Project

General

Profile

Web tech » History » Version 2

jun chen, 02/11/2025 04:12 PM

1 1 jun chen
# Web tech
2
3
4
``` 
5
<!DOCTYPE html>
6
<html lang="en">
7
<head>
8
    <meta charset="UTF-8">
9
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
10
    <title>分段填充折线图</title>
11
    <script src="https://d3js.org/d3.v7.min.js"></script>
12
    <style>
13
        .tooltip {
14
            position: absolute;
15
            background-color: rgba(255, 255, 255, 0.9);
16
            border: 1px solid #ccc;
17
            padding: 5px;
18
            font-size: 12px;
19
            pointer-events: none;
20
            opacity: 0;
21
        }
22
        .line {
23
            fill: none;
24
            stroke: black;
25
            stroke-width: 2;
26
        }
27
    </style>
28
</head>
29
<body>
30
    <div id="chart"></div>
31
    <div class="tooltip" id="tooltip"></div>
32
33
    <script>
34
        // 示例数据
35
        const data = [
36
            { time: "2025-01-01", value: 10, description: "说明1" },
37
            { time: "2025-01-02", value: 15, description: "说明2" },
38
            { time: "2025-01-03", value: 20, description: "说明3" },
39
            { time: "2025-01-04", value: 25, description: "说明4" },
40
            { time: "2025-01-05", value: 30, description: "说明5" },
41
            { time: "2025-01-06", value: 35, description: "说明6" },
42
            { time: "2025-01-07", value: 40, description: "说明7" },
43
            { time: "2025-01-08", value: 45, description: "说明8" },
44
            { time: "2025-01-09", value: 50, description: "说明9" },
45
            { time: "2025-01-10", value: 55, description: "说明10" },
46
            { time: "2025-01-11", value: 60, description: "说明11" },
47
            { time: "2025-01-12", value: 65, description: "说明12" },
48
            { time: "2025-01-13", value: 70, description: "说明13" },
49
            { time: "2025-01-14", value: 75, description: "说明14" },
50
            { time: "2025-01-15", value: 80, description: "说明15" },
51
            { time: "2025-01-16", value: 85, description: "说明16" },
52
            { time: "2025-01-17", value: 90, description: "说明17" },
53
            { time: "2025-01-18", value: 95, description: "说明18" },
54
            { time: "2025-01-19", value: 100, description: "说明19" },
55
            { time: "2025-01-20", value: 105, description: "说明20" }
56
        ];
57
58
        // 设置图表尺寸
59
        const margin = { top: 20, right: 30, bottom: 30, left: 40 };
60
        const width = 800 - margin.left - margin.right;
61
        const height = 400 - margin.top - margin.bottom;
62
63
        // 创建 SVG 容器
64
        const svg = d3.select("#chart")
65
            .append("svg")
66
            .attr("width", width + margin.left + margin.right)
67
            .attr("height", height + margin.top + margin.bottom)
68
            .append("g")
69
            .attr("transform", `translate(${margin.left},${margin.top})`);
70
71
        // 解析时间格式
72
        const parseTime = d3.timeParse("%Y-%m-%d");
73
74
        // 格式化数据
75
        data.forEach(d => {
76
            d.time = parseTime(d.time);
77
            d.value = +d.value;
78
        });
79
80
        // 设置比例尺
81
        const x = d3.scaleTime()
82
            .domain(d3.extent(data, d => d.time))
83
            .range([0, width]);
84
85
        const y = d3.scaleLinear()
86
            .domain([0, d3.max(data, d => d.value)])
87
            .range([height, 0]);
88
89
        // 添加 X 轴
90
        svg.append("g")
91
            .attr("transform", `translate(0,${height})`)
92
            .call(d3.axisBottom(x));
93
94
        // 添加 Y 轴
95
        svg.append("g")
96
            .call(d3.axisLeft(y));
97
98
        // 创建折线生成器
99
        const line = d3.line()
100
            .x(d => x(d.time))
101
            .y(d => y(d.value));
102
103
        // 绘制折线
104
        svg.append("path")
105
            .datum(data)
106
            .attr("class", "line")
107
            .attr("d", line);
108
109
        // 分段填充颜色
110
        const first10 = data.slice(0, 10);
111
        const last10 = data.slice(-10);
112
        const middle = data.slice(10, -10);
113
114
        // 填充前十个时间段的绿色区域
115
        svg.append("path")
116
            .datum(first10)
117
            .attr("fill", "green")
118
            .attr("opacity", 0.3)
119
            .attr("d", d3.area()
120
                .x(d => x(d.time))
121
                .y0(height)
122
                .y1(d => y(d.value))
123
            );
124
125
        // 填充中间时间段的蓝色区域
126
        svg.append("path")
127
            .datum(middle)
128
            .attr("fill", "blue")
129
            .attr("opacity", 0.3)
130
            .attr("d", d3.area()
131
                .x(d => x(d.time))
132
                .y0(height)
133
                .y1(d => y(d.value))
134
            );
135
136
        // 填充后十个时间段的红色区域
137
        svg.append("path")
138
            .datum(last10)
139
            .attr("fill", "red")
140
            .attr("opacity", 0.3)
141
            .attr("d", d3.area()
142
                .x(d => x(d.time))
143
                .y0(height)
144
                .y1(d => y(d.value))
145
            );
146
147
        // 添加悬停交互
148
        const tooltip = d3.select("#tooltip");
149
150
        svg.selectAll(".dot")
151
            .data(data)
152
            .enter()
153
            .append("circle")
154
            .attr("class", "dot")
155
            .attr("cx", d => x(d.time))
156
            .attr("cy", d => y(d.value))
157
            .attr("r", 5)
158
            .attr("fill", "steelblue")
159
            .on("mouseover", (event, d) => {
160
                tooltip.style("opacity", 1)
161
                    .html(`时间: ${d3.timeFormat("%Y-%m-%d")(d.time)}<br>数值: ${d.value}<br>说明: ${d.description}`)
162
                    .style("left", `${event.pageX + 5}px`)
163
                    .style("top", `${event.pageY - 20}px`);
164
            })
165
            .on("mouseout", () => {
166
                tooltip.style("opacity", 0);
167
            });
168
    </script>
169
</body>
170
</html>
171
```
172
173 2 jun chen
## 以下是使用 **JavaScript** 和 **Python** 分别实现交互式网页图表的两种方法,包含完整代码和步骤说明:
174 1 jun chen
175
---
176
177
### **方法一:JavaScript + Plotly(纯前端实现)**
178
#### 特点:直接在浏览器中运行,无需后端,适合快速展示。
179 2 jun chen
180 1 jun chen
```html
181
<!DOCTYPE html>
182
<html>
183
<head>
184
    <title>交互式图表</title>
185
    <!-- 引入 Plotly.js -->
186
    <script src="https://cdn.plot.ly/plotly-2.24.1.min.js"></script>
187
</head>
188
<body>
189
    <div id="chart"></div>
190
191
    <script>
192
        // 读取CSV文件(假设文件名为 data.csv)
193
        fetch('data.csv')
194
            .then(response => response.text())
195
            .then(csvText => {
196
                // 解析CSV数据
197
                const rows = csvText.split('\n');
198
                const x = [], y = [];
199
                rows.forEach((row, index) => {
200
                    if (index === 0) return; // 跳过标题行
201
                    const [xVal, yVal] = row.split(',');
202
                    x.push(parseFloat(xVal));
203
                    y.push(parseFloat(yVal));
204
                });
205
206
                // 绘制图表
207
                Plotly.newPlot('chart', [{
208
                    x: x,
209
                    y: y,
210
                    type: 'scatter',
211
                    mode: 'lines+markers',
212
                    marker: { color: 'blue' },
213
                    line: { shape: 'spline' }
214
                }], {
215
                    title: '交互式数据图表',
216
                    xaxis: { title: 'X轴' },
217
                    yaxis: { title: 'Y轴' },
218
                    hovermode: 'closest'
219
                });
220
            });
221
    </script>
222
</body>
223
</html>
224
```
225
226
#### 使用步骤:
227
1. 将CSV文件命名为 `data.csv`,格式如下:
228
   ```csv
229
   x,y
230
   1,5
231
   2,3
232
   3,7
233
   4,2
234
   5,8
235
   ```
236
2. 将HTML文件和 `data.csv` 放在同一目录下,用浏览器打开HTML文件。
237
3. 效果:支持**缩放、悬停显示数值、拖拽平移**等交互。
238
239
---
240
241
### **方法二:Python + Plotly(生成独立HTML文件)**
242
#### 特点:适合Python用户,自动化生成图表文件。
243 2 jun chen
244 1 jun chen
```python
245
import pandas as pd
246
import plotly.express as px
247
248
# 1. 读取CSV文件
249
df = pd.read_csv("data.csv")
250
251
# 2. 创建交互式图表
252
fig = px.line(
253
    df, x='x', y='y',
254
    title='Python生成的交互式图表',
255
    markers=True,  # 显示数据点
256
    line_shape='spline'  # 平滑曲线
257
)
258
259
# 3. 自定义悬停效果和样式
260
fig.update_traces(
261
    hoverinfo='x+y',  # 悬停显示x和y值
262
    line=dict(width=2, color='royalblue'),
263
    marker=dict(size=8, color='firebrick')
264
)
265
266
# 4. 保存为HTML文件
267
fig.write_html("interactive_chart.html")
268
```
269
270
#### 使用步骤:
271
1. 安装依赖:
272
   ```bash
273
   pip install pandas plotly
274
   ```
275
2. 运行代码后,生成 `interactive_chart.html`,用浏览器打开即可看到图表。
276
277
---
278
279
### **交互功能对比**
280
| **功能**               | **JavaScript/Plotly** | **Python/Plotly** |
281
|------------------------|-----------------------|-------------------|
282
| 缩放/平移              | ✔️                    | ✔️                |
283
| 悬停显示数值           | ✔️                    | ✔️                |
284
| 数据点高亮             | ✔️                    | ✔️                |
285
| 导出为图片(PNG/JPEG) | ✔️                    | ✔️                |
286
| 动态更新数据           | ✔️(需额外代码)      | ❌                |
287
288
---
289
290
### **进阶方案(可选)**
291
1. **动态数据加载**(JavaScript):
292
   ```html
293
   <input type="file" id="csvFile" accept=".csv">
294
   <div id="chart"></div>
295
   <script>
296
     document.getElementById('csvFile').addEventListener('change', function(e) {
297
       const file = e.target.files[0];
298
       const reader = new FileReader();
299
       reader.onload = function(e) {
300
         // 解析并绘制图表(代码同方法一)
301
       };
302
       reader.readAsText(file);
303
     });
304
   </script>
305
   ```
306
   - 用户可上传任意CSV文件,实时生成图表。
307
308
2. **添加控件**(Python + Dash):
309
   ```python
310
   from dash import Dash, dcc, html
311
   import pandas as pd
312
   import plotly.express as px
313
314
   app = Dash(__name__)
315
   df = pd.read_csv("data.csv")
316
317
   app.layout = html.Div([
318
       dcc.Graph(
319
           id='live-chart',
320
           figure=px.scatter(df, x='x', y='y', title='Dash动态图表')
321
       ),
322
       html.Button('更新数据', id='update-button')
323
   ])
324
325
   if __name__ == '__main__':
326
       app.run_server(debug=True)
327
   ```
328
   - 运行后访问 `http://localhost:8050`,支持动态交互和按钮触发操作。
329
330
---
331
332
### **最终效果示例**
333
![交互式图表示例](https://plotly.com/javascript/static/images/line-chart.png)
334
335
选择适合你的场景快速实现吧!