Web tech » History » Revision 6
Revision 5 (jun chen, 02/12/2025 10:44 AM) → Revision 6/29 (jun chen, 02/12/2025 10:45 AM)
# Web tech {{toc}} ## How to visualize data: D3 ref: https://observablehq.com/@d3/gallery , https://johan.github.io/d3/ex/ Plotly ref: https://plotly.com/javascript/ ### js d3 内嵌数据显示折线 {{collapse(show code...) ``` <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>分段填充折线图</title> <script src="https://d3js.org/d3.v7.min.js"></script> <style> .tooltip { position: absolute; background-color: rgba(255, 255, 255, 0.9); border: 1px solid #ccc; padding: 5px; font-size: 12px; pointer-events: none; opacity: 0; } .line { fill: none; stroke: black; stroke-width: 2; } </style> </head> <body> <div id="chart"></div> <div class="tooltip" id="tooltip"></div> <script> // 示例数据 const data = [ { time: "2025-01-01", value: 10, description: "说明1" }, { time: "2025-01-02", value: 15, description: "说明2" }, { time: "2025-01-03", value: 20, description: "说明3" }, { time: "2025-01-04", value: 25, description: "说明4" }, { time: "2025-01-05", value: 30, description: "说明5" }, { time: "2025-01-06", value: 35, description: "说明6" }, { time: "2025-01-07", value: 40, description: "说明7" }, { time: "2025-01-08", value: 45, description: "说明8" }, { time: "2025-01-09", value: 50, description: "说明9" }, { time: "2025-01-10", value: 55, description: "说明10" }, { time: "2025-01-11", value: 60, description: "说明11" }, { time: "2025-01-12", value: 65, description: "说明12" }, { time: "2025-01-13", value: 70, description: "说明13" }, { time: "2025-01-14", value: 75, description: "说明14" }, { time: "2025-01-15", value: 80, description: "说明15" }, { time: "2025-01-16", value: 85, description: "说明16" }, { time: "2025-01-17", value: 90, description: "说明17" }, { time: "2025-01-18", value: 95, description: "说明18" }, { time: "2025-01-19", value: 100, description: "说明19" }, { time: "2025-01-20", value: 105, description: "说明20" } ]; // 设置图表尺寸 const margin = { top: 20, right: 30, bottom: 30, left: 40 }; const width = 800 - margin.left - margin.right; const height = 400 - margin.top - margin.bottom; // 创建 SVG 容器 const svg = d3.select("#chart") .append("svg") .attr("width", width + margin.left + margin.right) .attr("height", height + margin.top + margin.bottom) .append("g") .attr("transform", `translate(${margin.left},${margin.top})`); // 解析时间格式 const parseTime = d3.timeParse("%Y-%m-%d"); // 格式化数据 data.forEach(d => { d.time = parseTime(d.time); d.value = +d.value; }); // 设置比例尺 const x = d3.scaleTime() .domain(d3.extent(data, d => d.time)) .range([0, width]); const y = d3.scaleLinear() .domain([0, d3.max(data, d => d.value)]) .range([height, 0]); // 添加 X 轴 svg.append("g") .attr("transform", `translate(0,${height})`) .call(d3.axisBottom(x)); // 添加 Y 轴 svg.append("g") .call(d3.axisLeft(y)); // 创建折线生成器 const line = d3.line() .x(d => x(d.time)) .y(d => y(d.value)); // 绘制折线 svg.append("path") .datum(data) .attr("class", "line") .attr("d", line); // 分段填充颜色 const first10 = data.slice(0, 10); const last10 = data.slice(-10); const middle = data.slice(10, -10); // 填充前十个时间段的绿色区域 svg.append("path") .datum(first10) .attr("fill", "green") .attr("opacity", 0.3) .attr("d", d3.area() .x(d => x(d.time)) .y0(height) .y1(d => y(d.value)) ); // 填充中间时间段的蓝色区域 svg.append("path") .datum(middle) .attr("fill", "blue") .attr("opacity", 0.3) .attr("d", d3.area() .x(d => x(d.time)) .y0(height) .y1(d => y(d.value)) ); // 填充后十个时间段的红色区域 svg.append("path") .datum(last10) .attr("fill", "red") .attr("opacity", 0.3) .attr("d", d3.area() .x(d => x(d.time)) .y0(height) .y1(d => y(d.value)) ); // 添加悬停交互 const tooltip = d3.select("#tooltip"); svg.selectAll(".dot") .data(data) .enter() .append("circle") .attr("class", "dot") .attr("cx", d => x(d.time)) .attr("cy", d => y(d.value)) .attr("r", 5) .attr("fill", "steelblue") .on("mouseover", (event, d) => { tooltip.style("opacity", 1) .html(`时间: ${d3.timeFormat("%Y-%m-%d")(d.time)}<br>数值: ${d.value}<br>说明: ${d.description}`) .style("left", `${event.pageX + 5}px`) .style("top", `${event.pageY - 20}px`); }) .on("mouseout", () => { tooltip.style("opacity", 0); }); </script> </body> </html> ``` }} ### 以下是使用 **JavaScript** 和 **Python** 分别实现交互式网页图表的两种方法,包含完整代码和步骤说明: --- ### **方法一:JavaScript + Plotly(纯前端实现)** #### 特点:直接在浏览器中运行,无需后端,适合快速展示。 ```html <!DOCTYPE html> <html> <head> <title>交互式图表</title> <!-- 引入 Plotly.js --> <script src="https://cdn.plot.ly/plotly-2.24.1.min.js"></script> </head> <body> <div id="chart"></div> <script> // 读取CSV文件(假设文件名为 data.csv) fetch('data.csv') .then(response => response.text()) .then(csvText => { // 解析CSV数据 const rows = csvText.split('\n'); const x = [], y = []; rows.forEach((row, index) => { if (index === 0) return; // 跳过标题行 const [xVal, yVal] = row.split(','); x.push(parseFloat(xVal)); y.push(parseFloat(yVal)); }); // 绘制图表 Plotly.newPlot('chart', [{ x: x, y: y, type: 'scatter', mode: 'lines+markers', marker: { color: 'blue' }, line: { shape: 'spline' } }], { title: '交互式数据图表', xaxis: { title: 'X轴' }, yaxis: { title: 'Y轴' }, hovermode: 'closest' }); }); </script> </body> </html> ``` #### 使用步骤: 1. 将CSV文件命名为 `data.csv`,格式如下: ```csv x,y 1,5 2,3 3,7 4,2 5,8 ``` 2. 将HTML文件和 `data.csv` 放在同一目录下,用浏览器打开HTML文件。 3. 效果:支持**缩放、悬停显示数值、拖拽平移**等交互。 --- ### **方法二:Python + Plotly(生成独立HTML文件)** #### 特点:适合Python用户,自动化生成图表文件。 ```python import pandas as pd import plotly.express as px # 1. 读取CSV文件 df = pd.read_csv("data.csv") # 2. 创建交互式图表 fig = px.line( df, x='x', y='y', title='Python生成的交互式图表', markers=True, # 显示数据点 line_shape='spline' # 平滑曲线 ) # 3. 自定义悬停效果和样式 fig.update_traces( hoverinfo='x+y', # 悬停显示x和y值 line=dict(width=2, color='royalblue'), marker=dict(size=8, color='firebrick') ) # 4. 保存为HTML文件 fig.write_html("interactive_chart.html") ``` #### 使用步骤: 1. 安装依赖: ```bash pip install pandas plotly ``` 2. 运行代码后,生成 `interactive_chart.html`,用浏览器打开即可看到图表。 --- ### **交互功能对比** | **功能** | **JavaScript/Plotly** | **Python/Plotly** | |------------------------|-----------------------|-------------------| | 缩放/平移 | ✔️ | ✔️ | | 悬停显示数值 | ✔️ | ✔️ | | 数据点高亮 | ✔️ | ✔️ | | 导出为图片(PNG/JPEG) | ✔️ | ✔️ | | 动态更新数据 | ✔️(需额外代码) | ❌ | --- ### **进阶方案(可选)** 1. **动态数据加载**(JavaScript): ```html <input type="file" id="csvFile" accept=".csv"> <div id="chart"></div> <script> document.getElementById('csvFile').addEventListener('change', function(e) { const file = e.target.files[0]; const reader = new FileReader(); reader.onload = function(e) { // 解析并绘制图表(代码同方法一) }; reader.readAsText(file); }); </script> ``` - 用户可上传任意CSV文件,实时生成图表。 2. **添加控件**(Python + Dash): ```python from dash import Dash, dcc, html import pandas as pd import plotly.express as px app = Dash(__name__) df = pd.read_csv("data.csv") app.layout = html.Div([ dcc.Graph( id='live-chart', figure=px.scatter(df, x='x', y='y', title='Dash动态图表') ), html.Button('更新数据', id='update-button') ]) if __name__ == '__main__': app.run_server(debug=True) ``` - 运行后访问 `http://localhost:8050`,支持动态交互和按钮触发操作。 --- ### **最终效果示例**  选择适合你的场景快速实现吧!