Project

General

Profile

Web tech » History » Revision 15

Revision 14 (jun chen, 02/12/2025 10:55 AM) → Revision 15/29 (jun chen, 02/13/2025 03:05 PM)

# Web tech 

 {{toc}} 


 ## How to visualize data: 

 D3 ref: https://observablehq.com/@d3/gallery    ,    https://johan.github.io/d3/ex/ 
 Plotly ref: https://plotly.com/javascript/ 

 --- 

 ### **交互功能对比** 
 | **功能**                 | **JavaScript/Plotly** | **Python/Plotly** |     **JavaScript/d3**    | 
 |------------------------|-----------------------|-------------------|----------------------| 
 | 缩放/平移                | ✔️                      | ✔️                 | ✔️                    | 
 | 悬停显示数值             | ✔️                      | ✔️                 | ✔️                    | 
 | 数据点高亮               | ✔️                      | ✔️                 | ✔️                    | 
 | 导出为图片(PNG/JPEG) | ✔️                      | ✔️                 |✔️                    |  
 | 动态更新数据             | ✔️(需额外代码)        | ❌                 | ✔️                    | 
 | 旧firefox支持            | ❌(globalthis)        | ?                  | ✔️                    | 

 --- 




 ### js d3 csv 

 ```  

 // 设置图表的尺寸和边距 
 const margin = {top: 20, right: 30, bottom: 30, left: 40}, 
       width = 960 - margin.left - margin.right, 
       height = 500 - margin.top - margin.bottom; 

 // 设置SVG的尺寸 
 const svg = d3.select("#chart").append("svg") 
     .attr("width", width + margin.left + margin.right) 
     .attr("height", height + margin.top + margin.bottom) 
   .append("g") 
     .attr("transform", `translate(${margin.left},${margin.top})`); 

 // 设置比例尺 
 const x = d3.scaleLinear().range([0, width]); 
 const y = d3.scaleLinear().range([height, 0]); 

 // 定义折线生成器 
 const line = d3.line() 
     .x((d, i) => x(i)) 
     .y(d => y(d.observation)); 

 // 读取CSV文件 
 d3.csv("data.csv").then(data => { 
     // 转换数据类型 
     data.forEach((d, i) => { 
         d.observation = +d.observation; 
         d.index = i; 
     }); 

     // 设置比例尺的域 
     x.domain([0, data.length - 1]); 
     y.domain([0, d3.max(data, d => d.observation)]); 

     // 添加折线 
     svg.append("path") 
         .datum(data) 
         .attr("class", "line") 
         .attr("d", line); 

     // 添加点 
     svg.selectAll(".dot") 
         .data(data) 
       .enter().append("circle") 
         .attr("class", "dot") 
         .attr("cx", (d, i) => x(i)) 
         .attr("cy", d => y(d.observation)) 
         .attr("r", 5) 
         .on("mouseover", function(event, d) { 
             tooltip.transition() 
                 .duration(200) 
                 .style("opacity", .9); 
             tooltip.html(`Observation: ${d.observation}<br>Label: ${d.label}`) 
                 .style("left", (event.pageX + 5) + "px") 
                 .style("top", (event.pageY - 28) + "px"); 
         }) 
         .on("mouseout", function(d) { 
             tooltip.transition() 
                 .duration(500) 
                 .style("opacity", 0); 
         }); 

     // 添加X轴 
     svg.append("g") 
         .attr("transform", `translate(0,${height})`) 
         .call(d3.axisBottom(x)); 

     // 添加Y轴 
     svg.append("g") 
         .call(d3.axisLeft(y)); 
 }); 

 // 添加提示工具 
 const tooltip = d3.select("body").append("div") 
     .attr("class", "tooltip") 
     .style("opacity", 0); 
 ``` 

 ```  
 <!DOCTYPE html> 
 <html lang="en"> 
 <head> 
     <meta charset="UTF-8"> 
     <title>D3.js Line Chart</title> 
     <script src="https://d3js.org/d3.v7.min.js"></script> 
     <style> 
         .line { 
             fill: none; 
             stroke: steelblue; 
             stroke-width: 2px; 
         } 
         .dot { 
             fill: steelblue; 
             stroke: #fff; 
         } 
         .tooltip { 
             position: absolute; 
             text-align: center; 
             width: 120px; 
             height: auto; 
             padding: 5px; 
             font: 12px sans-serif; 
             background: lightsteelblue; 
             border: 0px; 
             border-radius: 8px; 
             pointer-events: none; 
         } 
     </style> 
 </head> 
 <body> 
     <div id="chart"></div> 
     <script src="script.js"></script> 
 </body> 
 </html> 

 ``` 



 ### js d3 内嵌数据显示折线 

 {{collapse(show code...) 

 ```  
 <!DOCTYPE html> 
 <html lang="en"> 
 <head> 
     <meta charset="UTF-8"> 
     <meta name="viewport" content="width=device-width, initial-scale=1.0"> 
     <title>分段填充折线图</title> 
     <script src="https://d3js.org/d3.v7.min.js"></script> 
     <style> 
         .tooltip { 
             position: absolute; 
             background-color: rgba(255, 255, 255, 0.9); 
             border: 1px solid #ccc; 
             padding: 5px; 
             font-size: 12px; 
             pointer-events: none; 
             opacity: 0; 
         } 
         .line { 
             fill: none; 
             stroke: black; 
             stroke-width: 2; 
         } 
     </style> 
 </head> 
 <body> 
     <div id="chart"></div> 
     <div class="tooltip" id="tooltip"></div> 

     <script> 
         // 示例数据 
         const data = [ 
             { time: "2025-01-01", value: 10, description: "说明1" }, 
             { time: "2025-01-02", value: 15, description: "说明2" }, 
             { time: "2025-01-03", value: 20, description: "说明3" }, 
             { time: "2025-01-04", value: 25, description: "说明4" }, 
             { time: "2025-01-05", value: 30, description: "说明5" }, 
             { time: "2025-01-06", value: 35, description: "说明6" }, 
             { time: "2025-01-07", value: 40, description: "说明7" }, 
             { time: "2025-01-08", value: 45, description: "说明8" }, 
             { time: "2025-01-09", value: 50, description: "说明9" }, 
             { time: "2025-01-10", value: 55, description: "说明10" }, 
             { time: "2025-01-11", value: 60, description: "说明11" }, 
             { time: "2025-01-12", value: 65, description: "说明12" }, 
             { time: "2025-01-13", value: 70, description: "说明13" }, 
             { time: "2025-01-14", value: 75, description: "说明14" }, 
             { time: "2025-01-15", value: 80, description: "说明15" }, 
             { time: "2025-01-16", value: 85, description: "说明16" }, 
             { time: "2025-01-17", value: 90, description: "说明17" }, 
             { time: "2025-01-18", value: 95, description: "说明18" }, 
             { time: "2025-01-19", value: 100, description: "说明19" }, 
             { time: "2025-01-20", value: 105, description: "说明20" } 
         ]; 

         // 设置图表尺寸 
         const margin = { top: 20, right: 30, bottom: 30, left: 40 }; 
         const width = 800 - margin.left - margin.right; 
         const height = 400 - margin.top - margin.bottom; 

         // 创建 SVG 容器 
         const svg = d3.select("#chart") 
             .append("svg") 
             .attr("width", width + margin.left + margin.right) 
             .attr("height", height + margin.top + margin.bottom) 
             .append("g") 
             .attr("transform", `translate(${margin.left},${margin.top})`); 

         // 解析时间格式 
         const parseTime = d3.timeParse("%Y-%m-%d"); 

         // 格式化数据 
         data.forEach(d => { 
             d.time = parseTime(d.time); 
             d.value = +d.value; 
         }); 

         // 设置比例尺 
         const x = d3.scaleTime() 
             .domain(d3.extent(data, d => d.time)) 
             .range([0, width]); 

         const y = d3.scaleLinear() 
             .domain([0, d3.max(data, d => d.value)]) 
             .range([height, 0]); 

         // 添加 X 轴 
         svg.append("g") 
             .attr("transform", `translate(0,${height})`) 
             .call(d3.axisBottom(x)); 

         // 添加 Y 轴 
         svg.append("g") 
             .call(d3.axisLeft(y)); 

         // 创建折线生成器 
         const line = d3.line() 
             .x(d => x(d.time)) 
             .y(d => y(d.value)); 

         // 绘制折线 
         svg.append("path") 
             .datum(data) 
             .attr("class", "line") 
             .attr("d", line); 

         // 分段填充颜色 
         const first10 = data.slice(0, 10); 
         const last10 = data.slice(-10); 
         const middle = data.slice(10, -10); 

         // 填充前十个时间段的绿色区域 
         svg.append("path") 
             .datum(first10) 
             .attr("fill", "green") 
             .attr("opacity", 0.3) 
             .attr("d", d3.area() 
                 .x(d => x(d.time)) 
                 .y0(height) 
                 .y1(d => y(d.value)) 
             ); 

         // 填充中间时间段的蓝色区域 
         svg.append("path") 
             .datum(middle) 
             .attr("fill", "blue") 
             .attr("opacity", 0.3) 
             .attr("d", d3.area() 
                 .x(d => x(d.time)) 
                 .y0(height) 
                 .y1(d => y(d.value)) 
             ); 

         // 填充后十个时间段的红色区域 
         svg.append("path") 
             .datum(last10) 
             .attr("fill", "red") 
             .attr("opacity", 0.3) 
             .attr("d", d3.area() 
                 .x(d => x(d.time)) 
                 .y0(height) 
                 .y1(d => y(d.value)) 
             ); 

         // 添加悬停交互 
         const tooltip = d3.select("#tooltip"); 

         svg.selectAll(".dot") 
             .data(data) 
             .enter() 
             .append("circle") 
             .attr("class", "dot") 
             .attr("cx", d => x(d.time)) 
             .attr("cy", d => y(d.value)) 
             .attr("r", 5) 
             .attr("fill", "steelblue") 
             .on("mouseover", (event, d) => { 
                 tooltip.style("opacity", 1) 
                     .html(`时间: ${d3.timeFormat("%Y-%m-%d")(d.time)}<br>数值: ${d.value}<br>说明: ${d.description}`) 
                     .style("left", `${event.pageX + 5}px`) 
                     .style("top", `${event.pageY - 20}px`); 
             }) 
             .on("mouseout", () => { 
                 tooltip.style("opacity", 0); 
             }); 
     </script> 
 </body> 
 </html> 
 ``` 

 }} 

 ### JavaScript + Plotly(纯前端实现) 

 {{collapse(show code...) 

 ```html 
 <!DOCTYPE html> 
 <html> 
 <head> 
     <title>交互式图表</title> 
     <!-- 引入 Plotly.js --> 
     <script src="https://cdn.plot.ly/plotly-2.24.1.min.js"></script> 
 </head> 
 <body> 
     <div id="chart"></div> 

     <script> 
         // 读取CSV文件(假设文件名为 data.csv) 
         fetch('data.csv') 
             .then(response => response.text()) 
             .then(csvText => { 
                 // 解析CSV数据 
                 const rows = csvText.split('\n'); 
                 const x = [], y = []; 
                 rows.forEach((row, index) => { 
                     if (index === 0) return; // 跳过标题行 
                     const [xVal, yVal] = row.split(','); 
                     x.push(parseFloat(xVal)); 
                     y.push(parseFloat(yVal)); 
                 }); 

                 // 绘制图表 
                 Plotly.newPlot('chart', [{ 
                     x: x, 
                     y: y, 
                     type: 'scatter', 
                     mode: 'lines+markers', 
                     marker: { color: 'blue' }, 
                     line: { shape: 'spline' } 
                 }], { 
                     title: '交互式数据图表', 
                     xaxis: { title: 'X轴' }, 
                     yaxis: { title: 'Y轴' }, 
                     hovermode: 'closest' 
                 }); 
             }); 
     </script> 
 </body> 
 </html> 
 ``` 
 }} 

 #### 使用步骤: 
 1. 将CSV文件命名为 `data.csv`,格式如下: 
    ```csv 
    x,y 
    1,5 
    2,3 
    3,7 
    4,2 
    5,8 
    ``` 
 2. 将HTML文件和 `data.csv` 放在同一目录下,用浏览器打开HTML文件。 
 3. 效果:支持**缩放、悬停显示数值、拖拽平移**等交互。 

 --- 

 ### Python + Plotly(生成独立HTML文件) 
 #### 特点:适合Python用户,自动化生成图表文件。 

 {{collapse(show code...) 
 ```python 
 import pandas as pd 
 import plotly.express as px 

 # 1. 读取CSV文件 
 df = pd.read_csv("data.csv") 

 # 2. 创建交互式图表 
 fig = px.line( 
     df, x='x', y='y', 
     title='Python生成的交互式图表', 
     markers=True,    # 显示数据点 
     line_shape='spline'    # 平滑曲线 
 ) 

 # 3. 自定义悬停效果和样式 
 fig.update_traces( 
     hoverinfo='x+y',    # 悬停显示x和y值 
     line=dict(width=2, color='royalblue'), 
     marker=dict(size=8, color='firebrick') 
 ) 

 # 4. 保存为HTML文件 
 fig.write_html("interactive_chart.html") 
 ``` 
 }} 

 #### 使用步骤: 
 1. 安装依赖: 
    ```bash 
    pip install pandas plotly 
    ``` 
 2. 运行代码后,生成 `interactive_chart.html`,用浏览器打开即可看到图表。 

 ### **进阶方案(可选)** 
 1. **动态数据加载**(JavaScript): 

 {{collapse(View details...) 
    ```html 
    <input type="file" id="csvFile" accept=".csv"> 
    <div id="chart"></div> 
    <script> 
      document.getElementById('csvFile').addEventListener('change', function(e) { 
        const file = e.target.files[0]; 
        const reader = new FileReader(); 
        reader.onload = function(e) { 
          // 解析并绘制图表(代码同方法一) 
        }; 
        reader.readAsText(file); 
      }); 
    </script> 
    ``` 
 }} 
    - 用户可上传任意CSV文件,实时生成图表。 


 2. **添加控件**(Python + Dash): 
 {{collapse(View details...) 
    ```python 
    from dash import Dash, dcc, html 
    import pandas as pd 
    import plotly.express as px 

    app = Dash(__name__) 
    df = pd.read_csv("data.csv") 

    app.layout = html.Div([ 
        dcc.Graph( 
            id='live-chart', 
            figure=px.scatter(df, x='x', y='y', title='Dash动态图表') 
        ), 
        html.Button('更新数据', id='update-button') 
    ]) 

    if __name__ == '__main__': 
        app.run_server(debug=True) 
    ``` 
 }} 

    - 运行后访问 `http://localhost:8050`,支持动态交互和按钮触发操作。 

 ---