trace is equivalent to a forward-substitution procedure.

B. Virtual Path-Tracing

Rather than implementing the basic path-tracing scheme
just described, a more efficient virtual path-tracing scheme
was employed. The virtual path-tracing technique improves
the efficiency by eliminating the graph traversal overhead.
This is important since the graph is traversed many times
to produce all required moment generations. Moreover, the
technique also improves upon the usage of run-time memory.
It does not reduce the amount of memory, but it does minimize
the memory page-faults that occur during virtual path traces.
When circuits are so large that they no longer fit into main
memory, minimization of memory page faults become much
more important than all other processing overhead since they
significantly effect the actual elapsed time.

To understand the basis of virtual path-tracing, it must be
recognized that a dc circuit need only be (actually) path-traced
one time regardless of the number of moment generations
required. Since neither the circuit graph nor spanning tree
changes between each generation, the nodes will be visited in
the same order during each moment generation. Moreover, the
amount of information at each node (links and tree branches)
does not change between generations. This suggests that
instead of executing an actual traversal of the graph and tree
for each analysis, the traversal should be performed only one
time to memorize the location and order of the links and tree
branches. This memorization is performed by re-organizing
the graph into a set of numeric data vectors and compressed
instruction lists. The data vectors contain the values of tree-
branch and link elements organized in order of a depth-first
traversal of the spanning tree. The (integer) instruction lists
describe what arithmetic operations must be performed on the
vectors to produce the results of the path-tracing algorithm.
One instruction list describes the reverse trace while the other
list describes the forward trace. These lists are compressed for
maximum efficiency. For example, a nonbranching RC tree
would be described by a single two-word integer instruction,
regardless of the number of nodes in the tree. A complete
virtual path-trace can be achieved by reading the instruction
and then looping across the floating point vectors in forward
and reverse order.

| p d Tree-Current N i Comp d Tree-Current Mnemonics

Node Instruction(s) Node(s) Instruction(s)

4 (Push)Load 4 (Push)Load

3 AddSto 3 AddSto

7 PushLoad 7 PushLoad

6 AddSto 6,5 Rep 2 AddSto

s AddSto 2 PopAdd

2 PopAdd 2.1 Rep 2 AddSto
AddSto
AddSto

Instruction. Definitions

PushLoad (S) < A; // store accumuiator at stack pointer
S<-S+1; // increment stack pointer
A <-- (L) // load accumulator with next link current
L<-L-1: // decrement link current pointer

AddSto A< A+ (L) // add link current 1o accumulator
(L) <-- A} // and replace it
L<-L-1; // decrement link current pointer

PopAdd S<-S-1; // decrement stack pointer
A< A+(S) // add top-of-stack to accumulator

Operand Definitions

A Floating-point accumulator

S Stack pointer

S) Floating-point value at stack-pointer location
Link-current vector pointer initially set to point to total link current of
last node in the nodelist.

(L) Floating-point value at link-current pointer location

After all instructions have been executed, L will point to the forward list of tree-branch current
totals

Fig. 3. An illustration of the virtual-path tracing generation process for the
(circuit) graph of Fig. 2. Both the uncompressed and compressed instruction-
lists are shown.

The information contained in a given instruction list is the
same information that would be obtained by performing a
depth-first search of the spanning tree, but the information is
optimized so repeated use of it results in a large performance
improvement. If an actual path-trace were used to compute
the dc solution of the circuit, then not only would floating
point operations be required at each node to compute currents
and voltages, but traversal of each tree-branch and recognition
of links would be required at every node. Virtual path-
tracing avoids the traversal of tree-branches and links for
every moment generation. The virtual path-trace for the Fig.
1 (graph in Fig. 2) circuit can be expressed as shown in
Fig. 3. The odd-looking mnemonics are referred to as the
virtual path-tracing pseudo-instructions and are defined in the
illustration. These pseudo-instructions, stored as integer words,
are interpreted to control the reverse and forward traces. The
only information required to generate the primitives are the
degrees of each respective node in the spanning tree. Note the
use of the REPeat primitive in the instructions. This allows
similar operations to be compressed into a single word, which
allows them to be processed in a very tight loop, thus yielding
very high throughput.

The use of stack primitives is not required, but it is highly
desirable to maintain the highest level of data vectorization. If
a stack were not used, then the partial results would have to
be accessed randomly, thus causing a higher level of memory
page-faults. The cost of these primitives pays off if even a
single page fault is avoided. The example in Fig. 3 illustrates
the reverse (tree-current) trace only. A similar procedure is
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used to handle the forward trace. The instructions are different,
but the concept is the same.

The primitives have been called pseudo-instructions since
they are not instructions mapped to a given computer archi-
tecture. However, this could be done. In other words, the list
of pseudo-instructions could be translated to instructions of the
target processor. This would remove the last bit of overhead
from the path-trace, so the only remaining overhead would be
that attributed to a given architecture. This is not done in RICE
since it compromises the portability of the code and would
not significantly increase performance. As it is, the virtual
path-tracing represents one of the least expensive operations
in RICE.

VI. EXTENSION FOR RESISTOR LOOPS

One type of circuit topology heavily studied was that con-
taining resistor loops or links (R-loops or R-links). Resistors
that cause loops in the circuit graph are classified as resistor
links during construction of the spanning tree. Resistor links
are undesirable since their currents are not known a priori.
Instances of R-loops occur for certain types of RC and RLC
interconnect topologies. For example, loops of metal are often
added to clock lines to reduce the skew among gates. Use
of the additional metal run(s) is often more desirable than
increasing the metal pitch. There is also a growing tendency to
route clock lines with a mesh or grid pattern rather than a tree.
Lossy transmission lines that include dielectric loss also have
R-loops to ground at every node. Moreover, transmission lines
are often terminated with resistors to ground, thus introducing
R-loops.

A. Solving for R-Loop Currents by Branch Tearing

One way to handle link resistors in the AWE dc circuit is
by branch tearing or Kron’s method [24]. For a circuit with
a single link resistor, the circuit is first solved to obtain the
open circuit voltage, voc, across an open R-link. From Kron’s
method, the current that would flow through the link, were it
not opened, is

vOC

I Rjink + Ren ®
where Ry, is the Thevenin resistance seen by Rji,k. The link
resistor is then replaced by a current source of value Ig, thus
restoring the tree structure of the dc equivalent circuit and
allowing the circuit to be solved by path-tracing.

In the case where there are multiple, m, R-links the ap-
proach is still basically the same. We need to calculate a
value of current for each R-link that would flow were they
not opened. Therefore, we need to extend (9) to the general
case of m R-links. The Kron method also supports this case,
where I and vo. become m-vectors and (Rynk + Ren) 1 is
replaced by Z~! as follows:

Ig = Z 7 voc (10)
given that

7Z = FR.FT + R; (1)

where the loop/cutset matrix, F, is m x N, where m is
the number of R-links and N is the number of tree branch
resistors. R; is anN x N diagonal matrix of tree-branch resistor
values and Rl is an m X m diagonal matrix of R-link values.
The m-vector, v,., is the torn or open-circuit voltages across
the torn branches, which are easily obtained by an initial path-
trace. The entry F;; is £1 if the j-th resistor tree-branch is
in the loop caused by the i-th R-link, otherwise the entry is
zero. The sign is positive if the reference directions for the
R-link and tree branch agree with one another, otherwise it
is negative.

Solving the system for the R-link currents, Ig, requires the
inversion of Z, which is m x m and symmetric for resistive
circuits but tends to be very dense. This, of course, depends
on F, which in turn depends on the spanning tree that is
selected for the circuit graph. The F-matrix was not explicitly
constructed. Instead, a path-tracing algorithm described in [25]
was used to build Z directly from the circuit graph. Next, Z
is LU factored while another path-trace yields the open-circuit
voltages (i.e., with the R-links not present), and forward and
back-substitution of these voltages yields the R-link currents.
Finally, these currents are substituted for the torn branches and
the circuit path-traced one last time to yield the final circuit
solution.

Both the construction of Z and its subsequent inversion tend
to be very expensive. Our empirical results suggest that this
method is suitable for circuits with few resistor loops (m <
100), but tends to be overwhelming for circuits containing a
large number of loops.

B. Solving for R-Loop Currents by Circuit Compaction

The inefficiency of branch-tearing for circuits with many
R-loops motivated the development of a more efficient
method—circuit compaction. The goal of this method is to
formulate a smaller equivalent circuit that may be solved
to obtain the R-link currents. The circuit is re-formulated
such that original resistor loops are left intact, but Norton-
equivalent sub-circuits are substituted for remaining sections
of the circuit between the loops. These Norton equivalents are
easily constructed during the initial path-trace with R-loops
opened (R-links removed). A similar technique was used in
the analysis of VLSI power-bus networks [26]. The technique
introduced here is similar, with a primary difference being the
allowance of voltage sources in the model and the ability to
handle zero-resistance tree-branch subsections.

The compaction scheme replaces all long tree-branch sec-
tions between successive R-loops with a super tree-branch
(STB). This is demonstrated by the circuit sub-section shown
in Fig. 4. The STB resistance is simply the sum of all
resistances between the ends of the STB. The Thevenin voltage
is the voltage difference across the STB with all R-links
opened. This is illustrated in the last sub-figure in Fig. 4 where
the The venin voltage shown is V' (z) — V(y) and the Thevenin
resistance is R; + Rs. The total downstream current through
the STB is the sum of the capacitor-current sources (I.) and
the unknown R-link currents. The capacitor current (I.) will
be known after path-tracing.
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cee — ¢ &

Il+12+13+IC Iz+l3+lc 13+IC

}
node x Ry M Ry node y

Ry (13 +I5+0) Ry(I3+() TR-links
-
V(x) - V(Y) =

+V1+Ry(I3+)

Fig. 4. Compaction of a tree-branch segment (free of R-links) into a
super-tree-branch (STB).

A Norton equivalent is used in lieu of the Thevenin model
to facilitate the use of nodal analysis to solve the compact
circuit. An initial path-trace is required to calculate the Norton
resistances. The starting and ending nodes of the STB are re-
tained in the compact circuit equivalent, while the intermediate
nodes are deleted. The folding up of the current sources shown
in Fig. 4 is allowed by source transportation [23] and occurs
naturally during the path-trace. Conceptually, the values of
the current sources are modified so the net current for each
branch is not changed. This figure is used only to illustrate the
concept. We do not actually modify the current values, but we
jump immediately to the model in the last sub-figure, which
is easily obtained during path-tracing.

What may not be immediately obvious is how the compact
circuit can be efficiently formulated. The first step is to decide
which nodes in the main circuit must be retained in the
compact circuit. A node in the main circuit is designated
as an m-node, while the corresponding node that it maps
to in the compact circuit is known as a c-node. The most
obvious m-nodes in the circuit that must be retained are those
with one or more incident resistor links. Other m-nodes that
must be retained are those that root two or more subtrees,
each containing at least one resistor link. This requirement
guarantees that the mutual effects of resistor links on one

~2—u

Note: The voltages used
Rg+ Ry in the current source value

: expressions represent the

VsV, Vy-Vg P S rep
i, K5 oRg dc voltage in (a) when all
P of the resistor loops are
8 open.
5

5 R+ R R3 < Rs
Ri+Ry 1*Ry SRy
v

(b)

Fig. 5. (a) Original dc (AWE) circuit and (b) its compacted equivalent.

another are the same in the compact circuit as in the main
circuit. An m-node that roots two or more subtrees, where
only one subtree contains one or more R-links, need not be
retained since the effects of these subtrees will be reflected in
the Norton currents. Likewise, an m-node that roots two or
more subtrees with no resistor links may be discarded. After
determining the set of c-nodes, the Norton resistances may be
found by summing all resistor values between mapped nodes.
This is accomplished with a single depth-first traversal of the
spanning-tree.

An example of circuit compaction is illustrated in Fig. 5.
It is assumed that Fig. 5(a) is the AWE dc circuit obtained
from an RLC circuit. Note that the compact circuit contains
only four of the original eleven nodes. Node 5 was retained
in the compact circuit since it roots two subtrees that contain
R-links. The topology of the compact circuit does not vary
between moment generations, but the currents of the Norton
sources, shown in Fig. 5(b), must be recomputed between each
generation. This is easily accomplished with a single virtual
path-trace. A more dramatic example of the compaction is
shown in Fig. 6, which illustrates a grid clock line model that
was compacted from about 12,000 nodes to 9 nodes.

C. Formulating the Compact Circuit Equations

The dc solution for the compact circuit is obtained by
formulating and solving the node voltage equations

(12)

Gcc Vec = icc

where G.. is the n x n node-conductance matrix for the
compact circuit, v, the unknown n-vector of compact node
voltages, ic. is an n-vector that contains the sums of Norton
currents at each node, and n is the number of nondatum nodes
in the compact circuit.

The use of a' Norton equivalent was se]ected over the
Thevenin version since it avoids the introduction of voltage-
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Fig. 6. (a) Grid clock distribution net model consisting of about 12,000
segments and (b) compacted equivalent dc circuit. Shaded resistors are the
links.

source current variables in G... This is desirable so that
G will be symmetric and positive-definite, thus allowing a
Cholesky decomposition [31] to be performed. This accom-
plishes the decomposition

G..=LLT, (13)

which is inherently more efficient than LU decomposition.
The higher efficiency of Cholesky decomposition over LU
is primarily for two reasons. First, due to symmetry, only
about one-half of the usual number of floating-point operations
are required. Secondly, no pivoting strategy is required, thus
allowing the use of very efficient matrix storage and ordering
algorithms. RICE uses the reverse Cuthill-McGee technique
[31] for ordering the equations and a vector-based format for
storing and manipulating the matrix.

D. Getting the Final Solution

The formulation of the compact circuit and associated
equations and decomposition is a one-time cost associated

with circuit setup and is performed before any moments are
computed. To generate a set of moments, the circuit is initially
solved via a virtual path-trace (R-links opened). Next, as
illustrated in Fig. 5(b), the Norton currents are calculated,
summed to the right-hand-side of (12), and then a Cholesky
forward- and back-substitution (using L and LT in (13)) yields
the compact circuit node voltages. The node voltages in the
compact circuit correspond to voltages in the original circuit,
so they may be used to directly compute the current for each
R-loop. These currents are substituted into the original circuit
and a second virtual path-trace is performed to produce the
final dc solution.

E. Zero-Resistance STB’s

There is a problem when zero-resistance STB’s are en-
countered, which occurs when one or more voltage sources
and/or inductors is found between successively mapped m-
nodes with no intervening resistance. This often occurs at the
input of a net where one side of the voltage-input is grounded
and the other is connected to a c-node. In such cases, no
valid Norton model can be formulated. One alternative is
to use the Thevenin models, but this destroys the positive-
definite characteristic of G and adds an additional variable
to the system. A better alternative is to apply voltage-source
transportation [23] to fransport the total voltage of the zero-
resistance STB forward into other incident STB’s and incident
R-links. This transportation causes the downstream Norton
models to be modified.

VII. EXTENSION FOR FLOATING NODES & INDUCTOR LOOPS

There are some interconnect models in which floating nodes
or loops of inductors may be encountered. A floating node has
no dc path to ground, thus causing a pure cutset of capacitors in
the circuit graph. A loop of inductors is caused when a closed
path of inductors is specified with no intervening resistance or
capacitance. These problems can be solved by the application
of charge and flux conservation, respectively [27]. Also, it is
desirable to solve these types of circuits in a manner that is
decoupled from the solution of resistor loops, thus preserving
the efficiency of the R-loop solution.

A. Floating Nodes

For an interconnect model, a floating node suggests that
two interconnect nets are capacitively-coupled and one net
has no active driver. This may be true for a line that is driven
by a three-state device in its high-impedance state or for
an interconnect circuit model that is constructed to measure
clock feedthrough. The input to the device is still coupled
by parasitic capacitance to the inactive output, which is
represented by the model shown in Fig. 7(a). The problem with
this circuit topology is that when each capacitor is replaced
by a current source (as required in AWE), an illegal cutset
of current sources is formed, causing one of the capacitor
(current) sources to be placed in the spanning-tree. This
situation can be resolved by applying charge conservation to
the tree-capacitor. This technique for allowing floating nodes
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R R ¢ R R,
Vin
(b)
Fig. 7. (a) Interconnect model containing floating nodes dueto a

tree-capacitor and (b) interconnect model with a loop of inductors.

in AWE was initially presented in [27] with a path-tracing
version presented in [25].

In general, one charge conservation equation must be for-
mulated for each tree-capacitor. So for a model with m
tree-capacitors, a linear m X m system results. For example,
consider the example in Fig. 7(a) where Cj3 is selected as
the tree-capacitor. The voltage across C3 in the dc equiva-
lent circuit can be resolved by solving the following set of
equations:

CsVe, — C4Ve, — CsVg, =0
VC3 + VC4 = ‘/in - VRl - VR') - VRB
Ve, + Vo, = Vin — Ve, — Vr, — Vg, — VR,

2
Note that there are three equations, but only one tree capacitor
(ie., m = 1). The last two (KVL) equations are easily
eliminated in a path-trace by recognizing that C4 and Cs have
been replaced by constant current sources, thus the voltage
drop from Cj to C4 and Cy to Cs is constant, regardless
of any change in the voltage across (5. Mathematically, this
means that the variables Vo4 and Vs can be eliminated
by rewriting the last two equations above in terms of only
V3, thereby effectively eliminating the equations. This can be

accomplishied in a single path-trace, thus producing the m x m

system of équations. Remember that the charge. conservation
equations are written only for the tree capacitors. This implies
that the tree has already been selected by RICE, therefore it
knows which capacitors are in the tree. The tree that is chosen
by RICE is arbitrary and unimportant, though we tend to give
ground capacitors preferential treatment as links since their
voltages map directly to node voltages.

This system is solved by LU-decomposition to solve for the
tree-capacitor voltages, formulated and LU-factored prior to

computing any moments. To compute a generation of moments -

requires two (virtual) path-traces. In the initial trace, the tree-
capacitors are treated as zero-valued voltage sources. A subset

of the results of this path-trace are used to set up the right-
hand-side of the m linear equations. Next, these equations
are solved via a forward- and back-substitution step, resulting
in the actual tree-capacitor voltages. Finally, these voltages
are substituted in place of the zero-values and the circuit
path-traced a second time to yield the final dc solution.

B. Loops of Inductors

Another situation that can occur in certain interconnect
models is a pure loop of inductances. This type of situation
has been encountered in the modeling of backplane or pc-board
interconnects where two devices drive a line simultaneously
and the metal between the drivers is modeled as a lossless
inductive line. An example of a model with inductor loops is
shown in Fig. 7(b). Even though there is some dc resistance
present, it is sometimes considered negligible and excluded
from the model. If the resistance were not excluded, loops
of inductors would be avoided, therefore this is considered a
pathological case. Even so, the solution for loops of inductors
is simply the dual of the floating node (tree capacitor) problem.
A loop of inductors will cause one of the inductors to be
excluded from the spanning-tree (i.e., an inductor link). Since
inductors in AWE are modeled as voltage sources, this again
presents a problem. There is no well-defined dc solution for a
loop of voltage sources. In this case, flux conservation must be
applied to resolve the unknown current of each inductor link.
As in the capacitor case, for m inductor links there will be an
m x m linear system of equations. These are formulated in a
manner similar to the capacitor case, except that we initially
replace each link inductor with a zero-valued current source
and path-trace the circuit to get the preliminary tree-inductor
currents. We use these to formulate the right-hand side of
the equations, solve them, and then substitute the resulting
link-inductor currents in place of the zero values. Finally, the
second path trace yields the final solution.

C. Mixing Loops of Resistors, Loops of
Inductors, and Floating Nodes

If a circuit contains a combination of the three types of
troublesome elements, then they must be solved in a specific
order to guarantee a valid solution. Link inductors must be
solved first, followed by tree capacitors, and then resistor
loops. A loop of inductors can only contain other inductors
and a cutset of capacitors may contain only other capacitors,
so these do not affect each other and are not affected by
changes of current in loop resistors. This decoupling approach
accounts for much of the efficiency and the ability to gracefully
degrade as the topology of interconnect models becomes more
complex.

VII. MATCHING MOMENTS TO APPROXIMATE POLES

Once the moments have been generated, they must be
matched to the reduced-order pole/residue model as discussed
in Section III. Various versions of RICE have included three
different methods for this problem. Consult [19]-[21] for
detailed treatment of the various methods. ‘
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A. The Original Technique

In [6] the moment equations in (6) are analyzed by first
solving the following set of linear equations: to get the
characteristic polynomial

my M Mg-1 ap —myg
my mo my a —Mg+1
. = . (15)
Mg—1 My Mog--2 Qg-1 —M2¢-1
2 -1
ag+a17+ a4+ -4 aqg 7T +77=0 (16)

followed by finding the roots of (16) to yield the dominant
time constants (reciprocal poles) of the system. The residues
can then be obtained from the dominant poles by solving the
equations in (6).

A serious problem with this classical moment-matching
approach is that it may yield unstable models for a large num-
ber of practical interconnect circuits. In many cases (10-20
percent), positive poles were found, which is invalid for
passive interconnect problems. In many other cases, invalid
complex (conjugate) dominant poles for RC circuit models
were found. These problems are often caused by the inherent
instability associated with moment-matching techniques and
numerical noise in the moment values.

B. Constrained Optimization

To bypass this problem, one approach was to force the poles
to have negative real parts since the circuit models were strictly
passive. Initial work along this line lead to the development
of a constrained optimization method to match moments to
the dominant poles [19]. This was done by first performing
a variable substitution, 7 = —e®, where 7 is the reciprocal
pole. This substitution guarantees that any solution will yield
negative poles. After substitution, an unconstrained nonlinear
descent algorithm was used to find the values of the new
variable.

This technique works well for RC problems where all poles
are real, but it was not easily cast into the complex domain
for RLC circuits. Furthermore, it was relatively inefficient for
high orders of approximation (> 4 poles).

C. Moment Shifting

A second approach to avoiding instability involves a
moment-shifting algorithm [20] that applies (13) and (6) to a
shifted set of moments. It first attempts a solution by solving
for the poles as detailed in part A. If it fails to yield a stable
result, then the moments are shifted such that the lowest-order
moment is dropped from the system and the next higher-order
moment is added to the system. In [20], this is shown to be
equivalent to exciting the circuit with less high frequencies
and thereby eliminating the effects of high-frequency poles,
which cause instability. One shift typically yields a stable
solution, but if does not, shifting is allowed to continue until
a solution is found or until shifting is no longer possible
(due to numerical problems). Shifting doesn’t necessarily
guarantee stable results, but so far no circuit models (RC or

RLC) have been encountered for which this method produces
positive poles. Furthermore, empirical results obtained so far
suggests that the method is more accurate than the constrained
approximation technique. More details can be found in [20]
and [21].

D. Selecting the Order of Approximation

One issue that arises in any moment-matching scheme is
the difficulty in quantifying the time-domain waveform errors
and selecting an appropriate order of approximation a priori.
Empirically, for RC interconnect models, it has been observed
that second or third order approximations yield results within
1-2 percent of a transient simulation in over 95 percent of
all cases. There are similar empirical results for RLC circuits
in that no more than 8 poles are required to accurately
characterize a large category of RLC circuit models. However,
this is very dependent on the nature of the RLC model. Low-
loss lines, for example, often require more dominant poles due
to the high frequencies present in the response.

For applications that require higher model accuracy, it is
possible to select the approximation order based on the highest
frequency of interest. This maximum frequency will usually be
known, at least conservatively, for any VLSI, multi-chip mod-
ule or board-level design. This maximum frequency can also
be approximately determined from the fastest signal transition-
time possible for the given interconnect. It is reasonable to
use the fastest signal present on the target design, since only a
conservative estimate is required. Once this transition time is
known, it may be used to determine the maximum frequency
as described in [28].

Armed with this maximum frequency, it is possible to
determine the order of approximation. It has been observed that
as the order of approximation is increased, higher frequency
dominant poles are captured. Therefore, it is reasonable to
assume that increases in order may be halted when a new pole
that is greater in magnitude than the maximum frequency of
interest is found. More detail on this technique and related
material may be found in [28].

IX. ACCURACY AND PERFORMANCE RESULTS

To demonstrate the performance and accuracy, a variety of
circuit models and topologies were tested, including examples
from industry. Both RC and RLC circuit topologies were
considered, including circuits containing resistor loops. When
possible, run times from a SPICE simulator [29] are shown for
a rough comparison. Plots illustrating the accuracy are revealed
for some of the responses. All run-time and memory statistics
presented are from a SUN SPARCGstation 1 equipped with 16
MB of physical memory. Both large and small circuit models
have been tested to show how run time varies with circuit size.
Unless otherwise noted, parsing time has been excluded from
the run times.

A. RC Model Results

Results from three basic types of RC interconnect models
are presented. The first type is the well-known RC-tree topol-
ogy (RC ladder) shown in Fig. 8(a). The second type, shown
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Fig. 8. Examples of the two basic types of RC interconnect circuit models.

TABLE 1
RuN TiMEs ForR Two TypEs oF RC CIrcurr
MopkLs. PSPICE RuN TIMES EXCLUDE PARSING

Circuit  Total Total RICE CPU-Sec PSPICE
Type Nodes Branches Parse Setup Compute Total  Cpu-sec
RC 2,000 4,000 0.49 0.11 0.07 0.67 98.15
Tree 8,000 16,000 2.33 0.48 0.28 0.28  1170.67
Coupled 16,00 4,000 0.58 0.11 0.07 0.76 97.60
RC 64,00 16,000 3.38 0.44 0.30 3.02 908.7
Trees

in Fig. 8(b), is two RC lines coupled by crosstalk capacitance
at every node. Table I displays the run times for each model
for both RICE 3.2 [30] and SPICE [29].

Considering only the setup and compute times, the speed-
up for the larger model was over 1,200x as compared to
the circuit simulation. Furthermore, though memory statistics
are not shown, RICE required less than 20 percent of the
memory required for a circuit simulation. Also note that, as
expected, the run time for the larger model increased linearly
as a function of circuit size.

The waveform accuracy is also excellent as evidenced by
the plots shown in Fig. 9. This plot compares the transient
waveform from PSPICE for a 1-ns input rise-time ramp to
the same for RICE. The plots are indistinguishable at this
resolution. Delay accuracy better than one percent is common
for RC circuit models. In fact, for large circuit models it
is imperative to decrease the maximum allowable time step
in PSPICE, so the results match those from AWE. This is
particularly true for RLC lines where the cumulative numerical
integration truncation error exceeds the AWE time-domain
error for stiff circuits.

The third type of RC circuit is an IBM clock-line model
extracted from a custom I-m CMOS design. It contains 968
uniform RC (URC) segments with 150 fan-out points along
the net, as well as four loops of metal that RICE recognizes as
resistor loops. A reduced representation of this net is shown
in Fig. 10(a). RICE automatically breaks the URC’s into
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Fig. 9. Comparison of the PSPICE waveform and a second-order RICE
approximation for the smaller, coupled RC tree circuit in Table 1. The two
waveforms are indistinguishable in this plot.
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150 fan-out points

Vin E I
(a)
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Fig. 10. (a) Reduced representation of an IBM clock distribution net model

and (b) replacement used for distributed RC segments.

lumped T-segments as illustrated in Fig. 10(b). The number
of segments is a function of signal rise time, but no more
than five T segments are required, even for unrealistically
fast rise times (e.g., 10 ps) [28]. The plot shown in Fig. 11
compares the RICE generated waveform with that of PSPICE
at a selected fan-out point, while Table II compares the run
time and memory required for each. Again, the waveforms
are indistinguishable in this plot.

RICE was installed into PALADIN, a proprietary delay
analysis tool of Texas Instruments. PALADIN analyzes the
RC-interconnect models produced by a post-layout extractor
and evaluates the delay to all fan-out points. Prior to inte-
gration of RICE, PALADIN was requiring over 70 hours of
elapsed time to analyze the many RC nets for a large gate
array. After integration of RICE, run time was reduced to less
than 20 minutes. These are total times that include the database
manipulation and other overhead. Moreover, accuracy was
significantly improved over the old version of PALADIN.
Without RICE, the PALADIN results were off by as much
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Fig. 11. Comparison of the RICE and PSPICE transient waveforms for the

clock line model in Fig. 10.

TABLE 11
EXECUTION STATISTICS FOR IBM CLoCK NET SHOWN IN FIG.11.
CPU Time (sec) Memory (kB)
RICE 3.1 0.39 401
PSPICE 176.53 1,386

as 20 percent from SPICE; with RICE installed, the results
were generally within a few picoseconds of SPICE.

B. Performance on RLC Circuit Models

RICE may be used to analyze RLC circuit models, but
the analysis is much more sensitive to the number of poles
approximated. RC models rarely require more than two or
three dominant poles for high accuracy, independent of the
RC topology. In the RLC case, however, parameters such as
the line loss, capacitive and inductive coupling, and the tran-
sition time of the input, all affect the required approximation
order and sometimes require more robust moment-matching
techniques. Some RLC lines may be accurately approximated
with two or three poles while others may require as many as
14 poles.

Fig. 12 illustrates an RLC model of a section of backplane
(Fig. 12(a)) obtained from Raytheon. Fig. 12(b) shows the
lumped RLC circuit that was provided by the company to
model this section of line. The model consists of a total
of 120 RCL segments and ends at an AC terminator. The
plot in Fig. 13 reveals a comparison of a RICE third-order
approximation with the PSPICE prediction. The waveforms are
almost indistinguishable. Total run time (excluding parsing)
for RICE was 0.04 cpu-seconds, while PSPICE required 23.05
seconds (over 500x speedup). The poles for the model were
obtained via the moment-shifting algorithm [20].

The next RLC model consists of two lines coupled by
crosstalk capacitance as shown in Fig. 14. Each line is modeled
by 28 7 sections with the values shown in the figure. One line
is held at logic low, while the other line is switched. The
result of the RICE and PSPICE simulations is shown in Fig.
15. In this case, an eighth-order approximation was required to

- g i
700 75Q 70Q
Vin ac termination
€ =150pF l R=540
C=150pF

(2)

R L
Vin l- C l l
> Ry
RCL Section

(b)

Fig. 12. (a) Section of backplane modeled by 120 RCL sections. (b)
Lumped model. Each 2-in. setion is modeled by 20 RCL sections
(R = 0.02Q,C = 2.06pF,L = 1.009nH). The 8-in. section is modeled
by 80 RCL sections(R = 0.02€2.C' = 2.31pF.L = 1.30nH).
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Fig. 13. Comparison of RICE and PSPICE transient waveforms for the RCL
lumped circuit model inFig. 12.
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adequately match the PSPICE results. RICE correctly predicts
signals on the line being switched and the crosstalk on the
other line.

C. Performance on Models With Resistor Loops

The last circuit model topology considered is similar to that
shown in Figure 8(b), except resistor loops have been added
to the model. The first model does not contain any resistor
loops, while all other models contain 5000 branches, 2000
nodes, and 500 resistor loops. The placement of the loops
in all other models is varied to demonstrate degradation in
performance that occurs due to increasing circuit complexity.
Run-time results for RICE, PSPICE, and a nodal analysis
version of AWE are shown in Table III. The nodal analysis
version of AWE is a special version of RICE that performs
the dc analyses on the complete uncompacted circuit using
the Cholesky decomposition described earlier. The relative
complexity column is an estimate of the relative topological
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Fig. 14. Two RLCG lines coupled by capacitance at every node. 28 =
sections for each line.

6.0 — RICE(8th-order) &
- 4« PSPICE for line-1
5.0 — /\VAV
] \/ A AN
40 — Input
S30 —
(] N
o]
520
'g ,
10 — RICE(8th-order) &
J .~ PSPICE for coupled line
00 —
10 T
0 | 15
Time(ns)
Fig. 15. Comparison of the RICE and PSPICE transient waveforms for the

coupled lines in Fig. 14.The response for both lines is illustrated.

complexity of each circuit normalized against the second
circuit. The randomness in placement of the loops is increased
with each circuit. The second circuit in the table is similar to
Fig. 8(b), except it contains regularly-spaced resistors (loops)
at 500 nodes. The remaining circuits have the 500 resistors
distributed in a more random fashion. The randomness and
degree of nonplanarity of the loops is increased with each
circuit.

In all cases, RICE’s path-tracing and compaction
performance is better than the nodal analysis AWE version
and the circuit simulation approach. The performance of
all degrades as the randomness of the loops increases. This
is expected since all are solving a circuit matrix, however
RICE’s matrix is much smaller since it compacts the circuit
prior to formulation. The performance advantage of RICE
over the nodal analysis version for RC trees with no loops
is always about 2.5 to 1 for all cases we tested. Both nodal
analysis and path-tracing for trees can be done with linear
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TABLE III
RUN-TIME ResuLTS (IN CPU-SECS) FOR RC CIRcUITS SIMILAR TO TOPOLOGY IN
FiG 8(b), Excepr ALL Circuits CONTAIN 5,000 BRANCHES AND 2,000

Circuit Relative RICE w/Path Nodal Transient
Complexity Tracing & Analysis Analysis
Compaction AWE
No R-Loops o 0.19 0.48 126.57
Regular 1 0.55 0.57 113.15
R-loops
Both Regular 7 2.06 3.07 98.48
and Random
More 14 5.00 6.05 3126.82
Random
Very Random 36 14.07 51.77 32137.28
complexity, but nodal analysis involves inherently more

floating point operations than path-tracing.

The performance advantage of circuit compaction for a
large number of regularly spaced resistor loops is not sig-
nificant. The reason for this is neither the compacted cir-
cuit matrix nor the nodal analysis matrix suffer from sig-
nificant fill-ins, since the matrices are banded in nature.
For this type of regular topology, the performance gained
from solving a compacted matrix is offset by the two path
traces required in circuit compaction. For more complex
topologies there is a significant advantage. This is primarily
due to the avoidance of performing operations on fill-ins
in the larger circuit matrix. Circuit compaction eliminates
many fill-ins. Remember that the nodal analysis used in
the nodal analysis version of RICE performs Cholesky de-
composition and therefore does not perform any pivoting
operations. It is therefore inherently more efficient than a
standard matrix decomposition. The initial matrix is obtained
from the same tree RICE selected in the path-tracing ver-
sion.

X. CONCLUSION

By focusing AWE specifically on the passive interconnect
problem, large gains in speed, accuracy, and model stability
have been achieved. RICE’s application to numerous industry
examples have demonstrated its effectiveness for a wide
variety of timing analysis problems. Furthermore, while RICE
is efficient in comparison to a circuit simulation, it is more
important to point out that it produces analytical models for
interconnect circuits that completely characterize the transfer
and driving-point functions of the circuit. This transfer func-
tion may then be used to produce the output waveform with
any type of input.
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